A Reconfigurable Multithreaded Accelerator for
Recurrent Neural Networks

Zhigiang Que*, Hiroki Nakahara!, Hongxiang Fan*,
Jiuxi Meng*, Kuen Hung Tsoif, Xinyu Niu$, Eriko Nurvitadhi, Wayne Luk*
f Tokyo Institute of Technology, Japan, nakahara.h.ad@m.titech.ac.jp
§ Corerain Technologies Ltd., China, {kuenhung.tsoi, xinyu.niu}@corerain.com
1 Intel Corporation, eriko.nurvitadhi @intel.com
*Imperial College London, UK, {z.que, h.fan17, jiuxi.meng16, w.luk} @imperial.ac.uk

Abstract—Recurrent Neural Network (RNN) is a key technol-
ogy for sequential applications which require efficient and real-
time implementations. Despite its popularity, efficient accelera-
tion for RNN inference is challenging due to its recurrent nature
and data dependencies. This paper proposes a multi-threaded
neural processing unit (NPU) for RNN/LSTM inferences to
increase processing abilities and quality of service of cloud-based
NPUs by improving their hardware utilization. Besides, a custom
coarse-grained multi-threaded LSTM (CGMT-LSTM) hardware
architecture is introduced, which switches tasks among threads
when LSTM computational kernels meet data hazard. These
logical NPUs share nearly all resources of the physical NPU.
When one logical NPU is stalled, another one can make progress.
These optimizations improve the exploitation of parallelism to
increase hardware utilization and enhance system throughput.
Evaluation results show that a dual-threaded CGMT-LSTM NPU
gains 27% more performance while only has 3.8% more area
than a single-threaded one using a Stratix 10 FPGA. When
compared with an implementation on the Tesla V100 GPU, our
novel hardware architecture is 6.62 times faster and 15.88 times
higher power efficiency, which demonstrates that our approach
contributes to high performance energy-efficient FPGA-based
multi-LSTM inference systems.

I. INTRODUCTION

Recurrent Neural Network (RNN) is the main component
of smart applications with sequential inputs, such as natural
language processing [1], speech recognition [2, 3] and video
analysis [4, 5]. Among the many RNN variants, Long Short-
Term Memory (LSTM) is the most popular one. Since low-
latency is key for a seamless user experience in such ap-
plications, efficient and real-time RNN/LSTM acceleration is
required. FPGAs have been used to speed up the inference of
LSTM [6, 7, 8, 9, 10], which offer benefits of low latency and
low power consumption compared to CPUs or GPUs.

However, existing LSTM accelerators cannot support a
cost-effective multi-recurrent neural network execution. Cloud
providers must minimize their huge operation costs by running
as many applications on a given server as possible, while
satisfying the quality of each service. In Google data center,
CNNs comprise only 5% of the workload, while the Long
Short-Term Memory (LSTM) make up 29% [11]. But most
of the existing LSTM accelerators are only able to perform
one task at a time. They can naively process the multi-
LSTM tasks by executing different neural networks or layers in
sequence, resulting in inefficiency when multiple task requests

LSTM1 LSTM2 LSTM3
arrives arrives arrives

[I] Running
-

>4

| TS2 | LSTM2{ TS2 [TS3 LSTM3
‘ boTst i i TS182 |

—_

| LSTM 1
TS

Time

Fig. 1. Timeline of three LSTM inference tasks based on a first-come first-
serve scheduling policy. The example of the LSTM 1 has two time-steps (TS),
the LSTM 2 has three time-steps and the LSTM 3 has two time-steps in this
figure.

come at the same time, as shown in Fig. 1. It may make
the latter coming task wait for a long time to be processed
with an available hardware core since the former LSTM
layer may have a large number of time-steps which needs
lots of iterations, e.g., 1500 time-steps in an LSTM layer in
DeepSpeech [12]. Besides, some specific applications involve
multiple LSTM models. A spacecraft anomalies detection
system [13] even involves over 700 LSTM models, each
modeling a single telemetry channel and predicting values for
that channel, which shows the need to support multi-LSTM
execution. Moreover, a conventional LSTM accelerator is often
designed by arranging all computing resources to form a single
core with a large scale, leveraging data level parallelism. For
example, Brainwave [9] is a single-threaded neural processing
unit (NPU) which has 96,000 processing elements (PEs).
However, when the size of the targeted LSTM model is small,
these hardware resources will not be fully utilized, e.g., the
Brainwave hardware utilization is lower than 1% [9] and the
utilization of NPU in [10] is lower than 15% when targeting
a small LSTM model (h;=256). It is challenging to design an
accelerator to support a cost-effective multi-LSTM execution.

This paper proposes a multi-threaded neural processing
unit (NPU) for accelerating LSTM inferences to increase the
processing abilities of cloud-based NPUs with high quality
of service and improved hardware utilization for better per-
formance. A primary goal of our design is to efficiently add
more per-NPU core scalability potential. The most area / cost
efficient way to add “logical” cores is multithreading. Essen-
tially, multithreading ‘recovers’ unused performance (where

LSTM 1 LSTM2 LSTM3
arrives arrives ~ arrives

[[. Running

Stalling till
batch is done
D Queueing

Batch is formed Time

Fig. 2. Timeline of three LSTM inference tasks using batching

execution units are idle due to events on one thread) by
switching to another thread. Multithreading also ensures there
is no downside to peak performance in single-threaded mode.
Running multiple neural networks together has a potential to
alleviate the issues of idle as layers from different neural
networks can be freely scheduled without any dependency
issue. The execution of multiple tasks can also be achieved by
a batch technique which feeds multiple inputs into a neural
network to generate multiple outputs in one inference round.
However, it harms latency since different inputs may not
come at the same time [14], meaning that a newly arrived
request have to wait until the batch is formed, which imposes
significant latency penalty, as shown in Fig. 2.

In addition, inspired by coarse-grained multithreading used
in modern CPUs, e.g., IBM RS64-1V [15] and Intel Mon-
tecito [16], which makes a core switch to a different hard-
ware context when a thread is stalled due to some events,
we propose a custom coarse-grained multi-threaded LSTM
(CGMT-LSTM) hardware architecture which switches tasks
among threads when LSTM computational kernels meet data
hazard. When one logical NPU core is stalled, the other can
make progress. The Coarse-grained multithreading (CGMT)
is a mature technique in modern CPU designs. However, few
studies concern combining the CGMT and NPUs, especially
for RNNs/LSTMs. Unlike CNNs which do not have mem-
ory cells and can run layers from different neural networks
iteratively, RNNs/LSTMs have memory cells, which makes it
hard to run different timesteps from different RNN layers or
models since they have different cell memory using a single-
threaded accelerator. It needs to finish the former model or
former RNN layer until the next model or layer can run.
The existence of inter-timestep dependency within a RNN
model prevents the following timesteps from even starting their
execution until the current timestep’s completion, which leads
to a hardware underutilization. To address this challenge, we
propose the CGMT-LSTM which can rapidly switch to an
alternate thread of computation during a data-hazard event,
e.g. the inter-timestep dependencies of RNNs, to achieve high
hardware utilization and improve the system performance.

To the best of knowledge, this is the first work to propose an
coarse-grained multi-threaded LSTM accelerator architecture
to enable an effective multi-LSTM execution.

We make the following contributions in this paper:

o A novel multi-threaded neural processing unit to enable
effective multi-neural network execution for LSTMs.

¢ A custom coarse-grained multi-theaded LSTM hardware
architecture which significantly improves hardware uti-
lization and system performance.

o A custom tiling method of LSTMs, which minimizes the
intermediate results buffers when combining the CGMT,
thereby increasing the accelerator area efficiency.

o A comprehensive evaluation of the proposed method and
hardware architecture.

II. BACKGROUND AND PRELIMINARIES

LSTMs are artificial neural networks which have feedback
connections and internal memory cells to record past infor-
mation about long-term dependencies over an arbitrary time.
They achieve high accuracy in many sequence processing
problems such as text analysis, speech recognition and video
classification.

LSTM was initially proposed in 1997 by Sepp Hochreiter
and Jiirgen Schmidhuber [17]. This study follows the standard
LSTM cell [7, 9, 10, 5], as shown in Fig 3. The hidden state
hy is produced by the following equations:

= o(Wilxe, hi—1] + b;)
fe=" o(Wylzy, hea] + bf)
g¢ = tanh(Wy[zs, hi—1] + by) (D
or = o(W,lze, hi—1] + o)

c=fiOc1+i Ogs
ht = o; © tanh(ct)

Here, o, tanh and ©® stand for the sigmoid function, the
hyperbolic tangent function and element-wise multiplication
respectively. 4, f,g and o represent the input, forget, input
modulation and output gate respectively. The input modulation
gate is often considered as a sub-part of the input gate.
The input vector and hidden vector are combined so that W
represents the weight matrix for both input and hidden units.
Bias is represented as b. The output ¢; is the internal memory
cell state and h; is the output of the cell, also called the hidden
state, which is passed to the next time-step or next layer. The
gates control the information flow inside the LSTM unit. The
input gate decides what new information is to be written into
the memory cell; the forget gate decides what old information
is no longer needed and can be removed; the input modulation
gate is used to modulate the information that the input gate
will write into the memory cell by adding non-linearity to
the information; the output gate decides what the next hidden
state should be. Our work focuses on the optimization of the
standard LSTM, but the proposed techniques can be applied
to other RNN and LSTM variants.

III. DESIGN AND OPTIMIZATION METHODOLOGY

It is challenging to accelerate RNN/LSTM inference ef-
ficiently due to its recurrent nature and data dependencies.
In this section, we first introduce the coarse-grained multi-
threading for accelerating RNN/LSTM. We then propose a

LSTM-Gates

LSTM-Tail

Fig. 3. Structure of an LSTM Cell

TABLE I
SYSTEM PARAMETERS

w Weights matrix

Hw Number of columns of weight matrix
Lw Number of Rows of weight matrix

Tt The input vector = at timestep ¢

ht The hidden vector h at timestep ¢

Lx Number of elements in input vector x
Lh Number of elements in hidden vector h
NPE | Number of processing elements

EP Element-based Parallelism

vpP Vector-based Parallelism

TS Timestep

blocking strategy of LSTM weights matrix to enable sub-layer
granularity scheduling to create fine-grained tasks for CGMT-
LSTM architecture. We define the system parameters in Table
I which are used for later calculations.

A. Multithreading for Recurrent Neural Processing Unit

There are huge demands for architectural support of multi-
DNN running to maximize the hardware utilization and reduce
the cost of running large-scale production systems. However,
most of the existing LSTM accelerators are only able to run
one task at a time. This paper proposes a coarse-grained multi-
threaded (CGMT) LSTM NPU which switch on the event
of computational unit data hazard in LSTM operations. The
general idea is when a thread is stalled due to some event, e.g
cache misses, the cores can switch to a different hardware
context. In our CGMT-LSTM NPU, the event is the data
hazard due to data dependency between the sequence time-
step calculation in LSTMs. The idea is to have multiple thread
contexts in a single recurrent neural processor unit so that
when the first thread stalls then the second one can continue
to run, as shown in Fig. 4. Thus, it can utilize processing
resources more efficiently to improve system performance
by exploiting thread-level parallelism and improving NPU
utilization.

A former LSTM model or layer may have thousands of
time-steps, which occupies the processor for a long time,
resulting in long waiting time for the latter requests before they
can be executed. However, some services are latency critical
because their response time directly relates to user experience,

LSTM 1 LSTM2 LSTM3
arrives arrives ~ arrives

[D Running
) -

Virtual
! idle

Multi-

Thread
T3

Physical [
Core

Single
Thread

Time
Fig. 4. Timeline of three LSTM inference tasks based the proposed CGMT

e.g. intelligent personal assistants are one of the examples
where real-time deep learning is used to process user speech
and give smart responses. The conventional single thread NPU
can write back the old thread’s context to memory and load
the new thread’s context using preemption mechanisms [18]
to run another task. However, it will bring a large context
switch penalty. In our new multi-threaded NPU for LSTMs,
the new task can be executed from another thread as soon as
it comes, as shown in Fig. 4. Please note that the particular
thread may still stall because of data hazard, but the physical
core is not stalled since multiple threads share the same
computational physical core, which results in ”Virtual idle”
as shown in this figure. We believe that further optimizations,
e.g. Simultaneous Multi-Threading (SMT) can be applied to
our NPU implementation to achieve even higher performance.
We leave that for future work since it has a limited impact on
the conclusions we draw from our study in this paper.

B. Weights Matrix blocking Strategy

According to the LSTM equations (1), an LSTM layer of
a single time-step involves four matrix-vector multiplication
operations, which are independent. Since the four matrices
of i, f,0,u gates of LSTMs share the same size, we com-
bine these matrices into one large matrix [19, 20] as shown
in Fig. 5. Thus, in one time-step of the LSTM operation,
we only need to focus on optimizations of one large matrix
multiplied by one vector for the whole LSTM cell instead
of four small matrices multiplying one vector. This is a
generic optimization that can be applied to any Matrix-Vector
Multiplications (MVMs) that share the same input vector.
Since each gate matrix has the size of Lh x (Lx + Lh), the
large combined matrix has the size of (4 x Lh) x (Lx + Lh).

Generally, the weight matrices in neural networks are large
and they can be accelerated by operating in parallel. However,
the resources on FPGAs are limited, which means that we can-
not perform the whole MVM computation at once, especially
for some large LSTMs. In order to utilize the computational
engine efficiently, we partition the combined weights matrix of
an LSTM layer into multiple sub-layers in advance depending
on the detailed configuration of accelerator and LSTM sizes.

i gate

101 4] 11
2 |22 ®: o gate 22.®E

f gate ® AR
21222 7C:|—> 1111 |1
| 11 1[4
i
— 2 (2|2 |2
T - 2 (222
g gate 222@—@ 2|2 [2]2
— 2 |2 S

Fig. 5. The gates weights matrices and the combined weights matrix, showing
interleaving of four gates weights. The lengths of the input vector and hidden
vector are 2 in this example.

:JP M Ep
VP|| Sub-layer1
N EP
Sub-layer2
B vP|| Sub-layer | O
Sub-layer3
Sub-layer4
(@) (b)

Fig. 6. The weights matrix blocking. (a) The combined weights matrix,
showing the sub-layers. The number of sub-layers are 4 in this example.
(b) One sub-layer using the Element-based Parallelism (EP) and Vector-based
Parallelism (VP) as a tile shaded in green

Specifically, an LSTM layer of one time-step is firstly divided
into a number of equal-sized sub-layers, as shown in Fig. 6a.
To illustrate the idea, the number of the sub-layers in this figure
is shown as four, however, the real system can have more
sub-layers. Then, Element-based Parallelism (EP) and Vector-
based Parallelism (VP) are introduced to exploit the available
parallelism [20]. The number of the sub-layers equals (4‘X/IL)h).
The sub-layer is then partitioned into several small tiles which
have a size of (E'P,V P), as shown in Fig. 6b. In each cycle,
our CGMT-LSTM core can process a tile of the sub-layer
and a sub-vector of [z, hy_1] with a size of EP. To increase
system parallelism, V' P is chosen to be as large as possible.
However, the largest number of VP is Hw, which equals
4 x Lh, since there are only four gates in LSTM. Thus, the
smallest number of sub-layers is one. In this work, sub-layer
granularity scheduling is adopted to create fine-grain tasks for
multi-LSTM execution.

By interleaving the rows of the weights matrices, the related
elements in the result vector from four gates are adjacent
and can be reduced easily via the element-wise operations in
the LSTM-tail unit. It means there are no data dependencies
between these sub-layers. The technique of interleaving also
removes the need for buffering large intermediate outputs from

Weights Addr §

w Buffers ﬂ
4
\

s Main Control 1
Column-
wise
MVM

Thread-aw:
addr generator

Input buffers

Thread 1 |—>{

@ X

2
|8

(Treso

]

I N >
Adapter / ol
© | De-Quant || tann WQ LSTM-Tail ||| | Quant
o7 N /EP
,
ht

-
Quantization
Compensation

Fig. 7. The overview of the system

four LSTM gates since the result sub-vectors of various sub-
layers are not related and will be reduced in the tail unit
soon. Each sub-vector of the MVM result can be processed
individually in the LSTM-tail units. There is no need to wait
for other sub-layer results to achieve the LSTM memory
cell status and hidden units of the current sub-layer. The
proposed CGMT-LSTM core will always finish processing all
the sub-layers in one time-step before it switches to another
thread since the data hazard happens when time-step changes.
Compared with a fine-grained multithreading scheme which
switches the context between threads in each cycle, we avoid
to buffer these large intermediate MVM operations values as
well as element-wise operations values since these values will
finally form the sub-vector of LSTM memory cells and hidden
units. We only need to add thread dedicated buffers for these
LSTM memory cells and hidden units since different threads
process different LSTM requests.

IV. HARDWARE ARCHITECTURE

Based on the optimization techniques introduced above, we
implement the proposed CGMT-LSTM scheme on top of a
state-of-the-art RNN accelerator [20] for low latency cloud-
based applications. In the Section IV-A., we outline the main
components of the architecture and detail the necessary hard-
ware modifications required in order to support our CGMT-
LSTM scheme. A few FPGA-specific optimizations are also
introduced.

A. System details

A high-level block diagram of this accelerator is shown
in Fig. 7. It is composed of V P kernel units, an Adapter /
De-Quant unit, an activation function unit, &P tail units, and
a Quant unit as well as data buffers. The proposed multi-
threaded NPU has many logical neural processing units which
share nearly all resources of the physical NPU, e.g. weights
buffer, kernel units, activation function units, element-wise
units.

Each kernel has EP Processing Elements (PEs), resulting
in VP x EP effective PEs. The VP and EP values are
determined via the design space exploration described in
detail in [20]. In this design, each PE is one fully-pipelined
multiplier. The kernels are used to perform the matrix-vector
multiplications between the weights and x; as well as h;_1. In
our proposed CGMT-LSTM NPU, all the logical cores share
all the kernel units. When one logical core (thread) is stalled,
the other can still perform calculation using the same kernel

/L Cell FIFOs
L [—’[Thread 1 :
S ——(x—(+) EThread2)(& 3| |
H (0]
i T 1 TR e g\. B Cl' H
—
Hidden units FIFOs :
g) ;
g :
=2
¢ — > B ...)28 h
o
 LSTM-Tail i t

EfThread N

[

Fig. 8. The LSTM-tail unit

units. Thus, the proposed CGMT-LSTM NPU is able to utilize
the kernel resources efficiently to increase system performance
and improve NPU hardware utilization. Since each thread
requires its own input vector z; and h;_1, the system has to
keep multiple buffers to store these contexts. Besides, thread
selection logic is necessary to choose the required buffer
to retrieve the data and perform the calculations, as shown
in Fig. 7.

The adapter converts the parallelism between kernels and
tails. Practically, the design does not require a large par-
allelization factor in the tail units as in the kernel units
since the column-wise MVM produces one output vector
after multiple accumulation cycles. Then, de-quantization (De-
Quant) is applied to convert quantized values into fixed-point
values to reduce hardware resources. Unlike the kernel unit
which mainly contains dot product operations, the tail unit is
composed of a sequence of element-wise operations, which
can introduce frequent de-quantization and quantization oper-
ations in the linear-quantization scheme. Since de-quantization
and quantization require a 32-bit multiplier unit and an adder,
the total hardware cost of linear-quantization for the tail unit is
higher than that of 16-bit fixed-point quantization. Therefore,
we do not perform linear-quantization in the tail units. Instead,
the quantized values will be de-quantized into fixed-point
values.

The activation function unit performs the sigmoid (o) and
hyperbolic tangent (tanh) functions. Both are implemented
using software programmable lookup tables of size 2048
[3, 10]. The implementation using lookup tables has many
benefits: (1) our neural processor is able to run a trained model
using custom activation functions (e.g. the hard sigmoid in
Keras [21]) from users without retraining. Since we do not
change the calculation equations in the model and do not
perform retraining, we do not touch users’ sensitive data which
are critical for many users; (2) a lookup table has a fixed
latency of 1 cycle, while other implementation, e.g. a piece-
wise linear approximation, will involve multipliers which may
have a much larger latency.

The LSTM-tail units as shown in Fig. 8 mainly perform the
element-wise operations. The LSTM memory cell FIFOs and
hidden units FIFOs are used to store the status of the running
LSTMs since one thread may be switched because of data

TABLE II
BENCHMARKS USED IN THIS WORK

Name Length (h¢) Length (x¢) Domain
Sentiment
IMDB [28 128 128
(28] Classification
A otvi
LRCN [5] 256 2048 crvity
Recognition
Show & Tell [29] 512 512 Image Caption
Generation
h
DeepBench [12] | 256 /512 /1024 | 256 / 512 / 1024 Speech
Recognition

hazard before it can fully calculate the current LSTM layer
with multiple time-steps. Since these threads run different
LSTM layers or models, the system has to maintain multiple
hardware contexts, as shown in Fig. 8. The output hidden
vector (h;) needs the quantization (Quant) before it can be
used in the MVM kernels, so a Quant unit is utilized after the
final output of LSTM-tail units as shown in Fig. 7.

B. FPGA-Specific optimizations

Since the proposed CGMT-LSTM NPU can process a tile
which has the size (E'P, V P) in each cycle, all the kernel units
can share the same input of a partial sub-vector of (xy, hs_1),
which has EP elements. These E'P elements are broadcasted
to all these kernels. Besides, a single address needs to be
broadcasted to all the weight buffers. To mitigate the large
fan-out issue, the tree-shaped [10] interconnect is adopted to
reduce the fan-out of each node with pipeline stages between
the source and destination. The RTL code is carefully written
to enable the use of Stratix 10 HyperFlex registers to achieve
higher operating frequency [22, 23].

The DSP blocks in modern FPGAs, which have high
configurability, are often underutilized when implementing 8-
bit DNN systems. Both [24] and [25] show a method to extract
two 8-bit multipliers from one large precision multiplier in
FPGA DSP blocks. In this design, the approach in [25] is
adopted to pack four 8-bit into one DSP block on Intel FPGAs
to reduce the hardware resources. Besides, this would not be
a restriction (and will come at lower cost) if we use a novel
DSP similar to what was proposed in [26] and will be adopted
in the next generation Agilex devices [27].

V. EVALUATION AND ANALYSIS

This section presents hardware implementation results using
an Intel Stratix 10 FPGA that demonstrate the scalability of
the proposed optimizations for RNNs.

A. Experimental Setup

For our study, we choose our benchmark workloads from a
few typical LSTM applications which are listed in Table II for
a fair and direct comparison. Multi-tasked LSTM workloads
are constructed randomly from these LSTMs. An Intel Stratix
10 2800 (S10) is evaluated and compared with other work. It
runs the inferences of persistent LSTM models which store the
weights in on-chip memory [9, 10, 20]. It is designed using
Verilog RTL. Quartus Prime Pro 19.4 is used to target S10.

TABLE III
RESOURCE UTILIZATION

Thread ALMs M20K DSP Freq.
Stratix 10 . 487,232 10,061 4,368
Single 260 MHz
(2800) (52.2%) | (85.8%) | (76%)
Stratix 10 522,852 10,129 4,368
Dual 260 MHz
(2800) (56.0%) | (86.4%) | (76%)
TABLE IV
PERFORMANCE COMPARISON OF THE FPGA DESIGN VERSUS CPU AND
GPU
CPU GPU This work
Intel Xeon Tesla Stratix 10
Platform
Skylake V100 2800
Frequency 2.0 GHz 1.38 GHz | 260 MHz
Technology 14 nm 12 nm 14 nm
Precision F32 F16 INTS8
LSTM Size (ht) 1024
TDP Power(W) 15 300 125
Thi hput
roughpy 8 1180 7810
(GOPS)
Power Efficiency
0.53 3.93 62.48
(GOPS/W)

The EP is 16 and V P is 1024 according to [20]. The number
of PEs, NPF, is 16384.

B. Resource Utilization

Table III shows the resource utilization of our designs with
two configurations on FPGAs. Both the designs utilize the
parameter of (EP,V P) as (16, 1024), which include 16,384
8-bit multipliers in the MVM kernels implemented using DSP
blocks with extra ALMs. The dual-threaded design consumes
3.8% more of total logic (ALMs) resources and 0.6% more
block ram (M20K) than the single-threaded one. Since dual
threads share the same physical core it consumes the same
DSP resources with the single-threaded one.

C. Performance and Efficiency Comparison

To compare the performance of the proposed design on
FPGA with other platforms, the DeepBench published re-
sults [30] on an Intel Xeon Syklake CPU and NVIDIA Tesla
V100 GPU are used. The AVX2 vector instructions are enabled
for the CPU while the CuDNN libraries are enabled for the
GPU. Both CPU and GPU implementations run with a batch
size of 1 which provides the lowest cloud service latency since
requests need to be processed as soon as they arrive. For
a fair comparison with the throughput of our dual-threaded
CGMT-LSTM processing unit, the throughput of the CPU
and GPU have been doubled in Table IV. Compared with the
RNN running on GPU, our FPGA design of CGMT-LSTM

1T = 2T m4-T

2.50

2.00

Speedup

0.50

0.00
128 256 512

LSTM hidden vector size

MIX

Fig. 9. Performance speedup using various threads.

1T = 2T 44T

100%

75%

50%

Hardware Utilization

25%

0%

128 256 512

LSTM hidden vector size

1024

Fig. 10. Hardware utilization of different LSTM tasks using various threads.

is 6.62 times faster and 15.88 times higher power efficiency
respectively as shown in Table IV.

To illustrate the benefits of our proposed approach, we
compare the proposed multi-threaded LSTM processing unit
with a single thread core in Fig. 9 and Fig. 10. Hardware
utilization is the percentage of the peak Tera Operations Per
Second (TOPS) reached for each layer. With the proposed
CGMT-LSTM approach, the LSTM designs with 2 threads
(2-T) and 4 threads (4-T) achieve 1.27 and 1.45 times higher
performance respectively than the baseline [20] using a sin-
gle thread core when targeting mixed requests from LSTM
workloads with h = 128,256 and 512. With 4-T, the system
achieves 2.23 times higher performance than the baseline [20]
when targeting the small LSTMs. The performance gain is
slight when only targeting large LSTMs since the baseline
LSTM processing unit [20] already achieves high hardware
utilization for these LSTMs. However, the baseline still suffers
from low utilization when targeting small sized LSTMs which
are commonly used in many applications [31, 5]. LSTM
models with small sizes that have large number of time-steps
are the most tangible examples that require dealing with lots

of dependencies, as well as the parallel task of MVMs [32].
Our proposed approach and hardware architecture can alleviate
this problem by leveraging the coarse-grained multithreading.

Our experiments also show that the utilization is low when
targeting a small LSTM (h = 128). It is because the largest
effective V' P in this case is 4 x Lh which is 512 so that
the effective PEs are less than N PE, which leads to severe
underutilization. Different choices of FP and V P mapping
impact the performance and utilization of systems running
LSTM models with different sizes. It is a trade-off between
the extra performance which can be gained and the design
complexity as well as extra hardware resources for supporting
various values of (EP, VP) dynamically. It is our future work to
improve this architecture using an overlay to support various
values of (EP, VP) since different model sizes may prefer
different best EP and VP parameters.

Some existing FPGA-based RNN/LSTM accelerator designs
are compared with ours in Table V. For a fair comparison, we
only show the previous work with a detailed implementation
of the LSTM system using the Stratix 10 GX2800. We show
the FPGA chips, model storage, precision, DSP used, run-
time frequency, throughput and power efficiency and hardware
(HW) utilization. The thermal design power (TDP) is used
for a fair comparison since it is reported in all mentioned
papers. Overall, our design provides over 4.92 times higher
performance and 5.77 times higher hardware utilization than
the state-of-the-art design [10] when targeting an LSTM model
(hy=256), as shown in Table V. When compared with the
single-threaded NPU [20], it achieves 1.47 higher performance
and utilization. Since multithreading also ensures there is
no downside to peak performance in single-threaded mode,
the CGMT-LSTM can achieve the same peak performance
of 8015 GOPS with the one in [20], which is the highest
with respect to state-of-the-art FPGA-based RNN design us-
ing commonly used INTS8 precision. The only prior work
that provides a higher peak throughput is [9] using 8-bit
block floating-point. However when targeting the small LSTM
model, the throughput of the proposed CGMT-LSTM is 19
times higher than [9]. Furthermore, we achieve the highest
hardware utilization among all these designs across various
LSTM models. This paper focuses on minimizing latency and
maximizing throughput by increasing the hardware utilization.
The proposed architecture improves the efficiency of hardware
usage from another point of view, hence it accelerates the
effective performance.

VI. RELATED WORK

There has been much previous work on FPGA-based im-
plementations of persistent LSTM whose weights are stored
in on-chip memory [9, 10, 33, 34, 35]. Besides, FINN-
L [34] employs 1-8 bits as the quantized implementation
which surpasses a single-precision floating-point a ccuracy for
a given dataset. There are also some previous studies of LSTM
implementations storing weights in off-chip memory on FPGA
devices [7, 36, 37, 38, 39], which had been identified as
the performance bottleneck. In addition, some novel LSTM

TABLE V
COMPARISON WITH PREVIOUS IMPLEMENTATIONS OF LSTM USING
STRATIX 10 GX 2800

ISCA18- FCCM19- | FCCM20- .
This work?®
BW [9] NPU [10] | NPU [20]
FPGA Stratix 10 GX2800
Model Storage On-chip
Precision (bits) BFP-1s5¢2m 8 fixed 8 fixed 8 fixed
DSP Used 5245 4880 4368 4368
(91%) (85%) (76%) (76%)
Frequency
250 260 260 260
(MHz)
LSTM Size (h¢t) 256
Performance
370 1431 4790 7041
(GOPS)
Power® Effi.
2.96 11.45 38.32 56.33
(GOPS/W)
LSTM I,_IW 0.8% 14.3% 56.1% 82.5%
Utilization

4 Dual-threaded mode
b TDP Power is used

weights reuse methods [39, 38, 40] are proposed to reduce the
off-chip memory access to decrease the energy cost and im-
prove the system throughput. Some previous work is trying to
optimize LSTM inference using block-circulant-matrix-based
approach [41, 42]. In [14, 34, 43, 44], the batching technique
is proposed to increase the throughput of LSTM inferences.
[44] proposes E-BATCH for RNNs which increases throughput
while also improving energy efficiency on an ASIC-based
accelerator. Furthermore, a framework which deploys an ap-
proximate computing scheme for LSTMs using small tiles is
presented in [45]. Sun et al. [46] propose a multi-FPGA based
approach for accelerating deep RNNs which achieves single-
layer speed for arbitrarily deep RNN architectures with an
FPGA cluster. [47] introduces a multiple FPGA architecture
for accelerating neural machine translation. [48] explores RNN
partitioning strategies to achieve the scalable multi-FPGA
acceleration for large RNNs with analysis the performance
impact of collective communications and software pipelining.

Some of the previous studies [3, 49, 50, 51, 52] are focusing
on weight pruning and model compression to reduce the size of
weights to achieve good performance and efficiencies. In [3],
the authors propose a pruning technique which compresses
a large LSTM to fit the on-chip memory of an FPGA and
improves inference efficiency. While in [49], DeltaRNN is
proposed. It is based on the Delta Network algorithm which
skips dispensable computations during inference of networks.
The authors in [50] propose Bank-Balanced Sparsity (BBS)
which is able to maintain model accuracy and enable an
efficient FPGA accelerator implementation. In [53], BLINK
is proposed which utilize bit-sparse data representation for
the LSTM inference. It improves the energy efficiency of the
LSTM inference by turning the multiplication into the bit
shift operation while remaining the inference accuracy. These
studies are orthogonal to our proposed approach and hardware
architecture. These techniques can be complementary to our

approach to achieve even higher throughput of RNN inferences
on FPGAs.

The Brainwave system [9] is a single-threaded SIMD archi-
tecture for persistent RNNs. It achieves more than an order of
magnitude improvement in latency and throughput over GPUs
on large memory intensive RNNs. Its idea is pinning the model
weights into on-chip memory in order to achieve a necessary
high memory read bandwidth to achieve high performance for
RNNs. The authors in [30] propose the cross-kernel optimiza-
tion within RNN cells targeting Plasticine [54] which is based
on a coarse-grained reconfigurable architecture (CGRA). The
authors in [10] introduce a Brainwave-like neural processing
unit (NPU) for RNNs. They also propose TensorRAM for large
persistent data intensive RNN sequence models. [20] proposes
a novel latency-hiding hardware architecture based on fine-
grained column-wise matrix-vector multiplication to eliminate
data dependency, improving the throughput of systems of
RNN/LSTM models. However, all these RNN/LSTM NPUs
are single-threaded.

There are huge demands for architectural support of multi-
DNN running to maximize the hardware utilization and re-
duce the cost of running large-scale production systems. For
example, the concurrent DNN execution is supported in the
TensorRT from NVIDIA for users to run multiple DNNs on
the same GPUs simultaneously. SMT-SA [55] introduces a
simultaneous multi-threading technique in Systolic Arrays to
address the underutilization problem caused by zero-valued
input. However, it cannot handle the underutilization problem
caused by RNN data dependencies. In [56], A multi-threaded
CGRA is proposed to accelerate CNN only. [57] proposes a
synthesis technique to auto-generate in-order multi-threaded
processing pipelined datapath from a high-level unpipelined
datapath specification. In [18], the authors focus on a preemp-
tive scheduling algorithm for a DNN accelerator to support
multi-DNN running. But it does not explore the data depen-
dencies between LSTM time-steps. The sequence length (time-
step) of an LSTM model is usually larger or much larger than
the number of layers. [58] proposes AIl-MultiTasking, which
balances compute- and memory-intensive tasks from different
networks and executes them in parallel by dividing each layer
into multiple identical sub-layers. It deals with RNNs just
as FCs in its scheduling scheme. However, RNNs/LSTMs
are more complex than FCs. In [31], the authors propose
multithreading for LSTM accelerators based on a multi-core
approach. However, they utilize the multi-core with each
thread on each core. This affects the system performance in
a single thread mode since they can only use half of the
computational resources to run a single task. Thus, it is not an
area / cost efficient way to add threads. In our design, a multi-
threaded single-core accelerator is designed, which can run a
task in a single thread mode to achieve higher performance and
lower latency when targeting some high priority workloads
while still handling multiple requests using multi-threaded
mode if needed. A primary goal of our design is to efficiently
add more per-NPU core scalability potential.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a coarse-grained multi-threaded neural
processing unit (NPU) for LSTM inference to increase the
processing abilities of cloud-based NPUs, increasing their
throughput while improving their hardware utilization. We
have implemented the proposed CGMT-LSTM architecture
on Stratix 10 FPGAs with superior performance and effi-
ciency, which shows the effectiveness of our approach. Further
research includes combining our method with simultaneous
multithreading (SMT) and the automation of the proposed
approach to enable rapid development of efficient RNN/LSTM
designs.

ACKNOWLEDGEMENT

The support of the United Kingdom EPSRC (grant
numbers EP/L016796/1, EP/N031768/1, EP/P010040/1, and
EP/S030069/1), Corerain and Intel is gratefully acknowledged.

REFERENCES

[1] Y. Goldberg, “A primer on neural network models for natural language
processing,” Journal of Artificial Intelligence Research, vol. 57, pp. 345—
420, 2016.

[2] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in
english and mandarin,” in International conference on machine learning,
2016.

[3] S. Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017.

[4] J. Yue-Hei Ng et al., “Beyond short snippets: Deep networks for video
classification,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015.

[5] J. Donahue et al., “Long-term recurrent convolutional networks for vi-
sual recognition and description,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015.

[6] E. Nurvitadhi et al., “Accelerating recurrent neural networks in analytics
servers: Comparison of FPGA, CPU, GPU, and ASIC,” in 26th Inter-
national Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2016.

[7]1 Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator
for long short-term memory recurrent neural networks,” in Design
Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific.
IEEE, 2017, pp. 629-634.

[8] Z. Sun and et al., “FPGA acceleration of LSTM based on data for test
flight,” in IEEE International Conference on Smart Cloud (SmartCloud),
2018, pp. 1-6.

[9] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,

S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A Configurable

Cloud-Scale DNN Processor for Real-Time Al,” in Proceedings of the

45th Annual International Symposium on Computer Architecture. 1EEE

Press, 2018, pp. 1-14.

E. Nurvitadhi et al., “Why Compete When You Can Work Together:

FPGA-ASIC Integration for Persistent RNNS,” in 27th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines

(FCCM). IEEE, 2019.

N. P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit,” in Proceedings of the 44th Annual International

Symposium on Computer Architecture, 2017.

A. Hannun et al., “Deep speech: Scaling up end-to-end speech recog-

nition,” arXiv preprint arXiv:1412.5567, 2014.

K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soder-

strom, “Detecting spacecraft anomalies using Istm and nonparametric

dynamic thresholding,” in Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining.

ACM, 2018, pp. 387-395.

P. Gao, L. Yu, Y. Wu, and J. Li, “Low latency RNN inference with

cellular batching,” in Proceedings of the Thirteenth EuroSys Conference,

2018, pp. 1-15.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(37]

J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel, “A
multithreaded PowerPC processor for commercial servers,” IBM Journal
of Research and Development, vol. 44, no. 6, pp. 885-898, 2000.

C. McNairy and R. Bhatia, “Montecito: A dual-core, dual-thread itanium
processor,” IEEE micro, vol. 25, no. 2, pp. 10-20, 2005.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

Y. Choi and M. Rhu, “PREMA: A predictive multi-task scheduling al-
gorithm for preemptible neural processing units,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020.
M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell,
N. Shanker, J. Chu, I. Prins, J. Fender, A. C. Ling et al., “DLA: Compiler
and FPGA Overlay for Neural Network Inference Acceleration,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL). 1EEE, 2018, pp. 411-4117.

Z. Que, H. Nakahara, E. Nurvitadhi, H. Fan, C. Zeng, J. Meng, X. Niu,
and W. Luk, “Optimizing Reconfigurable Recurrent Neural Networks,”
in IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). 1EEE, 2020, pp. 10-18.

F. Chollet et al., “Keras: Deep learning library for theano and tensor-
flow,” URL: https://keras. io/k, vol. 7, no. 8, p. T1, 2015.

T. Tan, E. Nurvitadhi, D. Shih, and D. Chiou, “Evaluating The Highly-
Pipelined Intel Stratix 10 FPGA Architecture Using Open-Source
Benchmarks,” in 2018 International Conference on Field-Programmable
Technology (FPT). 1EEE, 2018, pp. 206-213.

Intel, “Understanding how hyperflex architecture enables high perfor-
mance systems,” in White Paper 01231. Intel.

“Deep Learning with INT8 Optimization on Xilinx Devices,” 2017. [On-
line]. Available: https://www.xilinx.com/support/documentation/white
papers/ wp486-deep-learning-int8.pdf

M. Langhammer, B. Pasca, G. Baeckler, and S. Gribok, “Extracting
INT8 Multipliers from INT18 Multipliers,” in International Conference
on Field Programmable Logic and Applications (FPL). IEEE, 2019.
A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing diversity: En-
hanced DSP blocks for low-precision deep learning on FPGAs,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL). 1EEE, 2018, pp. 35-357.

Intel, “Intel Agilex Variable Precision DSP Blocks User Guide,” 2020.
A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th annual meeting of the association for computational linguistics:
Human language technologies, 2011, pp. 142-150.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3156-3164.

T. Zhao, Y. Zhang, and K. Olukotun, “Serving Recurrent Neu-
ral Networks Efficiently with a Spatial Accelerator,” arXiv preprint
arXiv:1909.13654, 2019.

L. Peng et al., “Exploiting Model-Level Parallelism in Recurrent Neu-
ral Network Accelerators,” in International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC). 1EEE, 2019.

R. Yazdani, O. Ruwase, M. Zhang, Y. He, J.-M. Arnau, and A. Gonzilez,
“LSTM-Sharp: An Adaptable, Energy-Efficient Hardware Accelerator
for Long Short-Term Memory,” arXiv preprint arXiv:1911.01258, 2019.
Z. Que et al., “Real-time Anomaly Detection for Flight Testing us-
ing AutoEncoder and LSTM,” in International Conference on Field-
Programmable Technology (FPT). 1EEE, 2019.

V. Rybalkin, A. Pappalardo, M. M. Ghaffar, G. Gambardella, N. Wehn,
and M. Blott, “FINN-L: Library extensions and design trade-off analysis
for variable precision LSTM networks on FPGAs,” in 28th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2018.

V. Rybalkin and N. Wehn, “When Massive GPU Parallelism Ain’t
Enough: A Novel Hardware Architecture of 2D-LSTM Neural Net-
work,” in The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2020, pp. 111-121.

A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neu-
ral networks hardware implementation on fpga,” arXiv preprint
arXiv:1511.05552, 2015.

Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: An automated framework for mapping deep

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

(54

[55]
[56]

[57]

[58]

neural networks onto FPGAs with RTL-HLS hybrid templates,” in Field-
Programmable Custom Computing Machines (FCCM), 2017 IEEE 25th

Annual International Symposium on. 1EEE, 2017, pp. 152—159.
N. Park, Y. Kim, D. Ahn, T. Kim, and J.-J. Kim, “Time-step interleaved

weight reuse for LSTM neural network computing,” in Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and
Design, 2020, pp. 13-18.

Z. Que, T. Nugent, S. Liu, L. Tian, X. Niu, Y. Zhu, and W. Luk,
“Efficient Weight Reuse for Large LSTMs,” in 20/9 IEEE 30th Inter-
national Conference on Application-specific Systems, Architectures and
Processors (ASAP), vol. 2160. 1EEE, 2019, pp. 17-24.

Z. Que et al., “Mapping Large LSTMs to FPGAs with Weight Reuse,”
Journal of Signal Processing Systems, 2020.

S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang,
“C-LSTM: Enabling Efficient LSTM using Structured Compression
Techniques on FPGAs,” in Proceedings of the 2018 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. ACM,
2018, pp. 11-20.

Z. Li et al., “E-RNN: Design optimization for efficient recurrent neural
networks in FPGAs,” in International Symposium on High Performance
Computer Architecture (HPCA). 1EEE, 2019.

A. Ardakani et al., “Learning to skip ineffectual recurrent computations
in Istms,” arXiv preprint arXiv:1811.10396, 2018.

F. Silfa, J. M. Arnau, and A. Gonzalez, “E-BATCH: Energy-Efficient and
High-Throughput RNN Batching,” arXiv preprint arXiv:2009.10656,
2020.

M. Rizakis, S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Approximate
FPGA-based LSTMs under computation time constraints,” in Interna-
tional Symposium on Applied Reconfigurable Computing. Springer,
2018.

Y. Sun et al., “Acceleration of deep recurrent neural networks with an
fpga cluster,” in Proceedings of the 10th International Symposium on
Highly-Efficient Accelerators and Reconfigurable Technologies, 2019.
E. Nurvitadhi, A. Boutros, P. Budhkar, A. Jafari, D. Kwon, D. Sheffield,
A. Prabhakaran, K. Gururaj, P. Appana, and M. Naik, “Scalable
Low-Latency Persistent Neural Machine Translation on CPU Server
with Multiple FPGAs,” in 2019 International Conference on Field-
Programmable Technology (ICFPT). 1EEE, 2019, pp. 307-310.

D. Kwon, S. Hur, H. Jang, E. Nurvitadhi, and J. Kim, “Scalable Multi-
FPGA Acceleration for Large RNNs with Full Parallelism Levels,” in
2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE,
2020, pp. 1-6.

C. Gao et al., “DeltaRNN: A power-efficient recurrent neural network
accelerator,” in Proceedings of the ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays. ACM, 2018.

S. Cao et al., “Efficient and Effective Sparse LSTM on FPGA with Bank-
Balanced Sparsity,” in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2019.

R. Shi et al., “E-LSTM: Efficient inference of sparse LSTM on em-
bedded heterogeneous system,” in 56th ACM/IEEE Design Automation
Conference (DAC). 1EEE, 2019.

G. Nan, C. Wang, W. Liu, and F. Lombardi, “DC-LSTM: Deep Com-
pressed LSTM with Low Bit-Width and Structured Matrices,” in 2020
IEEE International Symposium on Circuits and Systems (ISCAS). 1EEE,
2020, pp. 1-5.

Z. Chen, G. J. Blair, H. T. Blair, and J. Cong, “BLINK: bit-sparse
LSTM inference kernel enabling efficient calcium trace extraction for
neurofeedback devices,” in Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, 2020, pp. 217-222.
R. Prabhakar et al., “Plasticine: A reconfigurable architecture for par-
allel patterns,” in ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), 2017.

G. Shomron et al., “SMT-SA: Simultaneous multithreading in systolic
arrays,” IEEE Computer Architecture Letters, 2019.

K. Ando et al., “A multithreaded CGRA for convolutional neural
network processing,” Circuits and Systems, 2017.

E. Nurvitadhi er al., “Automatic multithreaded pipeline synthesis from
transactional datapath specifications,” in Design Automation Conference.
IEEE, 2010, pp. 314-319.

E. Baek er al., “A Multi-Neural Network Acceleration Architecture,”
in ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020.

