Global Progress in
Dynamically Interleaved Multiparty Sessions

Lorenzo Bettint, Mario Coppd, Loris D’Antoni®, Marco De Luca,
Mariangiola Dezani-Ciancaglihiand Nobuko Yoshida

1 Dipartimento di Informatica, Universita di Torino
2 Department of Computing, Imperial College London

Abstract. A multiparty session forms a unit of structured interacsi@mong
many participants which follow a prescribed scenario dfetias a global type
signature. This paper develops, besides a more traditemramunicatiortype
system, a novel statiateractiontype system for global progress in dynamically
interleaved multiparty sessions.

1 Introduction

Widespread use of message-based communication for dévglogtwork applications
to combine numerous distributed services has provokedhtiigierest in structuring
series of interactions to specify and implement programroamication-safe software.
The actual development of such applications still leavethéoprogrammer much of
the responsibility in guaranteeing that communication @iblve as agreed by all the
involved distributed peerddultiparty session type disciplingroposed in [12] offers a
type-theoretic framework to validate a message-exchamgag concurrently running
multiple peers in the distributed environment, genenadjighe existing binary session
types [10, 11]; interaction sequences are abstracted asbalglype signature, which
precisely declares how multiple peers communicate andsgnése with each other.

The multiparty sessions aim to retain the powerful dynamétdres from the origi-
nal binary sessions, incorporating features such as riecusad choice of interactions.
Among featuressession delegatiois a key operation which permits to rely on other
parties for completing specific tasks transparently in @&tgafe manner. When this
mechanism is extended to multiparty interactions engagead® or more specifica-
tions simultaneously, further complex interactions canrmalelled. Each multiparty
session following a distinct global type can be dynamicaiterleavedby other ses-
sions at runtime either implicitly via communications bajing to different sessions or
explicitly via session delegation.

Previous work on multiparty session types [12] has providdanited progress
property ensured only within a single session, ignoring thinamic nature. More pre-
cisely, although the previous system assures that the pteufpiarticipants respect the
protocol, by checking the types of exchanged messages amutdler of communica-
tions in a single session, it cannot guarantgoaal progressi.e, that a protocol which

* The work is partially supported by IST-3-016004-IP-09 SENSA, EPSRC GR/T03208,
EPSRC EP/F003757 and IST2005-015905 MOBIUS.

merges several global scenarios will not get stuck in theliaidf a session. This limita-
tion prohibits to ensure a successful termination of a tatisn, making the framework
practically inapplicable to a large size of dynamicallyoefigured conversations.

This paper develops, besides a more traditi@emhmunicatiortype system{ 3),

a novel statianteractiontype system{ 4) for global progress in dynamically inter-
leaved multiparty, asynchronous sessions. High-levelisegprocesses equipped with
global signatures are translated into low-level procesdgish have explicit senders
and receivers. Type-soundness of low-level processesaisagteed against the local,
compositional communication type system.

The new calculus for multiparty sessions offers three tmahmerits without sac-
rificing the original simplicity and expressivity in [12]ifst it avoids the overhead of
global linearity-check in [12]; secondly it provides a mditeeral policy in the use of
variables, both in delegation and in recursive definitidimglly it implicitly provides
each participant of a service with a runtime channel indéxeits role with which he
can communicate with all the other participants, perngtaifso broadcast in a natural
way. The use of indexed channels, moreover, permits to deflight-weight interac-
tion type system for global progress.

The interaction type system automatically infers causalibf channels for the low
level processes, ensuring the entire protocol, startinghfthe high-level processes
which consist of multiple sessions, does not get stuck a&rim¢diate sessions also
in the presence of implicit and explicit session interlegvi

Full definitions and the proofs are at http://www.di.uritf@ezani/papers/bcdddy. pdf.

2 Syntax and Operational Semantics

Merging Two Conversations: Three-Buyer ProtocolWe introduce our calculus through
an example, the three-buyer protocol, extending the tweebprotocol from [12],
which includes the new features, session-multicastingdgmamically merging of two
conversations. The overall scenario, involving a SellgrASce (A), Bob (B) and Carol
(C), proceeds as follows.

1. Alice sends a book title to Seller, then Seller sends bapkode to Alice and Bob.
Then Alice tells Bob how much she can contribute.

2. If the price is within Bob’s budget, Bob notifies both Seked Alice he accepts,
then sends his address, and Seller sends back the delitery da

3. Ifthe price exceeds the budget, Bob asks Carol to colibaogether by establish-
ing a new session. Then Bob sends how much Carol must paydtiegateshe
remaining interactions with Alice and Seller to Carol.

4. If the rest of the price is within Carol’s budget, Carol @gts the quote and notifies
Alice, Bob and Seller, and continues the rest of the protadthi Seller and Alice
transparentlyas if she were BalOtherwise she notifies Alice, Bob and Seller to
quit the protocol.

Then multiparty session programming consists of two stepscifying the intended
communication protocols using global types, and impleimgrthese protocols using
processes. The specifications of the three-buyer protaeoyi@en as two separated
global types: one i€, among Alice, Bob and Seller and the othefig between Bob

and Carol. We write principals with legible symbols thoubéyt will actually be coded
by numbers: i3 we haveS = 3,A = 1 andB = 2, while inG, we haveB =2,C = 1.

Ga— Gy =

1.A—$S: (string). 1. B — C: (int).

2. 8 — {A,B}: (int). 2. B— C: (T).

3.A — B: (int). 3.C — B: {ok:end, quit:end}.

4. B — {8,A}: {ok :B— S: (string). T=

5. S — B: (date);end @({s,A},

6. quit : end} {ok :I(s,string); (S, date); end,
quit : end})

The types give a global view of the two conversations, diyeatbstracting the scenario
given by the diagram. I&,, line 1 denoted. sends a string value . Line 2 saysS
multicasts the same integer valueAt@ndB and line 3 says that sends an integer to
B. In lines 4-6B sends eithesk or quit to S andA. In the first cas® sends a string t®
and receives a date frof in the second case there are no further communications.

Line 2 in Gy represents the delegation of the capability specified bydthien type
T of channels (formally defined later) fromto C (note thatSs andA in T concern the
session om).

We now give the code, associateddgandGy, for S, A, B andC in a “user” syntax
formally defined in the following section:

S = a[3|(ys).ys?(title); ys! (quote; ys& {ok : y3?(address; ys! (date; 0, quit : O}
A = a[l](y1).ya!{"Title");y1?(quote;y, ! (quotediv 2);y1& {ok : 0, quit : O}

B = a[2](y2).y2?(quote); y,?(contrib);
if (quote - contrib< 100) then Yy, @ ok;y»!("Address");y>?(date);0
else b[2](z).z!(quote - contrib 99); 2! {(y,)); & {ok : O, quit : 0}

C =b[1(z).z2?(x); 2 2(1));

if (x < 100) then z; ® ok;t @ ok;t!("Address");t?(date); 0

else z; ® quit;t @ quit; 0
Session nama establishes the session correspondin@4cs initiates a session involv-
ing three bodies as third participant B8|(y3): A andB participate as first and second
participants bya[1](y;) anda[2](y»), respectively. Thes, A andB communicate using
the channelgs, y; andy,, respectively. Each channgl can be seen as a port connect-
ing participant with all other ones; the receivers of the data senyoare specified by
the global type (this information will be included in the time code). The first line of
G, isimplemented by the input and output actigg®title) andy;! ("Title"). The last
line of G, is implemented by the branching and selection actm8s ok : 0, quit : 0}
andz; & ok, z; P quit.

In B, if the quote minug\’s contribution exceeds 1&(i.e. quote - contrib> 100),
another session betwe@nandC is established dynamically through shared ndme
The delegation is performed by passing the chagaétom B to C (actionsz! {(y>))
andz ?((t))), and so the rest of the session is carried ouChwyith S andA. We can
further enrich this protocol with recursive-branching aeiours in interleaved sessions
(for exampleC can repeatedly negotiate the quote waths if she were). What we
want to guarantee by static type-checking is that the whoteersation between the

P = a[n|(y).P Multicast Request | if ethen Pelse Q Conditional
| ulp](y).P Accept | PIQ Parallel
| yi{e);P Value sending | O Inaction
| y2x);P Value reception | (va)P Hiding
| yI{(2);P Session delegation | defDinP Recursion
| y2(2);P Session reception | X{ey) Process call
| yol;P Selection
| y&{l; : Rliel Branching en=v |x

ur=x |a Identifier | eand€ |note... Expression

v:i=a |true |false Value D:=X(xy)=P Declaration

Table 1. Syntax for user-defined processes

four parties preserves progress as if it were a single ceatien.

Syntax for Multiparty Sessions. The syntax for processes initially written by the user,
calleduser-defined processéds based on [12]. We start from the following sedsr-
vice namesranged over bya.b,... (representing public names of endpointsg|ue
variables ranged over by, X, ..., identifiers, i.e., service names and variables, ranged
over byu,w,..., channel variablesranged over by, zt..., labels ranged over by
[,I’,... (functioning like method names or labels in labelled resyirdrocess vari-
ables ranged over byX,Y,... (used for representing recursive behaviour). Than
cessesranged over by, Q.. ., andexpressionsranged over b, €, ..., are given by
the grammar in Table 1.

For the primitives for session initiation/n|(y).P initiates a new session through
an identifieru (which represents a shared interaction point) with therathétiple par-
ticipants, each of shapép](y).Q, where 1< p < n—1. The (bound) variablg is the
channel used to do the communications. We gadj,... (ranging over natural numbers)
theparticipantsof a session. Session communications (communicationsakaiplace
inside an established session) are performed using thehvertpairs of primitives: the
sending and receiving of a value; the session delegatiomeszgption (where the for-
mer delegates to the latter the capability to participatesession by passing a channel
associated with the session); and the selection and braj@lhere the former chooses
one of the branches offered by the latter). The rest of th&agyia standard from [11].

Global Types.A global type ranged over by, G, .. describes the whole conversation
scenario of a multiparty session as a type signature. ltagia is given below:

Global G:=p— {pk}kek : (U).G ExchangeU =S| T
| p— {pktkek : {li : Gi}ial Sorts S:=bool | ... |G
| put.G |t |end

We simplify the syntax in [12] by eliminating channels andgiel compositions, while
preserving the original expressivity (s&8).

The global typep — {pk}kek : (U).G' says that participant multicasts a mes-
sage of typdJ to participantspk (k € K) and then interactions described @ take
place.Exchange types W', ... consist ofsortstypesS S, ... for values (either base
types or global types), anattiontypesT,T’,... for channels (discussed §8). Type
P — {px}kek : {li : Gi}iel Says participang multicasts one of the labélisto participants

P ::= ¢! {({pk}kek, €); P Value sending | ¢® ({pk}kek,!);P Selection
| c?(p,x);P Value reception | c&(p,{li : R}iel) Branching
| cl{{p,c));P Session delegation | (vs)P Hiding session
| c(a,y);P Session reception | s:h Named queue

|-

c:=y | slp| Channel

m::= (9, {Pk}kek,V) | (0P, SP']) | (@ {PK}kek:!) Message in transit

h:i=mh | g Queue

Table 2. Runtime syntax: the other syntactic forms are as in Table 1

pk (k € K). If I is sent, interactions described®) take place. Typgt.G is a recur-
sive type, assuming type variablest{,...) are guarded in the standard way, i.e. type
variables only appear under some prefix. We takegui-recursiveview of recursive
types, not distinguishing between.G and its unfoldingG{ ut.G/t} [18] (§21.8). We
assume thab in the grammar of sorts is closed, i.e., without free typéaldes. Type
end represents the termination of the session. We often writep’ for p — {p’}.

Runtime Syntax. User defined processes equipped with global types are ecdcut
through a translation into runtime processes. The runtyn&as (Table 2) differs from
the syntax of Table 1 since the input/output operationd(iting the delegation ones)
specify the sender and the receiver, respectively. T¢l4Spk kek , €) sends a value to
all the participants i px kek ; accordinglyc?(p,x) denotes the intention of receiving a
value from the participarg. The same holds for delegation/reception (but the receiver
is only one) and selection/branching.

We call g[p] a channel with role it represents the channel of the participarin
the sessiors. We usec to range over variables and channels with roles. As in [12], i
order to model TCP-like asynchronous communications (ages®rder preservation
and sender-non-blocking), we use the queues of messagesession, denoted Hy,
a message in a queue can be a value meséadex }kek, V), indicating that the value
v was sent by the participaatand the recipients are all the participants{is }kek;
a channel message (delegatiofe),p’,s[p]), indicating thatq delegates t@’ the role
of p on the sessios (represented by the channel with ra&lg]); and a label message,
(a,{pk}kek,!) (similar to a value message). The empty queue is denoted. MWith
some abuse of notation we will write mto denote tham is the last element included
in h andm- h to denote thaim is the head of. By s: h we denote the queueof the
sessiors. In (vs)P all occurrences of[p] and the queusare bound. Queues and chan-
nels with role are generated by the operational semantisc(ibed later).

We present the translation of BoB)(in the three-buyer protocol with the runtime
syntax: the only difference is that all input/output opinas specify also the sender and
the receiver, respectively.

B = a[2](y2).y2?(3,quote; y>?(1, contrib);

if (quote - contrib< 100) then y> & ({1,3},0k);y2! ({3}, "Address");y>?(3,date); 0

else b[2](z).22! ({1}, quote - contrib 99); ! ((1,y2)); & (1,{ok : O, quit : 0}).
It should be clear from this example that starting from a gldippe and user-defined
processes respecting the global type it is possible to addesend receivers to each

a[1j(y1)-Po[... | &ln}(yn)-Pn — (vS)(PL{s[1]/y1} | ... | Pa{sIN]/yn} | s: 2) [Link]

Slp]'({Pk}kek . €);P [sth— P[s:h-(p,{p}kek.V) (elv) [Send]
sipl!(a,S[P'));P[s:h—P[s:h-(p,q,S[p']) [Deleg]

Slp] @ ({Pk}kek1);P | s:th— P[s:h-(p, {pk}kek:!) [Label]

slpj]2a,%); P [st (a, {Pk}kek,V) -h — P{v/x} | i (q, {pk}kek\j-V)-h (J€K) [Recv]
sip](a,y);P st (a,p,S[p'])-h— P{s[p']/y} | s:h [Srec]

slpjl&(a, {li : R}ier) |s:(q, {pk}Kek;lip) -h— PRy | S: (q, {Pk}kGK\j7|io)'h
(jeK) (igel) [Branch]

Table 3. Selected reduction rules

communication obtaining in this way processes written ertimtime syntax.
We callpurea process which does not contain message queues.

Operational Semantics.Table 3 shows the basic rules of the process reductionaglati
P — P’. Rule [Link] describes the initiation of a new session amoparticipants that
synchronises over the service naa& he last participara[n](yn).Pn, distinguished by
the overbar on the service name, specifies the numloéiparticipants. For this rea-
son we call it thenitiator of the session. Obviously each session must have a unique
initiator. After the connection, the participants will shahe private session nansg
and the queue associatedsiavhich is initialized as empty. The variablgsin each
participantp will then be replaced with the corresponding channel wilk,rglp]. The
output rules [Send], [Deleg] and [Label] push values, cledsmand labels, respectively,
into the queue of the sessisfin rule [Send]e | vdenotes the evaluation of the expres-
sioneto the valuev). The rules [Recv], [Srec] and [Branch] perform the cormegting
complementary operations. Note that these operationkdhat the sender matches,
and also that the message is actually meant for the recéiveauticular, for [Recv], we
need to remove the receiving participant from the set of éleeivers in order to avoid
reading the same message more than once).

Processes are considered modulo structural equivaleewetet by=, and defined
by adding the following rules for queues to the standard ¢héls
s:hy-(q, {Pktkek,2) - (@', {Pk}keksZ) -2 =s: 1 (4, {PK}kek’, Z) - (@ {PKFkek:2) -2

if KNK'=0orq#dq
s:(q,0,v)-h=s:h s:(q,0,1)-h=s:h

wherez ranges ovev, s|p] andl. The first rule permits rearranging messages when the
senders or the receivers are not the same, and also spéttimessage for multiple re-
cipients. The last two rules garbage-collect messages#vatalready been read by all
the intended recipients. We use-* and/— with the expected meanings.

3 Communication Type System

The previous section defines the syntax and the global tyg@s.section introduces
the communication type system, by which we can check typediess of the commu-

nications which take place inside single sessions.

Types and Typing Rules for Pure Runtime ProcessedVe first define the local types
of pure processes, calledtion typesWhile global types represent the whole protocol,
action types correspond to the communication actionsesgmting sessions from the
view-points of single participants.

Action T = 1({phkek,U)T send | ut.T recursive
| 2p,U)T receive |t variable
| ®({pktkek, {li : Ti}iar) selection | end end
| &(p, {li: Ti}ier) branching

The send type!{{pk}kek,U);T expresses the sending to gl for k € K of a value
or of a channel of typé&J, followed by the communications df. The selection type
d{{pktkek,{li : Ti}iel) represents the transmission toglifor k € K of a labell; cho-
sen in the sefl; | i € 1} followed by the communications described Gy Thereceive
andbranchingare dual and only need one sender. Other types are standard.

The relation between action and global types is formaligethb notion of projec-
tion as in [12]. Theprojection of G ontay (G [q) is defined by induction ofs:

H{pktkek:U)i(G' Taq) if q=p,
(P — {Pklkek : (U).G') Iq=14 2p,U);(G [q) if q = py for somek € K,
G lq otherwise
(P — {pxtkek 1 {li : Gitiel) [a=
O({pktkek, {li : Gi I qlier) ifq=p
& (p,{li : Gi | a}iel) if @ = px for somek € K
Gilq if 97 p,q # pkvk € K and
Gilq=G;jlqforalli,jel.
(Ut.G) Tq=pt.(Glq) tlq=t end|q=end.
As an example, we list two of the projections of the globaleyfs, and G, of the
three-buyer protocol:
Ga | 3= ?(1,string);1({1,2},int); & (2, {ok 12, string); ! ({2}, date);end, quit : end })
Gp [1="72,int); 22, T); ®({2},{ok : end,quit : end})
whereT = &({1,3}, {ok :I{{3},string); ?(3,date); end, quit: end}).
The typing judgements for expressions and pure processes tre shape:
Fe:Sandlr -P>A

wherel” is thestandard environmenthich associates variables to sort types, service

names to global types and process variables to pairs ofygm$ and action typeg is

thesession environmemthich associates channels to action types. Formally weetefin
[:=0|lu:S|MX:STandA::=0|A,c:T

assuming that we can write,u : Sonly if u does not occur i, briefly u ¢ dom(I")

(dom(I") denotes the domain @, i.e. the set of identifiers which occur in). We use

the same convention fo¢ : S TandA.

Table 4 presents the interesting typing rules for pure meee Rul¢ MCAST| per-
mits to type a service initiator identified oy if the type ofy is then-th projection of the
global typeG of u and the number of participants & (denoted by p(G)) is n. Rule
|[MAcc| permits to type the-th participant identified by, which uses the channel

Ftu:(G) rEPeAy:Gin n=pnG) rcu:(Gy r-prPeAy:Gip

[MCAsT| [MAcc]
I =an)(y).P-A I Fulp)(y).PrA
r-e:s r+pPeAc:T rx:SEPrAC:T
| SEND| |Rev|
I+ {{pk}kex;€);P> A, c: H{{pktker; S T [+c%q,x);PrA,c:%q,9);T
r=PeAc:T repPsAc:Ty:T
| DELEG] | SREC]
r=cl{(p,cd);PoAc:!(p, T)T,c: T rc(q,y);PeA,c:2(q,T');T

FrFPsA Qw4 doma)ndom(a’) =0

|CoNc]|
reP|Qraul’

Table 4. Selected typing rules for pure processes

y, if the type ofy is thep-th projection of the global typ& of u. The successive six
rules associate the input/output processes to the ingptibtypes in the expected way.
Note that, according to our notational convention on emuinents, in rulel DELEG]
the channel which is sent cannot appear in the session env@at of the premise,
i.e.c ¢ domA)U{c}. Rule | CoNc]| permits to put in parallel two processes only if
their sessions environments have disjoint domains. Fonpl@awe can derive:

Fta ({1,3},0k);t! ({3}, "Address");t?(3,date); 0> {t : T}
whereT = ©({1,3}, {ok :! ({3},string); 2(3,date);end, quit : end}).
In the typing of the example of the three-buyer protocol thpes of the channelg and
7y are the third projection dB; and the first projection dby, respectively. By applying
rule [IMCAST| we can then deriva: Gz F S 0. Similarly by applying rulg MAcc]|
we can derivéd : Gy + Ci> 0.

Types and Typing Rules for Runtime ProcessedVe now extend the communication
type system to processes containing queues.

Message ::= !{{pk}kek,U) message sendGeneralised ::= T action
| ®{pktkek,!) message selection | T message
| T;T message sequence | T;T continuation

Message typeare the types for queues: they represent the messagesnazhiaithe
queues. Thenessage send typé{pk}kek ,U) expresses the communication toglfor
k € K of a value or of a channel of tydé. Themessage selection type({px}kek,!)
represents the communication to gl for k € K of the labell andT; T’ represents
sequencing of message types. For examp|€l,3},0k) is the message type for the
messagé2,{1,3},0k).
A generalised typés either an action type, or a message type, or a messagediype f
lowed by an action type. TypE T represents the continuation of the typassociated
to a queue with the typ€ associated to a pure process. An example of generalised type
is ®({1,3},0k); ! {{3},string); ?(3,date); end.

We start by defining the typing rules for single queues, inchitthe turnstile-
is decorated witH's} (wheresis the session name of the current queue) and the ses-
sion environments are mappings from channels to messags. tfphe empty queue has
empty session environment. Each message adds an outpubtsipe current type of

the channel which has the role of the message sender.
In order to type pure processes in parallel with queues, wed t®use generalised

types in session environments and further typing rules.imbee interesting rules are:

r=pP-A FFsPoA TEs QoA N3 =0

—— |GINIT| [GPR]

[oPrA MFsus Pl QA4
where the judgemeifit -5 P>A means thaP contains the queues whose session names
are inZ. Rule | GINIT| promotes the typing of a pure process to the typing of an ar-
bitrary process, since a pure process does not contain siudlneen two arbitrary pro-
cesses are put in parallel (rul&PaRr |) we need to require that each session name is
associated to at most one queue (condifioh’ = 0). In composing the two session
environments we want to putin sequence a message type antiamtgpe for the same
channel with role. For this reason we define the compositibatween local types as:

T;T' if Tis amessage type
T«T' =TT if T isamessage type
L otherwise
where L represents failure of typing. We exterdo session environments as expected:
AxA'=A\domA)UA\domA)U{c: T«T'|c:TeA&c:T €A’}

Note thatx is commutative, i.ed x A’ = A’ x A. Also if we can derive message types
only for channels with roles, we consider the channel végmin the definition ok for
session environments since we want to get for exarfipteend} « {y: end} = L. An
example of derivable judgement is:
Fisp Pt (3,{1,2},0k) > {s[3] : ©({1,2},0k);!({1},string); (1, date);end }
whereP = g[3]! ({1}, "Address");s[3]?(1,date); 0.

Subject Reduction.Since session environments represent the forthcoming eoriam
cations, by reducing processes session environments aagehThis can be formalised
as in [12] by introducing the notion of reduction of sessiomieonments, whose rules
are:

= {slp] - H{{pk ek, U); T,slpj] :2p,U); T’} = {slp] : H{{p}kek\j>U); T.slpj] : T'}if jeK

= {slp]: T;@{pckex, {li : Titien)} = {slp]: T;&({Pk}ke,li); Ti}

= {slp] : @{pPk}kek:); T, slpj] - &(p, {li : Titie)} = {slp]: ®({px}kek\j>1): T, Slpj) = Ti}
if j e Kandl =lI;

= {slp] : {O,U); T} = {s[p]: T} {s[p] : &(0.1);T} = {slp] : T}

— AUA" = A'up"ifA = A

The first rule corresponds to the reception of a value or chldmythe participanp,
the second rule corresponds to the choice of the labeld the third rule corresponds to
the reception of the labélby the participanp;. The fourth and the fifth rules garbage
collect read messages.

Using the above notion we can state type preservation uedection as follows:

Theorem 1 (Type Preservation)lf ' s P>A and P—* P/, thenl” 5 P/ A’ for
someAd’ suchthatd =* A’.

Note that the communication safety [12, Theorem 5.5] is altany of this theorem.
Thus the user-defined processes with the global types caly safmmunicate since
their runtime translation is typable by the communicatigretsystem.

4 Progress

This section studies progress: informally, we say that agss has the progress property
if it can never reach a deadlock state, i.e., if it never reduo a process which contains
open sessions (this amounts to containing channels wigsyahd which is irreducible
in any inactive context (represented by another inactieegss running in parallel).
Definition 1 (Progress).A process P has thprogress propertif P —* P’ implies
that either P does not contain channels with roles or|RQ — for some Q such that
P’ | Qis well typed and QX—.

We will give an interaction type system which ensures thatyipable processes always
have the progress property.

Let us say that @hannel qualifieris either a session name or a channel variable.
Let c be a channel, its channel qualifigrc) is defined by: (1) ift =y, thenl(c) =;
(2) else ifc = s[p], thenf(c) = s. Let A, ranged over by\, denote the set of all service
names and all channel qualifiers.

The progress property will be analysed via three finite dete:sets.4#” and %
of service names and a s&#t C A U (A x A). The set#” collects the service names
which are interleaved following the nesting policy. Theggtollects the service names
which can be bound. The Cartesian prodtict A, whose elements are denofeek A’,
represents a transitive relation. The meaning ef A’ is that an input action involving
a channel (qualified by} or belonging to servicd could block a communication
action involving a channel (qualified byl or belonging to servicd’. Moreover%
includes all channel qualifiers and all service names whihat belong to 4" or #
and which occur free in the current process. This will be uistef easily extend? in
the assignment rules, as it will be pointed out below. We .célhested service se®
bound service s&tndZ channel relatior{even if only a subset of it is, strictly speaking,
a relation). Let us give now some related definitions.

Definition 2. LetZ :=0| Z,A | Z,A < A'.
#U{a} ife=aisasession name
B otherwise.
2. B\NA = {M <A | A<M ER&MAN&MAAIUN [N e Z &N #A}
3. WA = {%\/\ f A is minimal in27
L otherwise.

4 ROR = (RUR)"

5. pre(¢(c),Z) = ZW{l(c)}W{l(c) <A |A € Z & l(c)#A}
whereZ™ is the transitive closure of (the relation part o8 and A is minimalin % if
AN <)X e
Note, as it easy to prove, thatis associative. A channel relationwsll formedif it is
irreflexive, and does not contain cycles. A channel relatbis channel fredcf (%)) if
it contains only service names.

In Table 5 we introduce selected rules for the interactigretgystem. The judge-
ments are of the shap® P » Z; .4 ; % where@ is a set ofassumption®sf the
shapeX[y] » Z ; & ; 2 (for recursive definitions) with the variabjerepresenting
the channel parameter Xf

1. BU{e} =

OFP» Z, N B

o an|y).P » Z{ajy}; N %
OFP» Z, N, A

O ran|(y).P » z\\y; 4/ U{a}; #
OFP» Z, N, % cf(Z\Y)

O FUn|(y).P » Z\\y; A ; BU{u}
OFP» %, VB

{MCasT}

{MCASTN}

{MCasTB}

O ! ({pilkek,€);P » {£(Q}UZ; A ; BU{e}
OFP» %, N, %A

O Fcl{(p',c));P » {4(c),l(c),l(c) < () ywZ; N B

OFP» %, N, B OFQw» %' N B

OFP|IQw» ZWH , NUN"; BUR

OFP» Z, N B

{MAcc}
O +alp|(y)-P » #{aly}; ¥ ; B

OFP» Z, N, B

{MAccN}
o+ alp|(y).P » Z\\y; ¥ U{a}; #

OFP» %, N, B cf(Z\Y)

—— {MAccs}
O Fulpl(y).P » Z\\y; A ; BU{u}

OFP» Z, N B

{Rcv}
O +c?(q,x);P » pre(¢(c),#); N ; B

OFPw» Z; N B X C{LC),y L(c) <y}

{Conc}

{SRec}
O Fc?(q,y);P » {t()}; N B

OFP» Z;, N B agRAIN

{NREs}
O (vaP» %, .V, B\a

{VAR}
O Xy » Z; N ; BFX{ec) » Z{L(c)]y}; N BU{e}

OXly|» Z; N BEP > %, N, B OXly|» Z, N B-Qw X N B

{DEF}
ordefX(xy)=PinQw» %'; V', #

Table 5. Selected interaction typing rules

We say that a judgeme@t+P » Z; 4"; 4 is coherentf: (1) % is well formed;
(2)Zn (A UA)=0. We assume that the typing rules are applicable if and ibifye
judgements in the conclusion are coherent

We will give now an informal account of the interaction tygirules, through a set
of examples. It is understood that all processes introdircte: examples can be typed
with the communication typing rules given in the previousti&s.

The crucial point to prove the progress property is to asthaka process, seen as
a parallel composition of single threaded processes andeg,ieannot be blocked in a
configuration in which:

1. there are no thread ready for a session initializatian @f the formaln|(y).P or
alp|(y).P). Otherwise the process could be reactivated by providingth the right
partners.

2. all subprocesses are either non-empty queues or preogagang to perform an in-
put action on a channel whose associated queue does nchofégpropriate message.

Progress inside a single service is assured by the comntiomidstping rules in
§ 3. This will follow as an immediate corollary of Theorem 2.€Tbhannel relation is
essentially defined to analyse the interactions betweefcser this is why in the defi-
nition of pre(4(c), %) we put the conditiorf(c) # A. A basic point is that a loop i#?
represents the possibility of a deadlock state. For instéalce the processes:

Pr = b[1](y1).a8]2)(22).y1?(2,X); 22! (1, false); O
P, = b[2](y2).a[1](z1).222(2,X); y2! (1, true); 0.

In process”; we have that an input action on servicean block an output action on
servicea and this determinds < a. In proces$> the situation is inverted, determining
a<b.InP; | P, we will then have a loop < b < a. In factPy | P, reduces to

Q = (vs)(vr) (912(2,x);r[1]1(2,false); 0| r[2]2(1,X);s[2]! (1, true); 0)
which is stuck. It is easy to see that servieesdb have the same types, thus we could
changeb in ain P, andP, obtainingP; andP; with two instances of servica and a
relationa < a. But alsoP; | P; would reduce t®@Q. Hence we must forbid also loops on
single service names (i.e. the channel relation cannotflexie).

Rule{Rcv} asserts that the input action can block all other actiof imhile rule
{SEND} simply adds/(c) in Z to register the presence of a communication action in
P. In fact output is asynchronous, thus it can be always perédr Rule{DELEG} is
similar to { SEND} but asserts that a use @t) must precede a use éfc’): the relation
¢(c) < £(c') needs to be registered since an action blockKiiey also blockg(c’).

Three different sets of rules handle service initialisagidn rules MCAsT}-{MAcc},
which are liberal on the occurrences of the chanrialP, the service namareplaces
yin Z. Rules{MCAsTN}-{MAccN} can be applied only if the channghssociated
to a is minimal inZ .This implies that onca is initialised in P all communication
actions on the channel with role instantiatipgnust be performed before any input
communication action on a different channeHnThe namea is added to the nested
service set. Remarkably, via ruleBICASTN}-{MA CCN} we can prove progress when
services are nested, generalising the typing strategy]oT & rules{MCaAsTB} and
{MAccB} adduto the bound service set whenewes a service name. These rules are
much more restrictive: they require thas the only free channel iR and that it is min-
imal. Thus no interaction with other channels or servicgmissible. This safely allows
u to be a variable (since nothing is known about it before etienwexcept its type) or
a restricted name (since no channel with role can be madedssible at runtime by a
restriction oru). Note that rule{ NRES} requires thaa occurs neither it%Z nor in.#".

The sets /4" and % include all service names of a procdssvhose initialisations
is typed with{ MCASTN}-{MACCN}, {MCAsTB}-{MAccB}, respectively. Note that
for a service name which will replace a variable this is asduyy the (conditional)
addition ofe to # in the conclusion of rul§ SEND}. The sets 4" and# are used to
assure, via the coherence conditigm (.4 U %) = 0, thatall participants to the same
service are typed either by the first two rules or by the reigifour. This is crucial to
assure progress. Take for instance the procdgsasdP, above. If we type the session
initialisation onb using rule{MAccnN} or {MAccs} in P, and rule{MCAsT} in P,
no inconsistency would be detected. But r{ifeonc} does not typé?; | P, owing to
the coherence condition. Instead if we §8&A cc} in P, we detectthe loop<b < a.
Note that we could not usgMCASTN} or {MCAsTB} for b in P, sinceys is not mini-
mal.

Rules{MCAsTN}-{MAccN} are useful for typing delegation. An example is pro-
cess B of the three-buyer protocol, in which the typing ofgshbprocess

2! ({1}, quote - contrib 99); 2! {(1,y2)); & (1, {ok : 0, quit : 0})
givesz < y,. So by using rul§ MCAsT} we would get firsb < y, and then the cycle
y2 < b < y». Instead using rul¢§MCASTN} for b we get in the final typing of B either
{a};{b};0 or 0;{a,b}; 0 according to we use eith¢MCAST} or {MCASTN} for a.

Rule {SRec} avoids to create a process where two different roles in threeses-
sion are put in sequence. Following [23] we call this phenoomeself-delegation. As
an example consider the processes

PL=D[1](z).a1](y1).y2!((2,21));0

P = b2.8]2](y2).y2?((1,X)); X2(2,w); 25! (1, false); 0
and note thaP; | P, reduces tqvs)(vr)(s[1]?(2,w); §[2]! (1, false); 0) which is stuck.
Note thatP; | P, is typable by the communication type system Buis not typable by
the interaction type system, since by typm@((1,X)); X?(2,w); 25! (1,false); 0 we get
y2 < 2z which is forbidden by rul§ SRec}.

A closed runtime proced’is initial if it is typable both in the communication and
in the interaction type systems. The progress propertyssrad for all computations
that are generated from an initial process.

Theorem 2 (Progress)All initial processes have the progress property.

Itis easy to verify that the (runtime) version of the thragrbr protocol can be typed in
the interaction type system witfa}; {b};0 and 0fa,b};0 according to which typing
rules we use for the initialisation actions on the serviom@a. Therefore we get

Corollary 1. The three-buyer protocol has the progress property.

5 Conclusions and Related Work

The programming framework presented in this paper relietherconcept of global
types that can be seen as the language to describe the mdkeldi$tributed commu-
nications, i.e., an abstract high-level view of the protdbat all the participants will
have to respect in order to communicate in a multiparty comigation. The program-
mer will then write the program to implement this communimaiprotocol; the system
will use the global types (abstract model) and the programplg@mentation) to generate
a runtime representation of the program which consistsefriput/output operations
decorated with explicit senders and receivers, accorditige information provided in
the global types. An alternative way could be that the pnognar directly specifies the
senders and the receivers in the communication operat®aosardow-level processes;
the system could then infer the global types from the progfaar communication and
interaction type systems will work as before in order to ¢hiéhe correctness and the
progress of the program. Thus the programmer can chooseéeta top-down and
a bottom-up style of programming, while relying on the samepprties checked and
guaranteed by the system.

We are currently designing and implementing a modelling spekification lan-
guage with multiparty session types [19] for the standarfdsuginess and financial
protocols with our industry collaborators [20, 21]. Thisnssts of three layers: the
first layer is a global type which corresponds to a signatfirdass models in UML;
the second one is for conversation models where signatmesaiables for multi-
ple conversations are integrated; and the third layer dediextensions of the existing
languages (such as Java [13]) which implement conversataitels. We are currently
considering to extend this modelling framework with oureygiscipline so that we can
specify and ensure progress for executable conversations.

Multiparty sessions. The first papers on multiparty session types are [2] and [12].
The work [2] uses a distributed calculus where each charomeiects a master end-
point and one or more slave endpoints; instead of globaktytpey solely use (recursion-
free) local types. In type checking, local types are praedb binary sessions, so that
type safety is ensured using duality, but it loses sequerioformation: hence progress
in a session interleaved with other sessions is not guagdnte

The present calculus is an essential improvement from [i&@h processes and
types in [12] share a vector of channels and each commuoicages one of these
channels, while our user processes and global types aréesiam user-friendly with-
out these channels. The global types in [12] have a paralteposition operator, but its
projectability from global to local types limits to disjdisenders and receivers; hence
it does not increase expressivity.

The present calculus is more liberal than the calculus dfifLthe use of declara-
tions, since the definition and the call of recursive proessse obliged to use the same
channel variable in [12]. Similarly the delegation in [12fuires that the same channel
is sent and received for ensuring subject reduction, ag/s@alin [23]. Our calculus
solves this issue by having channels with roles, as in [9 (Be example at page 13).
As a consequence some recursive processes, which are st{K],i are type-sound
and reducible in our calculus, satisfying the interactigetsystem.

Different approaches to the description of service-oadmhultiparty communica-
tions are taken in [3,4]. In [3], the global and local viewspobtocols are described
in two different calculi and the agreement between theses/igecomes a bisimula-
tion between processes; [4] proposes a distributed caauhich provides communi-
cations either inside sessions or inside locations, mindetherging running sessions.
The type-safety and progress in interleaved sessionsfaeslan open problemiin [4].

Progress.The majority of papers on service-oriented calculi onlyasshat clients
are never stuck insidesinglesession, see [1, 7, 12] for detailed discussions, including
comparisons between the session-based and the traditieinavioural type systems of
mobile processes, e.g. [15,22]. We only say here that oerdantion type system is
inspired by deadlock-free typing systems [14, 15, 22]. In7[12], structured session
primitives help to give simpler typing systems for progress

The first papers considering progress for interleaved@essequired the nesting of
sessions in Java [6, 8] and SOC [1, 5, 16]. The present appsigweificantly improves
the binary session system for progress in [7] by treatindahewing points:

(1) asynchrony of the communication with queues, which enba progress;

(2) a general mechanism of process recursion instead oftited permanent accepts;
(3) a more liberal treatment of the channels which can be sent

(4) the standard semantics for the reception of channetsraiés, which permits to get
rid of process sequencing.

None of the previous work had treated progress across émégtf dynamically inter-
leaved multiparty sessions.

Acknowledgements.We thank Kohei Honda and the Concur reviewers for their
comments on an early version of this paper and Gary Brownifocdilaboration on an
implementation of multiparty session types.

References

1.
2.

3.

10.

11.

12.
13.
14.
15.
16.
17.
18.
. Scribble Project. www.scribble.org.
20.
21.
22.

23.

L. Acciai and M. Boreale. A Type System for Client Progress Service-Oriented Calculus.
In Concurrency, Graphs and Modelslume 5065 of NCS pages 642—658. Springer, 2008.
E. Bonelli and A. Compagnoni. Multipoint Session Types ddDistributed Calculus. In
TGC’'07, volume 4912 of NCS pages 240-256. Springer, 2008.

M. Bravetti and G. Zavattaro. Towards a Unifying Theory @horeography Conformance
and Contract Compliance. Boftware Compositigrnvolume 4829 olLNCS pages 34-50.
Springer, 2007.

. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. MultigaBessions in SOC. I6OORDI-

NATION’08 volume 5052 o NCS pages 67-82. Springer, 2008.

. R.Bruni and L. G. Mezzina. A Deadlock Free Type System f@afculus of Services and

Sessions, 2008. http://www.di.unipi.it/ bruni/publicats/ListOfDrafts.html.

. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asymoious Session Types and

Progress for Object-Oriented Languages. FMOODS'07 volume 4468 ofLNCS pages
1-31. Springer, 2007.

. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. ®rogress for Structured Com-

munications. INMTGC'07, volume 4912 of NCS pages 257-275. Springer, 2008.

. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and Sofxopoulou. Session Types

for Object-Oriented Languages. ECOOP’06 volume 4067 ofLNCS pages 328-352.
Springer, 2006.

. S. Gay and M. Hole. Subtyping for Session Types in the Fiulas. Acta Informatica

42(2/3):191-225, 2005.

K. Honda. Types for Dyadic Interaction. ®ONCUR’93 volume 715 ofLNCS pages
509-523. Springer, 1993.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language Prestand Type Disciplines for
Structured Communication-based Programming=®OP’98 volume 1381 o£ NCS pages
22-138. Springer, 1998.

K. Honda, N. Yoshida, and M. Carbone. Multiparty Asymious Session Types. In
POPL'08 pages 273-284. ACM, 2008.

R. Hu, N. Yoshida, and K. Honda. Session-Based DisgiblRrogramming in Java. In
ECOOP’08 LNCS. Springer, 2008. To appear.

N. Kobayashi. A Partially Deadlock-Free Typed Procesdc@us. ACM TOPLAS
20(2):436-482, 1998.

N. Kobayashi. A New Type System for Deadlock-Free PreeesInCONCUR’06 volume
4137 ofLNCS pages 233-247. Springer, 2006.

I. Lanese, V. T. Vasconcelos, F. Martins, and A. Ravarasciplining Orchestration and
Conversation in Service-Oriented ComputingSIBFM’07, pages 305-314. IEEE Computer
Society Press, 2007.

R. Milner. Communicating and Mobile Systems: tii€alculus CUP, 1999.

B. C. PierceTypes and Programming LanguagedIT Press, 2002.

UNIFI. International Organization for Standardizati®O 20022 UNIversal Financial In-
dustry message scheme. http://www.is020022.org, 2002.

Web Services Choreography Working Group. Web Servibesgbgraphy Description Lan-
guage. http://www.w3.0rg/2002/ws/chor/.

N. Yoshida. Graph Types for Monadic Mobile Processes=3mTCS’96volume 1180 of
LNCS pages 371-386. Springer, 1996.

N. Yoshida and V. T. Vasconcelos. Language PrimitivesTpe Disciplines for Structured
Communication-based Programming RevisitedSétRet'0pvolume 171 oENTCS pages
73-93. Elsevier, 2007.

