
Examples
for

Multiparty Asynchronous Session Types

Marco Carbone1,2 Kohei Honda1 Nobuko Yoshida2

1Queen Mary, University of London, UK
2 Imperial College, London, UK

1. Introduction

This manuscript contains examples of multiparty interactions for analysing the relationship
between an approach based on global message flow and another centring on local (end-point) be-
haviours. Both approaches are based on a common feature: structured representation of commu-
nications (or Session Types). The global types originate from the abstract version of Choreography
Description Language (CDL) [6], a web service description language developed by W3C’s WS-CDL
Working Group. The local calculus is based on the π-calculus [4] with multiparty session types, one
of the representative calculi for communicating processes.

Both types are based on a notion of structured communication, called session. A session binds a
series of communications between multi-parties into one, distinguishing them from communications
belonging to other sessions. This is a standard practice in business protocols (where an instance
of a protocol should be distinguished from another instance of the same or other protocols) and in
distributed programming (where interacting parties use multiple TCP connections for performing
a unit of conversation). As we shall explore in the present document, the notion of session can be
cleanly integrated with such notions as branching, recursion (loop) and exceptions. We show, through
examples taken from simple but non-trivial business protocols, how concise structured description
of non-trivial interactive behaviour is possible using sessions. From a practical viewpoint, a session
gives us the following merits.

• It offers a clean way to describe a complex sequence of communications with rigorous
operational semantics, allowing structured description of interactive behaviour.

• Session-based programs can use a simple, algorithmically efficient typing algorithm to
check its conformance to expected interaction structures.

• Sessions offer a high-level abstraction for communication behaviour upon which further
refined reasoning techniques, including type/transition/logic-based ones, can be built.

In the remainder, we show two examples, one is basic one and another is larger one. These
examples come from use-cases for CDL found in CDL primer [5] by Steve Ross-Talbot and Tony
Fletcher, and those examples communicated by Gary Brown [1] and Nickolas Kavanztas [3].

We also use a slightly different syntax from the main paper for in order to gain the readability
and follow CDL more directly. In particular, we make the participants explicit to give more intuitive
ideas to relate global types and end-point representations. For a similar syntax, see [2] for the formal
notation.

2

Buyer ShipperSeller

QuoteAcceptance
Branch

{
QuoteResponse

RequestForQuote

QuoteReject

RequestDelDetails

DeliveryDetails

DeliveryDetails

OrderConfirmation

FIGURE 1. Graphical Representation of Simple Protocol
.

2. Example 1

2.1. A Business Protocol. We show how increasingly complex, business protocols can be ac-
curately and concisely described in global types and the π-calculus with multiparty sessions, one
based on global message flows and another based on local, or end-point, behaviours. Along the way
we also illustrate each construct and types.

Our starting point is a simple business protocol for purchasing a good among a buyer, a seller
and a shipper, which we call BSH Protocol. Informally the expected interaction is described as
follows.

(1) First, Buyer asks Seller, through a specified channel, to offer a quote (we assume the good
to buy is fixed).

(2) Then Seller replies with a quote.
(3) Buyer then answers with either QuoteAcceptance or QuoteRejection. If the answer is

QuoteAcceptance, then Seller sends a confirmation to Buyer, and sends a channel of
Buyer to Shipper. Then Shipper sends the delivery details to Buyer, and the protocol
terminates. If the answer is QuoteRejection, then the interaction terminates.

Figure 1 presents an UML sequence diagram of this protocol. Observe that, in Figure 1, many details
are left unspecified: in real interaction, we need to specify, for example, the types of messages and
the information exchanged in interaction, etc.

2.2. Assumption on Underlying Communication Mechanisms. We first outline the basic
assumptions common to both global and local formalisms. Below and henceforth we call the dramatis
personae of a protocol (Buyer, Seller and Shipper in the present case), participants.

• In communication:
(1) A sender participant sends a message and a receiver receives it, i.e. we only con-

sider a point-to-point communication. A communication is always done through a
channel. The message in a communication consists of an operator name and, when
there is a value passing, a value. The value will be assigned to a local variable at the
receiver’s side upon the arrival of that message.

3

(2) Communication can be either an in-session communication which belongs to a ses-
sion, or session initiation channels which establishes a session (which may be liked
to establishing one or more fresh transport connections for a piece of conversation
between multi distributed peers). In a session initiation communication, one or more
fresh session channels belonging to a session are declared, i.e. one session can use
multiple channels.

(3) A channel can be either a session channel which belongs to a specific session or
an session-initiating channel which is used for session-initiation. For a session-
initiating channel, we assume its sender and a receiver is pre-determined.

• We demand:
(1) the order of messages from one participant to another through a specified channel is

preserved.
(2) one party participating in a session can use a session-channel both for sending and

receiving.
As we discussed in the main paper, we can uniformly change these assumptions to pure asyn-

chrony (by dropping the first condition) or to synchrony (by assuming a sender immediately knows
the arrival of a message at a receiver). In this manuscript, we assume the same ordering in the main
paper (i.e. message preserving order semantics).

2.3. Representing Communication (1): Initiating Session. Buyer’s session-initiating com-
munication in BSH Protocol is described in the global type as follows:1

(1) Buyer→ Seller : InitB2S(B2Sch) .G

which says:
Buyer initiates a session with Seller by communication through a shared-initiating
channel INITB2S, declaring a fresh in-session channel B2Sch. Then interac-
tion moves to G.

Note “.” indicates sequencing, as in process calculi. A session initiation can specify more than one
session channels as needed, as the following example shows.

(2) Buyer→ Seller : InitB2S(B2Sch, S2Bch) .G

which declares two (fresh) session channels, one from Buyer to Seller and another in the reverse
direction.

In local description, the behaviour is split into two, one for Buyer and another for Seller, using
the familiar notation from process algebras. For example (1) becomes:

(3) Buyer[InitB2S [2](B2Sch) .P1], Seller[InitB2S [2](B2Sch) .P2]

Above Buyer[P] specifies a buyer’s behaviour, while Seller[P] specifies a seller’s behaviour. The
over-lined channel indicates it is used for output (this follows the tradition of CCS/π-calculus: in
CSP, the same action is written InitB2S !(B2Sch).

Note the behaviour of each participant is described rather than their interaction. When these
processes are combined, they engage in interaction as described in the scenario above.

2.4. Representing Communication (2): In-session Communication. An in-session commu-
nication specifies an operator and, as needed, a message content. First we present interaction without
communication of values.

(4) Buyer→ Seller : B2Sch〈QuoteRequest〉 .G′

where B2Sch is an in-session channel. It says:
Buyer selects QuoteRequest-branch of Seller, then the interaction G′ ensues.

1For a concise theory, we do not have to declare this initialisation as types. However since it helps program-
mers in practice, we explicitly write them in the examples in this manuscript.

4

The same behaviour can be written down in the local calculus as:

(5) B2SchsCQuoteRequest〈〉.P1, B2SchBQuoteRequest() .P2

We use the slightly different notations from the main paper for readability:
• The construct sBΣili(xi) .P denotes an input action on the session channel s with options

li. The received value will be stored in one of the variables xi according to which branch
is selected.

• Dually, the construct sC l〈e〉 .P denotes the action of outputting the value e on the session
channel s with label l.

• rec X .P denotes recursion.
Similarly, in global types, we write the label and sort types in one action; and denote ΣiGi for
branching.

An in-session communication may involve value passing, as follows.

(6) Seller→ Buyer : S2Bch〈QuoteResponse, int〉 .G′
which says:

Seller selects a QuoteRespons-message with value with type int to Buyer;
Buyer, upon reception, assigns the received value, 3000, to its some local vari-
able x.

(where the first argument QuoteRespons denotes the label while int denotes the type of the argu-
ment).

This description can be translated into end-point behaviours as follows.

(7) S2BchCQuoteResponse〈3000〉 .P1, S2BchBQuoteResponse(x) .P2

which describes precisely the same communication behaviour.

2.5. Representing Branching. In various high-level protocols, we often find the situation
where a sender invokes one of the options offered by a receiver. A method invocation in object-
oriented languages is a simplest such example. In a global type, we may write an in-session commu-
nication which involves such a branching behaviour as follows.

(8)
{Buyer→ Seller : B2Sch〈QuoteAccept〉 .G1}

+
{Buyer→ Seller : B2Sch〈QuoteReject〉 .G2}

which reads:
Through an in-session channel B2Sch, Buyer selects one of the two options
offered by Seller, QuoteAccept and QuoteReject, and respectively proceeds
to G1 and G2.

The same interaction can be written down in the local calculus as follows. First, Buyer’s side (the
one who selects) becomes:

(9) {B2SchCQuoteAccept〈〉 .P1 or B2SchCQuoteReject〈〉 .P2}
In turn, Seller’s side (which waits with two options) becomes:

(10)
B2SchBQuoteAccept() .Q1

+
B2SchBQuoteReject() .Q2

Here + indicates this agent may either behave as B2Sch〈QuoteAccept〉 .Q1 or as B2Sch〈QuoteReject〉 .Q2
depending on what the interacting party communicates through B2Sch (this is so-called branching,
whose nondeterminism comes from the behaviour of an external process). Note both branches start
from input through the same channel B2Sch.

In the local descriptions, the original sum in the global type in (8) is decomposed into the
selection and the branching. Similarly, G1 (resp. G2) may be considered as the result of interactions
between P1 and Q1 (resp. P2 and Q2).

5

Buyer→ Seller,Shipper : InitB2S(B2Sch,S2Hch) .

Buyer→ Seller : B2Sch〈QuoteRequest〉 .
Seller→ Buyer : B2Sch〈QuoteResponse, quote〉 .
{ Buyer→ Seller : B2Sch〈QuoteAccept〉 .

Seller→ Buyer : B2Sch〈OrderConfirmation〉 .
Seller→ Shipper : S2Hch〈RequestDeliveryDetails〉 .
Shipper→ Seller : S2Hch〈DeliveryDetails, details〉 .
Seller→ Buyer : B2Sch〈DeliverDetails, details〉 .end }

+
{ Buyer→ Seller : B2Sch〈QuoteReject〉 .end }

FIGURE 2. Global Description of Simple Protocol

2.6. Global Type of BSH Protocol with Multiparty Sessions. We can now present the whole
of a global type of BSH Protocol, in Figure 2. While its meaning should be clear from our foregoing
illustration, we illustrate the key aspects of the description in the following.

• Buyer initiates a session by invoking Seller through the session-initiating channel INITB2S,
declaring two in-session channels B2SCh and S2HCh. Next, Buyer sends another message
to Seller with the operation name “QuoteRequest” (which corresponds to the label name
in the main paper) and without carried values (this message may as well be combined
with the first one in practice).

• Seller then sends (and Buyer receives) a reply “QuoteResponse” together with the quote
value with type quote. This received value will then be stored in x with type quote, local
to Buyer.

• In the next step, Buyer decides whether the quote is acceptable or not. Accordingly:
(1) Buyer may send QuoteAccept-message to Seller. Then Seller confirms the pur-

chase, and asks Shipper for details of a delivery; Shipper answers with the requested
details (say a delivery date), which Buyer forwards to Seller. Upon reception of this
message the protocol terminates (denoted by end, the inaction).

(2) Alternatively Buyer may send QuoteReject-message to Seller, in which case the
protocol terminates without any further interactions.

Remark. If we do not use the multiparty sessions (i.e. binary sessions), we need to use another
shared name for interaction between Seller and Shipper (i.e. for session S2Sch) so that we cannot
have one global type, but two separated global types. This clearly shows that the multiparty sessions
offer more expressive specifications for “more structured” communications than the binary sessions.

2.7. Local Description of Simple BSH Protocol. Figure 2 describes BSH Protocol from a
vantage viewpoint, having all participants and their interaction flows in one view. The same be-
haviour can be described focussing on behaviours of individual participants, as follows (since we use
explicit participants, we do not have to write initial participant as in the main paper).

The description is now divided into (1) Buyer’s interactive behaviour, (2) Seller’s interactive
behaviour, and (3) Shipper’s interactive behaviour. We focus on Buyer’s behaviour. One can intu-
itively see two descriptions of the same protocol, a global version in Figure 2 and a local version in
Figure 3, represent the same software behaviours — we can extract the former from the latter and
vice versa.

6

Buyer[InitB2S [2,3](B2Sch,S2Hch) .
B2SchCQuoteRequest〈〉 .
B2SchBQuoteResponse(xquote) .
{ B2SchCQuoteAccept〈.〉

B2SchBOrderConfirmation() .
B2SchBDeliveryDetails(ydetails) .0 }]

Seller[InitB2S [2](B2Sch,S2Hch) .
B2SchBQuoteRequest() .
B2SchCQuoteResponse〈vquote〉 .
{ B2SchBQuoteAccept() .

B2SchCOrderConfirmation〈〉 .
S2HchCDeliveryDetails〈〉 .
S2HchBDeliveryDetails(xdetails) .

B2SchCDeliveryDetails〈xdetails〉 .0 }
+

{ B2SchBQuoteReject() .0 }]

Shipper[InitB2H [3](B2Sch,S2Hch) .
S2HchBDeliveryDetails() .
S2HchCDeliveryDetails〈vdetails〉 .0]

FIGURE 3. Local Description of Simple Protocol

A global type allows us to see how messages are exchanged between participants and how, as
a whole, the interaction scenario proceeds; whereas, in the local description, the behaviour of each
party is made explicit, as seen in distinct forms of choices used in Buyer and Seller.

3. Example 2

We now give a larger business protocol for multiparty session types. The example is an exten-
sion of the Buyer-Seller protocol. First, we give an informal description of the protocol.

3.1. Informal Description. There are five participants involved in this protocol:
Buyer (B), Seller (S), Vendor (V), CreditChecker (CC) and RoyalMail (R).

The purpose of the protocol is for Buyer to ask for a quote of a product to Seller, negotiates the price,
and buys the product if its price is cheap enough and its credit card is valid. The negotiation process
is done as a loop, which involves not only Buyer and Seller but also Vendor (which only interacts
with Seller). When the negotiation is successful, Seller asks CreditChecker if Seller is credible, and
if the answer is positive, asks RoyalMail (a shipper) to ship the good.

Remark. We stress that multiparty session types allow to reason about whom is required to take
part to a session: if the type requires 3 participants then they all must synchronise (be present) in
the initial hand-shake for the session to start. In this example we require that Buyer, Seller and the
CrediChecker are participating to the protocol. Buyer is not aware of RoyalMail and Vendor which
will be part of other sessions: it is up to Seller whether to contact somebody else for wholesale
(Vendor) and postage (RoyalMail) or not. Using multiparty sessions, we can specify synchronisations
between multi peers as types.

In total, the whole system involves three protocols (or sessions): one among Buyer, Seller and
CreditChecker, one between Seller and RoyalMail and one between Seller and Vendor.

The protocol proceeds as follows:

7

(1) Buyer asks Seller for a quote about product prod;
(2) Seller then asks Vendor by opening a binary session chV
(3) Seller starts recursion and asks Vendor for a quote about product prod;
(4) Vendor replies with a quote quote;
(5) Seller forwards quote to Buyer increasing it by 10 units (quote+10);
(6) if the quote is reasonable (reasonable(quote+10)) then:

• Buyer sends Seller a confirmation (QuoteOK) (which Seller forwards to Vendor) and
sends its credit card details to CreditChecker;

• If the credit is good then:
– CreditChecker contacts Seller
– CreditChecker gives confirmation to Buyer;
– Seller contacts RoyalMail (opening the binary session chSh);
– Seller sends the delivery address;
– RoyalMail sends a confirmation;

• If the credit is bad:
– CreditChecker tells Seller and then Buyer and the protocol terminates;

(7) if the quote is not reasonable Buyer rejects the quote notifying Seller which notifies Vendor
and protocol goes back to (3);

This concludes the informal presentation of the protocol global types.

3.2. Global Types. We now proceed as a programmer should: we give the global types for our
three protocols.

• chBSCC(bs,bcc,scc).

1. B→S : bs〈Product〉 .
2. rec t . {
3. S→B : bs〈Quote〉 .
4. B→S : bs〈QuoteOK〉 .
5. B→CC : bcc〈CreditCard〉 .
6. { CC→S : scc〈Good〉 .
7. { CC→B : bcc〈Conf〉 .end
8. +
9. CC→S : scc〈Bad〉 .

10. CC→B : bcc〈YourCreditIsBad〉 .end }
11. +
12. B→S : t〈QuoteNotOK〉 . t }

• chSV (sv).
1. rec t . {
2. S→V : sv〈QuoteReq〉 .
3. V →S : sv〈Quote〉 .
4. S→V : sv〈QuoteOK〉 .end
5. +
6. S→V : sv〈QuoteNotOK〉 .t}

• chSR(sr).
1. S→R : sr〈Deliv〉 .R→S : sr〈Conf〉 .

This concludes the formal representation of the protocol.

3.3. An running implementation in the end-point calculus. We now give the running code
for the various participants involved satisfying the global types given above.
For readability reasons, we will give different processes for each participants which will then be
composed in parallel. In the sequel, unimportant parameters in inputs and outputs will be omitted,

8

e.g. sBop stands for sBop(x) for some x. We start with Buyer:

chBSCC[2](bs,bcc,scc) .

bsCProduct〈prod〉 .
rec X .

bsBQuote(quote) .

if reasonable(quote) then

t CQuoteOK〈〉 .
t CCreditCard〈cred〉 .
t B{YourCreditIsBad .0 + Conf .0}

else t CQuoteNotOK .X

Note this process starts before the recursion and go through inside the (global) recursion. Thus this
local behaviour also contains recursion. The next is a process of CreditChecker.

chBSCC[3](bs,bcc,scc) .

sBCreditCard(cred) .

if validcard(cred) then

sccCGood〈〉 .
bccCConf〈details〉 .0

else

sccCBad〈〉 .
bccCYourCreditIsBad〈details〉 .0

Note that both processes above do not include the recursion. This is because, in the global type, this
part belongs to the not recursive branch (it is called only once the quote has been accepted). We now

9

move to the end-point implementation of Seller:

chBSCC[2,3](νννbs,bcc,scc) .

t BQuoteReq(prod) .

chSV [2](sv) .

rec X .

svCQuoteReq〈prod〉 .
svBQuote(quote) .

bsCQuote〈quote+10〉 .
bsB
{QuoteOK .

bsBCreditCard(cred) .

svCCreditCard〈cred〉 .
svB
{Good .

chSR(sr) .

sr CDeliv〈prod〉 .
sr BConf() .0
+

Bad .0}
+

QuoteNotOK .X}

This process starts outside of the recursion in the global type and carries through the loop, so that
both the recursion and the recursion variable are used as they are, leading to the recursive behaviour
of the process. The process of Vendor follows.

chSV [2](sv) .

rec X .

svBQuoteReq(prod) .

svCQuote〈quote〉 .
svB
{QuoteOK .0
+

QuoteNotOK .X }
Finally, we give the behaviour of RoyalMail.

chSR[2](sr) .sr BDeliv(adr) .sr CConf

10

Bibliography

[1] G. Brown. A post at pi4soa forum. October, 2005.
[2] M. Carbone, K. Honda, and N. Yoshida. Theoretical basis of communication-centred concurrent program-

ming (part two). http://www.dcs.qmul.ac.uk/∼carbonem/cdlpaper, June 2006.
[3] N. Kavantzas. A post at petri-pi mailing list. August, 2005.
[4] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Information and Computation,

100(1):1–40,41–77, Sept. 1992.
[5] S. Ross-Talbot and T. Fletcher. Ws-cdl primer. Unpublished draft, May 2006.
[6] W3C WS-CDL Working Group. Web services choreography description language version 1.0.

http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

11

