
Fast All-Pairs SimRank Assessment on Large
Graphs and Bipartite Domains

Weiren Yu,Member, IEEE, Xuemin Lin, Wenjie Zhang, and Julie A. McCann,Member, IEEE

Abstract—SimRank is a powerful model for assessing vertex-pair similarities in a graph. It follows the concept that two vertices are

similar if they are referenced by similar vertices. The prior work [18] exploits partial sums memoization to compute SimRank in

OðKmnÞ time on a graph of n vertices and m edges, for K iterations. However, computations among different partial sums may have

redundancy. Besides, to guarantee a given accuracy �, the existing SimRank needs K ¼ dlogC �e iterations, where C is a damping

factor, but the geometric rate of convergence is slow if a high accuracy is expected. In this paper, (1) a novel clustering strategy is

proposed to eliminate duplicate computations occurring in partial sums, and an efficient algorithm is then devised to accelerate

SimRank computation to OðKd0n2Þ time, where d0 is typically much smaller than m
n . (2) A new differential SimRank equation is

proposed, which can represent the SimRank matrix as an exponential sum of transition matrices, as opposed to the geometric sum

of the conventional counterpart. This leads to a further speedup in the convergence rate of SimRank iterations. (3) In bipartite

domains, a novel finer-grained partial max clustering method is developed to speed up the computation of the Minimax SimRank

variation from OðKmnÞ to OðKm0nÞ time, where m0 ð�mÞ is the number of edges in a reduced graph after edge clustering, which can

be typically much smaller than m. Using real and synthetic data, we empirically verify that (1) our approach of partial sums sharing

outperforms the best known algorithm by up to one order of magnitude; (2) the revised notion of SimRank further achieves a 5X

speedup on large graphs while also fairly preserving the relative order of original SimRank scores; (3) our finer-grained partial max

memoization for the Minimax SimRank variation in bipartite domains is 5X-12X faster than the baselines.

Index Terms—Structural similarity, SimRank, hyperlink analysis

Ç

1 INTRODUCTION

IDENTIFYING similar objects based on link structure is a fun-
damental operation for manywebmining tasks. Examples

includewebpage ranking [3], hypertext classification (KNN)
[14], graph clustering (K-means) [4], and collaborative filter-
ing [12]. In the last decade, with the overwhelming number
of objects on the web, there is a growing need to be able to
automatically and efficiently assess their similarities on large
graphs. Indeed, the web has huge dimensions and continues
to grow rapidly—more than 5 percent of new objects are cre-
ated weekly [5]. As a result, similarity assessment on web
objects tends to be obsolete so quickly. Thus, it is imperative
to get a fast computational speed for similarity assessment
on large graphs.

Amid the existing similarity metrics, SimRank [12] has
emerged as a powerful tool for assessing structural similar-
ities between two objects. Similar to the well-known Pag-
eRank [3], SimRank scores depend merely on the web link
structure, independent of the textual content of objects.
The major difference between the two models is the scor-
ing mechanism. PageRank assigns an authority weight for
each object, whereas SimRank assigns a similarity score

between two objects. SimRank was first proposed by Jeh
and Widom [12], and has gained increasing popularity in
many areas such as bibliometrics [15], top-K search [14],
and recommender systems [1]. The intuition behind
SimRank is a subtle recursion that “two vertices are similar
if their incoming neighbors are similar”, together with the
base case that “each vertex is most similar to itself” [12].
Due to this self-referentiality, conventional algorithms for
computing SimRank have an iterative nature. The sheer
size of the web has presented striking challenges to fast
SimRank computing.

Among the existing SimRank computing problems, all-
pairs SimRank assessment (i.e., finding similarities for all
pairs of vertices) is more important than single-source Sim-
Rank assessment (i.e., finding similarities between a query
vertex and all other vertices) since, in many real applica-
tions, people are often interested in not only node ranking
(e.g., “Which objects are similar to a certain query object?”),
but also node-pair ranking (e.g., “What are the top-K most
similar pairs of objects in a graph?”). Generally, all-pairs
SimRank contains similarity information that can handle
both node and node-pair ranking problems. The best known
algorithm for computing all-pairs SimRank was proposed
by Lizorkin et al. [18] (hereafter referred to as psum-SR),
which requires OðKmnÞ time (OðKn3Þ in the worst case) for
K iterations, where n and m denote the number of vertices
and edges, respectively, in a graph.

The beauty of psum-SR [18] resides in three observa-
tions. (1) Essential nodes selectionmay eliminate the computa-
tion of a fraction of node pairs with a-priori zero scores.
(2) Partial sums memoizing can effectively reduce repeated
calculations of the similarity among different node pairs by

� W. Yu and J.A. McCann are with the Department of Computing, Imperial
College London, United Kingdom.
E-mail: {weiren.yu, jamm}@imperial.ac.uk.

� X. Lin and W. Zhang are with the School of Computer Science and Engi-
neering, University of New South Wales, Australia.
E-mail: {lxue, zhangw}@cse.unsw.edu.au.

Manuscript received 5 Nov. 2013; revised 18 Mar. 2014; accepted 8 Apr. 2014.
Date of publication 15 July 2014; date of current version 1 June 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2014.2339828

1041-4347� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1810 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

caching part of similarity summations for later reuse. (3) A
threshold setting on the similarity enables a further reduction
in the number of node pairs to be computed. Particularly,
the second observation of partial sums memoizing plays a par-
amount role in greatly speeding up the computation of Sim-
Rank from OðKd2n2Þ to OðKdn2Þ,1 where d is the average
in-degree in a graph.

Before shedding light on the blemish of psum-SR [18], let
us first revisit the central idea of partial sums memoizing,
as depicted in the following example:

Example 1. Consider a paper citation network G in Fig. 1a,
where each vertex represents a paper, and an edge a cita-
tion. For any vertex a, we denote by IðaÞ the set of in-
neighbors of a. Individual element in IðaÞ is denoted as
I iðaÞ. Let sða; bÞ be the SimRank similarity between verti-
ces a and b. In what follows, we want to compute sða; bÞ
and sða; dÞ in G.

Before partial sums memoizing is introduced, a naive
way is to sum up the similarities of all in-neighbors
ðI iðaÞ; I jðbÞÞ of ða; bÞ for computing sða; bÞ, and to sum
up the similarities of all in-neighbors ðI iðaÞ; I jðdÞÞ of
ða; dÞ for computing sða; dÞ, independently, as depicted in
Fig. 1b. In contrast, psum-SR is based on the observation
that IðbÞ and IðdÞ have three vertices fe; f; ig in common.

Thus, the three partial sums over IðaÞ (i.e., PartialskIðaÞðyÞ
2

with y 2 fe; f; ig) can be computed only once, and reused
for both sða; bÞ and sða; dÞ computation (see left part of
Fig. 1c). Similarly, for computing sðc; bÞ and sðc; dÞ, since
IðbÞ \ IðdÞ ¼ fe; f; ig, the partial sums over IðcÞ (i.e.,

Partial
sk
IðcÞðxÞ with x 2 fe; f; ig) can be cached for later

reuse (see right part of Fig. 1c).

Despite the aforementioned merits of psum-SR, existing
work [18] on SimRank has some limitations.

First, we observe from Example 1 that computing partial
sums over different in-neighbor sets may have redundancy.
For instance, IðaÞ and IðcÞ in Fig. 1c have two vertices fb; gg
in common, implying that the sub-summation Partial

sk
fb;ggð$Þ

is the common part shared between the partial sums

Partial
sk
IðaÞð$Þ and Partial

sk
IðcÞð$Þ. Thus, there is an opportu-

nity to speed up the computation of SimRank by preprocess-

ing the common sub-summation Partial
sk
fb;ggð$Þ once, and

caching it for both Partial
sk
IðaÞð$Þ and Partial

sk
IðcÞð$Þ computa-

tion.However, it is a big challenge to identify thewell-tailored
common parts for maximal sharing among the partial sums
over different in-neighbor sets since there could be many
irregularly and arbitrarily overlapped in-neighbor sets in a
real graph. To address this issue, we propose optimization
techniques to have such common parts memoized in a hierar-
chical clustering manner, and devise an efficient algorithm to
eliminate such redundancy.

Second, the existing iterative paradigm [18] for comput-
ing SimRank has a geometric rate of convergence, which
might be, in practice, rather slow when a high accuracy is
attained. This is especially evident in e.g., citation networks
and web graphs [13]. For instance, our experiments on a
DBLP citation network shows that a desired accuracy of
� ¼ 0:001 may lead to more than 30 iterations of SimRank,
for the damping factor C ¼ 0:8. Lizorkin et al. has proved
theoretically in [18] that, for a desired accuracy �, the num-
ber of iterations required for the conventional SimRank is
K ¼ dlogC �e, which is mainly due to the geometric sum of
the traditional representation of SimRank. This highlights
the need for a revised SimRank model to speed up the geo-
metric rate of convergence.

Moreover, for bipartite domains, a variant model of Sim-
Rank proposed by Jeh and Widom in [12, Section 4.3.2],
called the minimax variation SimRank, may also have
duplicate efforts in computing the partial max over every
out-neighbor set for all vertex-pair similarities. However,
we observe that the choices of granularity for partial max
memoization may be different from those for partial sums
memoization. This is because, in the context of partial sums
sharing, “subtraction” is allowed to compute one partial
sum from another, whereas, in the context of partial max
sharing, “subtraction” is disallowed. We will provide a
detailed discussion in Section 5.

Contributions. Below are our main contributions:

� Wepropose an adaptive clustering strategy based on a
minimum spanning tree to eliminate duplicate com-
putations in partial sums [18] (Section 3). By optimiz-
ing the sub-summations sharing among different
partial sums, an efficient algorithm is devised for
speeding up the computation of SimRank from

OðKdn2Þ [18] to OðKd0n2Þ time, where d0 ð�dÞ can, in
general, bemuch smaller than the average in-degree d.

� We introduce a new notion of SimRank by using a
matrix differential equation to further accelerate the
convergence of SimRank iterations from the original
geometric to exponential rate (Section 4). We show
that the new notion of SimRank can be characterized

Fig.1 Merit and demerit of partial sums memoizing for SimRank computation on a paper citation network.

1. As n � d ¼ m, OðKmnÞ time in [18] is equivalent to OðKdn2Þ.
2. Recall from [18] that a partial sum for a binary function

f : X � Y ! R over a setD ¼ fx1; . . . ; xng � X , denoted by PartialfDð$Þ,
is defined as

PartialfDðyÞ ¼
X
xi2D

fðxi; yÞ; ðy 2 YÞ:

YU ET AL.: FAST ALL-PAIRS SIMRANK ASSESSMENT ON LARGE GRAPHS AND BIPARTITE DOMAINS 1811

as an exponential sum in terms of the transition
matrix while fairly preserving the relative order of
SimRank. We also devise a space-efficient iterative
paradigm for computing differential SimRank, which
integrates our previous techniques of sub-summa-
tions sharingwithout sacrificing extramemory space.

� We investigate the partial max sharing problem for
speeding up the computation of the Minimax Sim-
Rank variation in bipartite graphs, a variant model
proposed in [12, Section 4.3.2]. We show that the par-
tial max sharing problem is different from the partial
sums sharing problem, due to “subtraction” curse in
the context of max operator. To resolve this issue, we
devise a novel finer-grained partial max clustering
strategy via edge concentration, improving the com-
putation of Minimax SimRank variation from
OðKmnÞ to OðKm0nÞ time, where m0 ð�mÞ is the
number of edges in a reduced graph after edge clus-
tering, which is practically smaller thanm (Section 5).

� We conduct extensive experiments on real and syn-
thetic data sets (Section 6), demonstrating that
(1) our approach of partial sum sharing on large
graphs can be one order of magnitude faster than
psum-SR; (2) our revised notion of SimRank
achieves up to a 5X further speedup against the
conventional counterpart; (3) for the Minimax Sim-
Rank variation in bipartite domains, our finer-
grained partial max sharing method is 5X-12X faster
than the baselines in CPU time.

Related work. The earliest mention of SimRank dates back
to Jeh and Widom [12] who suggested (i) an iterative
approach to compute SimRank, which is in OðKd2n2Þ time,
along with (ii) a heuristic pruning rule to set the similarity
between far-apart vertices to be zero. Unfortunately, the
naive iterative SimRank is rather costly to compute, and
there is no provable guarantee on the accuracy of the prun-
ing results. To overcome the limitations, a very appealing
attempt was made by Lizorkin et al. [18] who (i) provided
accuracy guarantees for SimRank iterations, i.e., the number
of iterations needed for a given accuracy � is K ¼ dlogC �e,
and (ii) proposed three excellent optimization approaches,
i.e., essential node-pair selection, partial sums memoization,
and threshold-sieved similarities. Especially, partial sums
memoizing serves as the cornerstone of their strategies,
which significantly reduces the computation of SimRank to

OðKdn2Þ time. Our work differs from [18] in the following.
(i) We put forward the phenomenon of partial sums redun-
dancy in [18] that typically exists in real graphs. (ii) We
accelerate the convergence of SimRank iterations from geo-
metric [18] to exponential growth. (iii) In bipartite domains,
we also develop techniques of partial max sharing for the
Minimax SimRank variation model.

There has also been a flurry of interests (e.g., [1], [6], [11],
[14], [15], [16]) in SimRank optimization. Li et al. [15] first
based SimRank computation on the matrix representation.
They developed very interesting SimRank approximation
techniques on a low-rank graph, by leveraging the singular
value decomposition and tensor product. However, (i) for
digraphs, the upper bound of approximation error still
remains unknown. (ii) The computational time in [15]
would become Oðn4Þ even when the rank of an adjacency

matrix is relatively small, e.g., d
ffiffiffi
n
p
e ð�nÞ. The pioneering

work of He et al. [11] deployed iterative aggregation techni-
ques to accelerate the global convergence of parallel Sim-
Rank, in which the speed-up in the global convergence of
SimRank is due mainly to the different local convergence
rates on small matrix partitions. Recently, the new notions
of weight- and evidence-based SimRank have been sug-
gested in [1] to address the issue of query rewriting for
sponsored search. Fogaras and R�acz [6] adopted a scalable
Monte Carlo sampling approach to estimate SimRank by
using the first meeting time of two random surfers. Li et al.
[16] employed an effective method for locally computing
single-pair SimRank by breaking the holistic nature of the
SimRank recursion. Lee et al. [14] devised a top-K SimRank
algorithm needing to access only a small fraction of vertices
in a graph. Most recently, Fujiwara et al. [7] proposed an
excellent SVD-based SimRank for efficiently finding the
top-k similar nodes w.r.t. a given query.

2 PRELIMINARIES

We revisit the two forms of SimRank, i.e., the iterative form
[12], [18], and the matrix form [11], [15]. The consistency of
two forms was pointed out in [15].

2.1 Iterative Form of SimRank

For a digraph G ¼ ðV; EÞ with a vertex set V and an edge set
E, let I að Þ be the in-neighbor set of a, i.e.,

IðaÞ ¼ fx 2 V j ðx; aÞ 2 Eg:

The SimRank score between vertices a and b, denoted by
sða; bÞ, is defined as (i) sða; aÞ ¼ 1; (ii) sða; bÞ ¼ 0, if IðaÞ ¼
? or IðbÞ ¼ ? ; (iii) otherwise,

sða; bÞ ¼ C

IðaÞj j IðbÞj j
X
j2I bð Þ

X
i2I að Þ

sði; jÞ; (1)

where C 2 0; 1ð Þ is a damping factor, and jIðaÞj is the cardi-
nality of IðaÞ.

The above formulas naturally lead to the iterative

method. Start with s0ða; bÞ ¼ f1; a¼b;0; a 6¼b:, and for k ¼ 0; 1; . . . , set

(i) skþ1ða; aÞ ¼ 1; (ii) skþ1ða; bÞ ¼ 0, if I að Þ ¼ ? or I bð Þ ¼ ? ;
(iii) otherwise,

skþ1ða; bÞ ¼
C

jIðaÞjjIðbÞj
X
j2IðbÞ

X
i2IðaÞ

skði; jÞ: (2)

The resultant sequence fskða; bÞg1k¼0 converges to sða; bÞ,
the exact solution of Eq. (1).

2.2 Matrix Form of SimRank

In matrix notations, SimRank can be formulated as

S ¼ C � ðQ � S �QT Þ þ ð1� CÞ � In; (3)

where S is the similarity matrix whose entry ½S	a;b is the sim-
ilarity score sða; bÞ, Q is the backward transition matrix

whose entry ½Q	a;b ¼ 1
jIðaÞj if there is an edge from b to a, and

0 otherwise, and In is an n� n identity matrix.

1812 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

3 ELIMINATING PARTIAL SUMS DUPLICATE

COMPUTATIONS

The existing method psum-SR [18] of performing Eq. (2) is
to memoize the partial sums over IðaÞ first:

Partial
sk
IðaÞðjÞ ¼

X
i2IðaÞ

skði; jÞ; ðj 2 IðbÞÞ (4)

and then iteratively compute skþ1ða; bÞ as follows:

skþ1ða; bÞ ¼
C

jIðaÞjjIðbÞj
X
j2IðbÞ

Partial
sk
IðaÞðjÞ: (5)

Consequently, the results of Partial
sk
IðaÞðjÞ, 8j 2 IðbÞ, can be

reused later when we compute the similarities skþ1ða;$Þ for
a given vertex a as the first argument. However, we observe
that the partial sums over different in-neighbor sets may
share common sub-summations. For example in Fig. 1c, the

partial sums Partial
sk
IðaÞð$Þ and Partial

sk
IðcÞð$Þ have the sub-

summation Partial
sk
fb;ggð$Þ in common. By virtue of this, we

show how to optimize sub-summations sharing among dif-
ferent partial sums in this section.

3.1 Partition In-Neighbor Sets for (Inner) Partial
Sums Sharing

We first introduce the notion of a set partition.

Definition 1. A partition of a set D, denoted by PP ðDÞ, is a fam-
ily of disjoint subsets Di of D whose union is D:

PP ðDÞ ¼ fD1;D2; . . . ;Dpg; with p ¼ jPP ðDÞj;

where Di \ Dj ¼ ? for i 6¼ j, and
S p

i¼1Di ¼ D.
For instance, PP ðIðbÞÞ ¼ fff; gg; fe; igg is a partition of the

in-neighbor set IðbÞ ¼ ff; g; e; ig in Fig. 1a.
The set partition is deployed for speeding up SimRank

computation, based on the proposition below.

Proposition 1. For two distinct vertices a and b with IðaÞ 6¼ ?

and IðbÞ 6¼ ? , skþ1ða; bÞ can be iteratively computed as

skþ1ða; bÞ ¼
C

jIðaÞjjIðbÞj
X
j2IðbÞ

X
D2PP ðIðaÞÞ

Partial
sk
D ðjÞ: (6)

Here, Partial
sk
D ðjÞ is defined as Eq. (4) with IðaÞ replaced byD.

Sketch of Proof. The proof follows immediately from the
facts that (i) for two disjoint sets A and B, PartialskA ðjÞþ
Partial

sk
B ðjÞ ¼ Partial

sk
A[BðjÞ; 8j, and (ii)

S
D2PP ðIðaÞÞ ¼

IðaÞ; 8a 2 V. tu
The main idea in our approach is to share the common

sub-summations among different partial sums, by pre-
computing the sub-summations Partial

sk
D ð$Þ over

D 2 PP ðIðaÞÞ once, and caching them in a block fashion for
later reuse, which can effectively avoid repeating dupli-
cate sub-summations. As an example in Fig. 1c, when IðcÞ
is partitioned as PP ðIðcÞÞ ¼ fIðaÞ; fdgg with IðaÞ ¼ fb; gg,
once computed, the sub-summations Partial

sk
IðaÞð$Þ can be

memoized and reused for computing Partial
sk
IðcÞð$Þ. In

contrast, psum-SR [18] has to start from scratch to com-

pute Partial
sk
IðaÞð$Þ and Partial

sk
IðcÞð$Þ, independently, due

to no reuse of common sub-summations.

The selection of a partition PP ðIðaÞÞ for an in-neighbor set
IðaÞ has a great impact on the performance of our approach.
Troubles could be expected when a selected partition
PP ðIðaÞÞ is too coarse or too fine. For instance, if IðaÞ is taken
to be a trivial partition of itself, i.e., PP ðIðaÞÞ ¼ fIðaÞg for
every vertex a, Eq. (6) can be simplified to the conventional
psum-SR iteration in Eq. (5). From this perspective, our
approach is a generalization of psum-SR. On the other
hand, if the partitions of IðaÞ become finer (i.e., the size of
D 2 PP ðIðaÞÞ is smaller), there is a more likelihood of

Partial
sk
D ð$Þ with a high density of common sub-summa-

tions, but with a low cardinality on similarity values to be
clustered. An extreme example is a discrete partition of
IðaÞ, i.e., PP ðIðaÞÞ ¼ ffxgjx 2 IðaÞg, where every block is a
singleton vertex. In such a case, Eq. (6) would deteriorate to
the naive iteration [12] in Eq. (2), which may be even worse
than psum-SR. Thus, it is desirable to find the best partition
PP ðIðaÞÞ for each IðaÞ that has the largest and densest
clumps of common vertices.

The problem of finding such optimal partitions to mini-
mize the total cost of partial sums over different in-neighbor
sets, referred to as Optimal In-neighbors Partitioning (OIP),
can be formulated as follows:

Given a graph G ¼ ðV; EÞ, OIP is to find the optimal parti-

tion PP ðIðaÞÞ ¼ fDi
a j i ¼ 1; . . . ; jPP ðIðaÞÞjg of each in-neighbor

set IðaÞ, a 2 V, for creating chunks Di
a such that the total num-

ber of additions required for computing all the partial sums

Partial
sk
IðaÞð$Þ over every IðaÞ, a 2 V, is minimized by reusing

the sub-summation resultsPartial
sk
Di
a
ð$Þ over chunksDi

a.

Proposition 2. The OIP problem is NP-hard.

(Please refer to Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2014.2339828, for
a detailed proof.)

We next seek for a good heuristic method for OIP.
Main Idea. Consider a directed graph G ¼ ðV; EÞ. For

every two in-neighbor sets IðaÞ and IðbÞ of vertices a; b 2 V,
we first calculate the transition cost from IðaÞ to IðbÞ,
denoted by TCIðaÞ!IðbÞ, as follows:3

TCIðaÞ!IðbÞ , minfjIðaÞ
 IðbÞj; jIðbÞj � 1g; (7)

where
 is the symmetric difference of two sets.4 Thus, the
value of TCIðaÞ!IðbÞ is actually the number of additions

required to compute the partial sum Partial
sk
IðbÞð$Þ, given

the partial sum Partial
sk
IðaÞð$Þ. Then, we construct a

3. Without loss of generality, only in the case of jIðaÞj � jIðbÞj, we
need to compute TCIðaÞ!IðbÞ. This is because we are interested only in the

cost of computing Partial
sk
IðbÞð$Þ by using the given Partial

sk
IðaÞð$Þ. Con-

versely, if utilizing the result of Partial
sk
IðbÞð$Þ to compute Partial

sk
IðaÞð$Þ,

for jIðaÞj � jIðbÞj, then we have to introduce the “subtraction” to undo
the summation that we have already done, which is often an extra
operation.

4. The symmetric difference of two sets A and B, denoted by
A
 B, is the set of all elements of A or B which are not in both A
and B. Symbolically,

A
 B ¼ ðAnBÞ [ðBnAÞ:
As an example in Fig 1c, given IðbÞ ¼ fg; e; f; ig and IðdÞ ¼ fe; f; i; ag,
we have IðbÞ
 IðdÞ ¼ fg; ag.

YU ET AL.: FAST ALL-PAIRS SIMRANK ASSESSMENT ON LARGE GRAPHS AND BIPARTITE DOMAINS 1813

weighted digraph GG ¼ ðVV ; EE Þ whose vertices correspond to
the non-empty in-neighbor sets of G, with an extra vertex
corresponding to an empty set ? , i.e., VV ¼ fIðaÞ j
a 2 Vg [f?g. There is an edge from IðaÞ to IðbÞ in GG if
jIðaÞj � jIðbÞj. The weight of an edge ðIðaÞ; IðbÞÞ 2 E repre-
sents the transition cost TCIðaÞ!IðbÞ. Finally, we find a mini-

mum spanning tree of GG , denoted by TT , whose total
transition cost is minimum. Henceforth, every edge ðIðaÞ;
IðbÞÞ in TT implies the following: (i) Partial

sk
IðaÞð$Þ should be

computed prior to Partial
sk
IðbÞð$Þ computation, which pro-

vides an optimized topological sort for efficiently comput-
ing all the partial sums. (ii) IðbÞ needs to be partitioned as
IðbÞ \ IðaÞ and IðbÞnIðaÞ, meaning that the result of

Partial
sk
IðaÞð$Þ can be cached and shared with Partial

sk
IðbÞð$Þ

computation.

The following example depicts how this idea works:

Example 2. Consider the network G in Fig. 1a, with the verti-
ces and the corresponding non-empty in-neighbor sets
depicted in Fig. 2a. We show how to find a decent order-
ing for partial sums computing and sharing in G.

First, we compute the transition cost of each pair of in-
neighbor sets (along with an empty set ?) in G, by using
Eq. (7). The results are shown in Fig. 2b, where each cell
describes the transition cost from the in-neighbor set in
the left most column to the in-neighbor set in the top line.

For instance, the cell ‘2#’ at row ‘IðeÞ’ column ‘IðbÞ’
shows that TCIðeÞ!IðbÞ ¼ 2. This cell is tagged with #, indi-

cating that the partial sum Partial
sk
IðbÞð$Þ can be com-

puted from the memoized result of Partial
sk
IðeÞð$Þ (rather

than from scratch). This is because the transition cost 2 is,
in essence, obtained from the two operations of symmet-
ric difference (i.e., jIðeÞ
 IðbÞj ¼ jfe; igj ¼ 2) in lieu of
the 3 additions (i.e., jIðbÞj � 1 ¼ 3) w.r.t. Eq. (7). Note
that the lower triangular part of the table in Fig. 2b
remains empty since we are interested only in the cost
TCIðxÞ!IðyÞ when jIðxÞj � jIðyÞj.

Next, we build a weighted digraph GG in Fig. 2c, with
vertices corresponding to the non-empty in-neighbor
sets (plus ?) of G (which are in column ‘Ið$Þ’ of Fig. 2a),
and edge weights to the transition costs. For instance, the
weight of the edge ðIðeÞ; IðbÞÞ in GG is associated with the

cell ‘2#’ at row ‘IðeÞ’ column ‘IðbÞ’ in Fig. 2b. Thus, every
path in GG yields a linear ordering of partial sums compu-
tation. More importantly, partial sums sharing may occur
in the edges tagged with #. As an example, the path

? !1 IðeÞ !2# IðbÞ in GG shows that (i) Partial
sk
IðeÞð$Þ is

computed from scratch (from ?) with one operation, and

(ii) Partial
sk
IðbÞð$Þ is obtained by reusing the result of

Partial
sk
IðeÞð$Þ, involving two operations.

Finally, we find a directed minimum spanning tree TT

of GG , by starting from the vertex ? , and choosing the
cheapest path for partial sums computing and sharing,
as depicted in bold edges in Fig. 2c. Consequently, using
depth-first search (DFS), we can obtain 3 paths from TT

for partial sums optimization, as shown in Fig. 2d.

Using this idea, we can identify the moderate partitions
of each in-neighbor set in G, with large and dense chunks
for sub-summations sharing. Such partitions are not opti-
mal, but can, in practice, achieve better performances than
psum-SR. Proposition 3 shows the correctness.

Proposition 3. Given two distinct non-empty in-neighbor sets

IðaÞ and IðbÞ, and a partial sum Partial
sk
IðaÞð$Þ, if jIðaÞ

IðbÞj < jIðbÞj � 1, then we have the following:
(i) IðbÞ can be partitioned as

IðbÞ ¼ ðIðbÞ \ IðaÞÞ [ðIðbÞnIðaÞÞ: (8)

(ii) The partial sum Partial
sk
IðbÞð$Þ can be computed

from the cached result of Partial
sk
IðaÞð$Þ as follows:

Partial
sk
IðbÞðyÞ ¼ Partial

sk
IðaÞðyÞ �

X
x2IðaÞnIðbÞ

skðx; yÞ

þ
X

x2IðbÞnIðaÞ
skðx; yÞ; ðy 2 VÞ

(9)

with jIðaÞ
 IðbÞj operations being performed.

Sketch of Proof. The proof of Eq. (8) is trivial, whereas the
proof of Eq. (9) is based on the facts that (i) B ¼
ðAnðAnBÞÞ [ðBnAÞ, (ii) Partial

sk
AnBðjÞ ¼ Partial

sk
A ðjÞ �

Partial
sk
B\AðjÞ; 8j tu

In Appendix B, available in the online supplemental
material, we give an illustrative example to show how to
find all the partitions of in-neighbor sets for partial sums
sharing via Proposition 3.

3.2 Use In-Neighbor Set Partitions for Outer Sums
Sharing

After in-neighbor set partitions have been identified for
(inner) partial sums sharing, optimization methods in this
section allow outer partial sums sharing for further speeding
up SimRank computation.

Fig 2. Constructing a minimum spanning tree TT to find an optimized topological sort for partial sums sharing.

1814 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

To avoid ambiguity, we refer to the sums w.r.t. the index
i in Eq. (4) as (inner) partial sums, and the sums w.r.t. the
index j in Eq. (5) as outer partial sums.

Our key observation is as follows. Recall from Eq. (5)
that, given the memoized results of partial sums

Partial
sk
IðaÞð$Þ, the existing algorithm psum-SR for comput-

ing skða; bÞ is to sum up Partial
sk
IðaÞðyÞ, one by one, over all

y 2 IðbÞ. Such a process can be pictorially depicted in the
left part of Fig. 1c, in which each horizontal bar represents a
partial sum over IðaÞ. In order to compute sða; bÞ, we need
to add up the horizontal bars (i.e., the partial sums) in the
first four rows. However, while computing sða; dÞ by adding
up the horizontal bars in the last four rows, we observe that
the three horizontal bars at rows ‘e’, ‘f’, ‘i’ may suffer from
repetitive additions. As another example in the right part of
Fig. 1c, for computing sðc; bÞ and sðc; dÞ, the sum of the three
horizontal bars at rows ‘e’, ‘f’, ‘i’ is again a repeated opera-
tion. As such, the major problem of Eq. (5) is the one-by-one

fashion in which the partial sums Partial
sk
IðaÞðyÞ for y 2 IðbÞ

are added together.
Our main idea in optimizing Eq. (5) is to split IðbÞ into

several chunks Di
b first, such that

PP ðIðbÞÞ ¼ fDi
b j i ¼ 1; . . . ; jPP ðIðbÞÞjg;

and then add up the cached results of partial sums in a
chunk-by-chunk fashion to compute skþ1ða; bÞ as

skþ1ða; bÞ ¼
C

jIðaÞjjIðbÞj
X

Di
b
2PP ðIðbÞÞ

OuterPartial
IðaÞ;sk
Di
b

(10)

with

OuterPartial
IðaÞ;sk
Di
b

,
X
j2Di

b

Partial
sk
IðaÞðjÞ:

In contrast with Eq. (5), our method in Eq. (10) can eliminate

the redundancy among different outer partial sums. Once

computed, the outer partial sum OuterPartial
IðaÞ;sk
Di
b

is

memoized and can be reused later without recalculation

again. As an example in Fig. 1c, suppose IðbÞ and IðdÞ are
split into

IðbÞ ¼ fgg [fe; f; ig; IðdÞ ¼ fe; f; ig [fag;

the outer partial sum OuterPartial
IðaÞ;sk
fe;f;ig is computed only

once and can be reused in both skþ1ða; bÞ and skþ1ða; dÞ
computation.

The problem of finding an ideal partition PP ðIðbÞÞ of IðbÞ
for maximal sharing outer partial sums is still NP-hard, and
its proof is the same as that of OIP in Proposition 2. Thus,
the partitioning techniques for (inner) partial sums sharing
in Section 3.1 can be applied in a similar way to optimize
outer partial sums sharing. In other words, the partitions of
in-neighbor sets in Eq. (8) for (inner) partial sums sharing,
once identified, can be reused later for outer partial sums
sharing. The correctness is verified in Proposition 4.

Proposition 4. Given two non-empty in-neighbor sets IðbÞ and
IðdÞ, an outer partial sum OuterPartial

IðaÞ;sk
IðbÞ , and (inner)

partial sums Partial
sk
IðaÞð$Þ, if jIðbÞ
 IðdÞj < jIðdÞj � 1,

then we have the following:
(i) OuterPartial

IðaÞ;sk
IðdÞ can be computed from the memoized

results of OuterPartial
IðaÞ;sk
IðbÞ , 8a 2 V, as follows:

OuterPartial
IðaÞ;sk
IðdÞ ¼ OuterPartial

IðaÞ;sk
IðbÞ

�
X

x2IðbÞnIðdÞ
Partial

sk
IðaÞðxÞ þ

X
x2IðdÞnIðbÞ

Partial
sk
IðaÞðxÞ; 8a 2 V

with jIðbÞ
 IðdÞj operations being performed.
(ii) skþ1ða; dÞ, 8a 2 Vnfdg, can be computed as

skþ1ða; dÞ ¼
C

jIðaÞjjIðdÞj then OuterPartial
IðaÞ;sk
IðdÞ ; 8a

2 Vnfdg:
(11)

(The proof is similar to Proposition 3. We omit it here.)
In Appendix B, available in the online supplemental

material, we provide an example to illustrate how to use
outer partial sums sharing for further speeding up the com-
putation of SimRank.

3.3 An Algorithm for Computing SimRank

We next present a complete algorithm to efficiently compute
SimRank, by integrating the aforementioned techniques of
inner and outer partial sums sharing.

The main result of this section is the following:

Proposition 5. For any graph G, it is in Oðdn2 þKd0n2Þ time
and OðnÞ intermediate memory to compute SimRank similari-
ties of all pairs of vertices for K iterations, where d is the aver-
age vertex in-degree of G, and d0 � d.

Note that d0 is affected by the overlapped area size
among different in-neighbor sets in G. Typically, d0 is much
smaller than d as in-neighbor sets in Gmay have many verti-
ces in common in real networks. That is, our approach of
partial sums sharing can compute SimRank more efficiently

than psum-SR in practice, as opposed to the OðKdn2Þ-time
of the conventional counterpart via separate partial sums
over each in-neighbour set in G. Even in the extreme case
when all in-neighbor sets in G are pair-wise disjoint, our
method can retain the same complexity bound of psum-SR
in the worst case.

We next prove Proposition 5 by providing an algorithm
for SimRank computation, with the desired complexity
bound.

Algorithm. The algorithm, referred to as OIP-SR, is
shown in Algorithm 1. Given G, a damping factor C, and
the total iteration number K, it returns sKð$;$Þ of all pairs
of vertices.

(Please refer to Appendix C, available in the online sup-
plemental material, for the detailed descriptions of algo-
rithm OIP-SR and procedures OP and DMST-Reduce.)

Correctness and Complexity. OIP-SR consists of two
phases: (i) building an MST TT (line 1), and (ii) computing
similarities (lines 2-18). One can readily verify that (i) OIP-
SR correctly computes the similarities skðu; vÞ in G for each
vertex pair ðu; vÞ; and (ii) the total time of OIP-SR is

bounded by OðKd0n2Þ, with d0 � d, and in practice, d0 � d.

YU ET AL.: FAST ALL-PAIRS SIMRANK ASSESSMENT ON LARGE GRAPHS AND BIPARTITE DOMAINS 1815

Algorithm 1. OIP-SRðG; C;KÞ
Input: graph G ¼ ðV; EÞ, damping factor C, iteration

numberK.
Output: SimRank scores sKð$;$Þ.

1: construct a transitionalMSTTT DMST-ReduceðGÞ;
2: initialize s0ðx; yÞ 1; x ¼ y

0; x 6¼ y

�
8x; y 2 V;

3: for k 0; 1; . . . ; K � 1 do
4: foreach vertex u 2 Oð#Þ in the MST TT do
5: foreach vertex y 2 V in G do
6: Partial

sk
IðuÞðyÞ

P
x2IðuÞ skðx; yÞ;

7: skþ1ðu;$Þ OPðTT ;G; u; C; k; PartialskIðuÞð$ÞÞ;
8: while OðuÞ 6¼ ? do
9: v OðuÞ;

10: foreach vertex y 2 V in G do
11: Partial

sk
IðvÞðyÞ Partial

sk
IðuÞðyÞ�P

x2IðuÞnIðvÞ skðx; yÞþ
P

x2IðvÞnIðuÞ skðx; yÞ;
12: skþ1ðv;$Þ OPðTT ;G; v; C; k; PartialskIðvÞð$ÞÞ;
13: u v;
14: foreach vertex y 2 V in G do
15: free Partial

sk
IðuÞðyÞ;

16: while OðuÞ 6¼ ? do
17: v OðuÞ free PartialskIðvÞðyÞ, u v;
18: return sKð$;$Þ;

(Please see Appendix D, available in the online supple-
mental material, for the detailed analysis.)

4 EXPONENTIAL RATE OF CONVERGENCE

FOR SIMRANK ITERATIONS

For a desired accuracy �, the existing paradigm (via Eq. (2))
for computing SimRank needs K ¼ dlogC � e iterations [18].
In this section, we introduce a new notion of SimRank that
is based on a matrix differential equation, which can signifi-
cantly reduce the number of iterations for attaining the
accuracy � while fairly preserving the relative order of
SimRank.

The main idea in our approach is to replace the geo-
metric sum of the conventional SimRank by an exponen-
tial sum that provides more rapid rate of convergence.
We start by expanding the conventional SimRank matrix
form (in Eq. (3))

S ¼ C � ðQ � S �QT Þ þ ð1� CÞ � In;

as a power series:

S ¼ ð1� CÞ �
X1
i¼0

Ci �Qi � ðQT Þi; (12)

where we notice that the coefficient for each term in the
summation makes a geometric sequence f1; C; C2; . . .g. For
this expansion form, the effect of damping factor Ci in the
summation is to reduce the contribution of long paths rela-
tive to short ones. That is, the conventional SimRank mea-
sure considers two vertices to be more similar if they have
more paths of short length between them. Following this

intuition, we observe that there is an opportunity to speed
up the asymptotic rate of convergence for SimRank itera-
tions, if we allow a slight (and with hindsight sensible)
modification of Eq. (12) as follows:

Ŝ ¼ e�C �
X1
i¼0

Ci

i!
�Qi � ðQT Þi; (13)

Comparing Eq. (12) with Eq. (13), we notice that Ŝ is just an
exponential sum rather than S that is a geometric sum. Since
the exponential sum converges more rapidly, such a modifi-
cation can speed up the computation of SimRank. In addi-
tion, the modified coefficient for each term in the
summation of Eq. (13) that yields the exponential sequence

f1; C1! ; C
2

2! ; . . .g still obeys the intuition of the conventional

counterpart, i.e., the efficacy of damping factor Ci

i! is to

reduce the contribution of long paths relative to short ones.

4.1 Closed Form of Exponential SimRank

With the modified notion of SimRank in Eq. (13), we now
need to define an Eq. (3)-like recurrence for Ŝ.

Definition 2. Let ŜðtÞ be a matrix function w.r.t. a scalar t. The
matrix differential form of SimRank is defined to be

Ŝ , ŜðtÞjt¼C such that ŜðtÞ satisfies the following matrix dif-
ferential equation:

dŜðtÞ
dt
¼ Q � ŜðtÞ �QT ; Ŝð0Þ ¼ e�C � In: (14)

Note that the solution of Eq. (14) is unique since the
initial condition Ŝð0Þ ¼ e�C � In is specified. Based on

Definition 2, it is crucial to verify that Ŝ (in Eq. (13)) is the
solution to Eq. (14). Proposition 6 shows the correctness.

Proposition 6. The matrix differential form of SimRank in
Eq. (14) has an exact solution Ŝ given in Eq. (13).

(Please refer to Appendix A, available in the online sup-
plemental material, for a detailed proof.)

To iteratively compute Ŝ, the conventional way is to use

the Euler method [2] for approximating ŜðtÞ at time t ¼ C.
Precisely, by choosing a value h for the step size, and setting
tk ¼ k � h, one step of the Euler method from tk to tkþ1 is

Ŝkþ1 ¼ Ŝk þ h �Q � Ŝk �QT ; Ŝ0 ¼ Ŝð0Þ ¼ e�C � In:

Subsequently, the value of Ŝk is an approximation of the

solution to Eq. (14) at time t ¼ tk, i.e., Ŝk � ŜðtkÞ. However,
the approximation error of the Euler method hinges heavily
on the choice of step size h, which is hard to determine since
the small choice of h would entail huge computational cost
for attaining high accuracy. To address this issue, we adopt

the following iterative paradigm for computing Ŝ as

Tkþ1 ¼ Q � Tk �QT

Ŝkþ1 ¼ Ŝk þ e�C � Ck þ 1

k þ 1ð Þ! � Tkþ1

(
with

T0 ¼ In
Ŝ0 ¼ e�C � In:

�
(15)

Note that the main difference in our approach, as com-
pared to the Euler method, is that there is no need for the
choice of a particular step size h to iteratively compute Ŝ.

1816 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

The correctness of our approach can be easily verified, by

induction on k, that the value of Ŝk in our iteration Eq. (15)

equals the sum of the first k terms of the infinite series Ŝ in
Eq. (13).

4.2 A Space-Efficient Iterative Paradigm

Although the paradigm of Eq. (15) can iteratively compute

Ŝk that converges to the exponential SimRank Ŝ, we observe
that Eq. (15) requires additional memory space to store the
intermediate result Tk per iteration. In this section, we pro-
vide an improved version of Eq. (15) that can produce the
same result without using extra space for caching Tk.

Proposition 7. Given any total iteration number K, the follow-

ing paradigm can be used to iteratively compute ~SK :

~S0 ¼ e�C � In;
~Skþ1 ¼ C

K�k �Q � ~Sk �QT þ e�C � In: ðk ¼ 0; . . . ; K � 1Þ:

�
(16)

The result of ~SK at the last iteration is exactly the same as ŜK

in Eq. (15).

Themain idea of our improved paradigmEq. (16) is based
on two observations: (1) For every iteration k ¼ 0; 1; . . . ; K,

the result of Ŝk in Eq. (15) is actually the sum of the first k

terms of the infinite series Ŝ in Eq. (13). (2) For any total itera-

tion numberK, the result of ~SK at the last iteration in Eq. (16)

equals the sum of the first K terms of the infinite series Ŝ in
Eq. (13). Both of these observations can be readily verified by
direct inductive manipulations. As an example for K ¼ 3,
our improved paradigm Eq. (16) iteratively computes

Ŝ3 ¼ e�C �
P3

i¼0
Ci

i! �Q
i � ðQT Þi as follows:

~S3¼ e�CIn þ CQ

e�CInþ

C

2
Q e�CIn þ

C

3
Q �QT

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{~S1

QT

!
|ffl{zffl}

~S2

QT:

The merit of Eq. (16) over Eq. (15) is the space efficiency—in
Eq. (16), we do not need to use an auxiliary matrix Tk to
store the temporary results. Moreover, since Eq. (16) has a
very similar form to the SimRank matrix form in Eq. (3), our
partial sums sharing techniques in Section 3 can be directly
applied to the iterative form of Eq. (16), i.e., when a 6¼ b, for
k ¼ 0; 1; . . . ; K � 1,

½~Skþ1	a;b ¼
C

ðK � kÞjIðaÞjjIðbÞj
X
j2IðbÞ

X
i2IðaÞ

½~Sk	i;j:

It is worth noticing that in Eq. (15), we can iteratively

compute Ŝkþ1 from Ŝk for any k ¼ 0; 1; . . . ; whereas, in
Eq. (16), for any given K, we can only iteratively compute
~Skþ1 from ~Sk for k ¼ 0; 1; . . . ; K � 1, but we cannot compute
~SKþ1 from ~SK . This means that, to guarantee a given accu-
racy �, we have to determine the total number of iterations
K in an a-priori fashion for Eq. (16), in contrast with Eq. (15)
in which K can be determined in an either a-priori or
a-posteriori style. Fortunately, this requirement is not an
obstacle to Eq. (16), since in the next section we will show a

nice a-priori bound of the total iteration number K for
Eq. (16) to attain a given accuracy �.

4.3 Error Estimate

In the SimRank matrix differential model, the following esti-
mate for the kth iterative similarity matrix Ŝk with respect to

the exact one Ŝ can be established.

Proposition 8. For each iteration k ¼ 0; 1; 2; . . . ; the difference
between the kth iterative and the exact similarity matrix in
Eqs. (13) and (15) can be bounded as follows:

kŜk � Ŝkmax �
Ckþ1

ðkþ 1Þ! ; (17)

where kXkmax , maxi;jjxi;jj is the max norm.

(Please refer to Appendix A, available in the online sup-
plemental material, for a detailed proof.)

For the SimRank differential model Eq. (13), Proposition 8
allows finding out the exact number of iterations needed
for attaining a desired accuracy, based on the following
corollary.

Corollary 1. For a desired accuracy � > 0, the number of itera-
tions required to perform Eq. (15) is

K0 � ln �0

W
�

1
e�C � ln �0

�& ’
; with �0 ¼

� ffiffiffiffiffiffi
2p
p

� �
��1

:

Here,Wð$Þ is the LambertW function [10].

(Please see the Appendix A, available in the online sup-
plemental material, for a detailed proof.)

Noting that lnðxÞ � lnðlnðxÞÞ �WðxÞ � lnðxÞ, 8x > e [10],
we have the following improved version of Corollary 1,
which may avoid computing the LambertW function.

Corollary 2. For a desired accuracy 0 < � < 1ffiffiffiffi
2p
p e�C�e

2
, the num-

ber of iterations needed to perform Eq. (15) is

K0 � � lnð
ffiffiffiffiffiffi
2p
p

� �Þ
h� lnðhÞ

	

with h ¼ ln � 1

e � C � ln
� ffiffiffiffiffiffi

2p
p

� �
�� �

:

Comparing this with the conventional SimRank model
that requires K ¼ dlogC �e iterations [18] for a given accu-
racy �, we see that our revision of the differential SimRank
model in Eq. (14) can greatly speed up the convergence of
SimRank iterations from the original geometric to exponen-
tial rate.

As an example, setting C ¼ 0:8 and � ¼ 0:0001, since
1ffiffiffiffi
2p
p e�0:8�e

2 ¼ 0:0011 > 0:0001, we can use Corollary 2 to find

out the number of iterations K0 in Eq. (15) necessary to our
differential SimRank model Eq. (14) as follows:

h ¼ ln � 1

e � 0:8 � lnð
ffiffiffiffiffiffi
2p
p

� 0:0001Þ
� �

¼ 1:3384;

K0 � � lnð
ffiffiffiffiffiffi
2p
p

� 0:0001Þ
1:3384� lnð1:3384Þ

	

¼ 8:2914

1:0469

	

¼ 7:

In contrast, the conventional SimRank model Eq. (2) needs
K ¼ dlog0:8 0:0001e ¼ 41 iterations.

YU ET AL.: FAST ALL-PAIRS SIMRANK ASSESSMENT ON LARGE GRAPHS AND BIPARTITE DOMAINS 1817

For ranking purpose, our experimental results in Sec-
tion 6 further show that the revised notion of SimRank in
Eq. (14) not only drastically reduces the number of itera-
tions for a desired accuracy, but can fairly maintain the
relative order of vertices with respect to the conventional
SimRank in [18].

5 PARTIAL MAX SHARING FOR MINIMAX SIMRANK

VARIATION IN BIPARTITE GRAPHS

Having investigated the partial sums sharing problem for
optimizing SimRank computation in Section 4, we now
focus on the partial max sharing problem for optimizing the
computation of the Minimax SimRank variation, a model pro-
posed in [12, Section 4.3.2].

Given a bipartite graph G ¼ ðV [W; EÞ, for any vertex
A 2 V, the out-neighbor set of A is defined as

OðAÞ ¼ fx 2 V j ðA; xÞ 2 Eg:
For every two distinct vertices A and B in V, the similarity
of the Minimax SimRank variation, denoted as sðA;BÞ, is
defined as follows [12]:

sAðA;BÞ ¼ C

OðAÞj j
X

i2O Að Þ
max
j2O Bð Þ

sði; jÞ;

sBðA;BÞ ¼ C

OðBÞj j
X

j2O Bð Þ
max
i2O Að Þ

sði; jÞ;

sðA;BÞ ¼ minfsAðA;BÞ; sBðA;BÞg:

The Minimax SimRank variation model is particularly
useful when we sometimes do not need to compare all A’s
neighbors with all B’s. An real application for this model is
depicted in Appendix F, available in the online supplemen-
tal material.

To compute sðA;BÞ, the conventional method is to per-
form the following iterations:

s0ðA;BÞ ¼
1; A ¼ B;
0; A 6¼ B:

�

For k � 0, we define (i) sAkþ1ðA;BÞ ¼ 0 if OðAÞ ¼ ? ;

(ii) sBkþ1ðA;BÞ ¼ 0 if OðBÞ ¼ ? ; (iii) otherwise,

sAkþ1ðA;BÞ ¼
C

OðAÞj j
X

i2O Að Þ
max
j2O Bð Þ

skði; jÞ; (18)

sBkþ1ðA;BÞ ¼
C

OðBÞj j
X

j2O Bð Þ
max
i2O Að Þ

skði; jÞ; (19)

skþ1ðA;BÞ ¼ min
�
sAkþ1ðA;BÞ; sBkþ1ðA;BÞ

�
: (20)

We can readily prove that limk!1 skðA;BÞ ¼ sðA;BÞ.
To speed up the computation of skð$;$Þ for all pairs of

vertices, we can first memoize the partial max in Eq. (18) 5

as follows:

Partial Max
sk
OðBÞðiÞ ¼ max

j2O Bð Þ
skði; jÞ; (21)

and then compute sAkþ1ðA;BÞ as

sAkþ1ðA;BÞ ¼
C

OðAÞj j
X

i2O Að Þ
Partial Max

sk
OðBÞðiÞ: (22)

Thus, the memoized results of Partial Max
sk
OðBÞð$Þ can be

reused in all sXkþ1ðX;BÞ computations, 8X 2 V.
It should be pointed out that, although Eqs. (21) and

(22) have a very similar form to Eqs. (4) and (5), we only
can apply the (outer) partial sums sharing technique of
Section 3.2 to further speed up the summations in Eq. (22),
but may not always employ the (inner) partial sums shar-
ing technique of Section 3.1 to accelerate the partial max
computation in Eq. (21). The reason is that, for partial
sums sharing, “subtraction” is allowed to compute one
partial sum from another (see Eq. (9) in Proposition 3),
whereas, for partial max sharing, “subtraction” is disal-
lowed in the context of “max” operator since the maximum
value of a set X may be unequal to the maximum value of a sub-
set of X. We call this the “subtraction” curse of max
operation.

Example 3. Suppose OðBÞ ¼ fc; d; e; f; jg and OðDÞ ¼ fd;
e; f; g; h; ig, with three vertices fd; e; fg in common. Since
OðDÞ ¼ OðBÞ � fc; jg [fg; h; ig, according to Proposi-

tion 3, the partial sums Partial
sk
OðDÞð$Þ can be computed

from the memoized Partial
sk
OðBÞð$Þ as

Partial
sk
OðDÞð$Þ ¼ Partial

sk
OðBÞð$Þ þ Partial

sk
fg;h;igð$Þ

� Partial
sk
fc;jgð$Þ:

(23)

However, in the context of partial max sharing, we may
not obtain the partial max Partial Max

sk
OðDÞð$Þ directly

from the memoized Partial Max
sk
OðBÞð$Þ via an Eq. (23)-

like approach. This is because “subtraction” is involved
in Eq. (23)—although we know

Partial Max
sk
OðBÞ[fg;h;igð$Þ

¼ max
�
Partial Max

sk
OðBÞð$Þ; Partial Max

sk
fg;h;igð$Þ

�
;

we do not know how to derive Partial Max
sk
OðDÞð$Þ from

the results of Partial Max
sk
OðBÞ[fg;h;igð$Þ and

Partial Max
sk
fc;jgð$Þ, which is due to the “subtraction” curse

in the context ofmax operator.

This example tells that, for every two out-neighbor sets
OðXÞ and OðY Þ, only when OðXÞ � OðY Þ, then the partial

max Partial Max
sk
OðXÞð$Þ can be reused for computing

Partial Max
sk
OðY Þð$Þ as

Partial Max
sk
OðY Þð$Þ

¼ max
�
Partial Max

sk
OðXÞð$Þ; Partial Max

sk
OðY ÞnOðXÞð$Þg:

5. In the following, we shall focus solely on optimizing Eq. (18). A
similar method can be applied to Eq. (19).

1818 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

Unfortunately, the condition OðXÞ � OðY Þ is too restric-
tive in real-life networks for partial max sharing. In practice,
out-neighbors are often overlapped irregularly in many real-
world graphs, i.e., OðXÞ \ OðY Þ 6¼ ? . It is imperative for us
to find a new different way of partial max sharing, which
can effectively avoid the “subtraction” curse for computing
the Minimax SimRank variation.

Partial max sharing. The main idea of our approach is
based on a finer-grained partial max sharing. Given two out-
neighbor sets OðXÞ and OðY Þ, if OðXÞ \ OðY Þ 6¼ ? , then we
first memoize the finer-grained partial max over the com-
mon subset OðXÞ \ OðY Þ:

zð$Þ ¼ Partial Max
sk
OðXÞ\OðY Þð$Þ; (24)

then reuse zð$Þ to compute both Partial Max
sk
OðXÞð$Þ and

Partial MaxOðY Þð$Þ as

Partial Max
sk
OðXÞð$Þ ¼ max

�
Partial Max

sk
OðXÞnOðY Þð$Þ; zð$Þ

�
;

Partial Max
sk
OðY Þð$Þ ¼ max

�
Partial Max

sk
OðY ÞnOðXÞð$Þ; zð$Þ

�
:

In comparison, the partial sums sharing approach in
Section 3, if ported to the partial max sharing, only
allows Partial Max

sk
OðY Þð$Þ being computed from another

memoized partial sums Partial Max
sk
OðXÞð$Þ or from

scratch (depending on the transition costs); since
“subtraction” is not allowed in the context of max opera-

tor, Partial Max
sk
OðY Þð$Þ have to be calculated from

scratch if OðXÞ ~ OðY Þ. Fortunately, our approach can

share the common subparts for both Partial Max
sk
OðXÞð$Þ

and Partial Max
sk
OðY Þð$Þ computation while preventing

the “subtraction” curse.
Edge concentration. To find out the common subparts zð$Þ

in Eq. (24) for all out-neighbor sets sharing, we first intro-
duce the notion of biclique.

Definition 3. Given a bipartite digraph G ¼ ðV [W; EÞ, a pair of
two disjoint subsets ðV0;W0Þ, with V0 � V and W0 � W, is
called a biclique if ðv0; w0Þ 2 E for all v0 2 V0 and w0 2 W0.

Clearly, a biclique ðV0;W0Þ is a complete subgraph in the
bipartite digraph G ¼ ðV [W; EÞ, denoting the densest parts
in G. For example in the left part of Fig. 3, ðfB;Dg;
fc; d; e; fgÞ (dashed arrows) and ðfA;D;Eg; fg; hgÞ (dotted
arrows) are two bicliques.

Bicliques are utilized for finding out the common sub-
parts for partial max sharing. A biclique, say
ðfB;Dg; fc; d; e; fgÞ, in G means that the out-neighbor
sets OðBÞ and OðDÞ have common vertices fc; d; e; fg. Thus,
Partial Max

sk
fc;d;e;fgð$Þ can be reused for both Partial Max

sk
OðBÞð$Þ

and Partial Max
sk
OðDÞð$Þ computation. Pictorially, such a

partial max sharing optimization process can be depicted

by the edge concentration [17] of a biclique in G. As shown in
the right part of Fig. 3, after edge concentration, a biclique,
say ðfB;Dg; fc; d; e; fgÞ, can be simplified into a triple
ðfB;Dg; z1; fc; d; e; fgÞ, where we call z1 2 Z a concentration
vertex. Each triple, say ðfB;Dg; z1; fc; d; e; fgÞ, tells us the
following: (1) First, all the out-neighbors of vertex z1 can
be clustered together to produce the memoized results
z1ð$Þ, i.e.,

z1ð$Þ ¼ Partial Max
sk
fc;d;e;fgð$Þ:

(2) Then, each in-neighbor of vertex z1, say B, indicates that
the memoized z1ð$Þ can be reused in partial max computa-

tion Partial Max
sk
OðBÞð$Þ, i.e.,

Partial Max
sk
OðBÞð$Þ ¼ max

�
Partial Max

sk
fbgð$Þ; z1ð$Þ

�
:

Therefore, applying edge concentration to every biclique
of G provides a very efficient way for partial max sharing.
The main advantage is that, after edge concentration, the
number of edges in every biclique ðV0;W0Þ can be reduced
from jV0j � jW0j to jV0j þ jW0j. It is worth mentioning that for
every fixed vertex x, the total cost of performing the partial

max Partial Max
sk
Oð$ÞðxÞ over all out-neighbor sets Oð$Þ is

equal to the number jEj of edges in G. Hence, our goal of
minimizing the total cost of the partial max is equivalent to
the problem of minimizing the number of edges in G via
edge concentration. However, this problem is NP-hard, as
proved in our early work [15]. Thus, to find bicliques in G,
we invoke a heuristic [4].

Algorithm. We next present an algorithm for computing
Minimax SimRank variation in a bipartite graph. The algo-
rithm, max-MSR, is shown in Appendix E, available in the
online supplemental material. It takes as input the bipartite
graph G ¼ ðV [W; EÞ, a damping factor C, and the number
of iterations K, and returns all pairs of Minimax SimRank
similarities.

Correctness and complexity. We can verify max-MSR
correctly finds sKð$;$Þ, satisfying Eqs. (18)-(20).

The time of max-MSR is bounded by OðKm0nÞ, where

m0 ¼ jEj �
PN

i¼1 ðjV0ij � jW0ij � jV0ij � jW0ijÞ, with N being the

total number of bicliques ðV0i;W0iÞ in the bipartite graph
G ¼ ðV [W; EÞ. Here, m0 � jEj, and in practice, m0 is much
smaller than jEj since there could be many small dense parts
in real bipartite graphs.

We analyze the time complexity in Appendix E, available
in the online supplemental material.

6 EMPIRICAL EVALUATION

6.1 Experimental Setting

Data sets. For the basic SimRank model, we use three real
data sets (BERKSTAN, PATENT, DBLP) to evaluate the efficiency
of our approaches, and one synthetic dataset (SYN) to vary
graph characteristics. For the Minimax SimRank variation
model in bipartite domains, we use two real data sets
(COURSE and IMDB) and one syntectic bipartite data set
(SYNBI).

The sizes and detailed descriptions of these data sets
are depicted in Appendix G, available in the online sup-
plemental material.

Fig. 3. Edge concentration.

YU ET AL.: FAST ALL-PAIRS SIMRANK ASSESSMENT ON LARGE GRAPHS AND BIPARTITE DOMAINS 1819

Compared algorithms. We implement seven algorithms via
Visual C++ 8.0. (1) OIP-DSR, our differential SimRank of
Eq. (16)6 in conjunction with partial sums sharing. (2) OIP-
SR, our basic SimRank using partial sums sharing.
(3) psum-SR [18], without partial sums sharing. (4) mtx-SR
[15], a matrix-based SimRank via SVD factorization.
(5) max-MSR, our bipartite Minimax SimRank variation
using finer-grained partial max sharing. (6) psum-MSR, the
baseline bipartite Minimax SimRank variation, with partial
max sharing via Eq. (21). (7) MSR [12, Section 4.3.1], the
original iterative bipartite Minimax SimRank variation.

We set the following default parameters, as used in [18]:
C ¼ 0:6; � ¼ 0:001 (unless otherwise mentioned). For all the
methods, we clip similarity values at 0.001, to discard far-
apart nodes with scores less than 0.001 for storage. It can sig-
nificantly reduce space cost with minimal impact on accu-
racy, as shown in [18].

Evaluation metrics. To assess ranking results on real data,
we used Normalized Discounted Cumulative Gain (NDCG)
[15]. The NDCG at rank position p is defined to be

NDCGp ¼ 1
IDCGp

Pp
i¼1 ð2ranki � 1Þ=log2ð1þ iÞ, where ranki is

the graded relevance at position i, and IDCGp is a normali-
zation factor, ensuring the NDCG of an ideal ranking at
position p is 1.

To test the relative order preservation of OIP-DSR rela-
tive to OIP-SR, we choose the ranking of OIP-SR as the
“ideal” relevance (a baseline), and the ranking of OIP-DSR
as the graded relevance ranki for NDCGp. Thus, the

resulting NDCGp can reflect the difference of the relative
order between OIP-DSR and OIP-SR.

We used a machine powered by a Quad-Core Intel i5
CPU (3.10 GHz) with 16 GB RAM, using Windows 7.

6.2 Experimental Results

Exp-1: time efficiency. We first evaluate (1) the CPU time
of OIP-SR and OIP-DSR on real data, and (2) the impact
of graph density on CPU time, using synthetic data. To
favor mtx-SR that only works on low-rank graphs (i.e.,
graph with a small rank of the adjacency matrix), DBLP
data are used although OIP-SR and OIP-DSR work
pretty well on various graphs.

Fixing the accuracy � ¼ :001 for DBLP, varying K for
BERKSTAN and PATENT, Fig. 4a compares the CPU time of the
four algorithms. (1) In all the cases, OIP-SR consistently
outperforms mtx-SR and psum-SR, i.e., our partial sums
sharing approach is effective. On BERKSTAN and PATENT, the
speedups of OIP-SR are on average 4.6X and 2.7X, respec-
tively, better than psum-SR. On the large PATENT, when
K � 8, psum-SR takes too long to finish the computation in
two days, which is practically unacceptable. In contrast,
OIP-SR and OIP-DSR just need about 18.6 hours for
K ¼ 10. (2) OIP-DSR always runs up to 5.2X faster than
psum-SR, and 3X faster than OIP-SR on DBLP, for the
desired � ¼ :001. This is because the differential matrix form
of OIP-DSR increases the rate of convergence, which ena-
bles fewer iterations for attaining the given �. (3) The speed-
ups of OIP-SR and OIP-DSR on BERKSTAN (4.6X) are more
pronounced than those on DBLP (1.8X) and PATENT (2.7X),
which is due to the high degree of BERKSTAN ðd ¼ 11:1Þ that
may potentially increase the overlapped area for common
in-neighbor sets, and thus provides more opportunities for

Fig. 4. Performance evaluation of OIP-SR and OIP-DSR on real and synthetic data sets.

6. In the previous conference version [19], OIP-DSR is our differen-
tial SimRank of Eq. (15), which requires more memory space for storing
the intermediate results.

1820 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

partial sums sharing. It can be seen that after computing the
MST, the sizes of the average symmetric difference d
 rela-
tive to d are reduced more dramatically on BERKSTAN and
PATENT than that on DBLP. Thus, the speedups of our meth-
ods on BERKSTAN and PATENT is far more obvious.

Fig. 4b further shows the amortized time for each phase of
OIP-SR and OIP-DSR on BERKSTAN and PATENT data (given
� ¼ 0:001), in which x-axis represents different stages. From
the results, we can discern that (1) for OIP-SR, the time taken
for “Building MST” is far less than the time taken for “Share
Sums”. This is consistent with our complexity analysis in
Proposition 5. (2) “BuildingMST” always takes up larger por-
tions (34 percent on BERKSTAN, and 24 percent on PATENT) in
the total time ofOIP-DSR, than those (6 percent on BERKSTAN,
and 12 percent on PATENT) in the total time of OIP-SR. This
becomes more evident on various data sets because OIP-SR
and OIP-DSR takes (almost) the same time for “Building
MST”, whereas, for “Sharing Sums”, OIP-DSR enables less
time (4.5X on BERKSTAN, and 2.5X on PATENT) than OIP-SR,
due to the speedup in the convergence rate ofOIP-DSR.

Fixing n ¼ 300 K and varying m from 3 to 15 M on the
synthetic data, Fig. 4c reports the impact of graph density
(ave. in-degree) on CPU time, where y-axis is in the log scale.

Here, share ratio is defined as 1� dþðn�1Þd

nd ¼ n�1

n ð1�
d

d Þ,

where d
 is the average size of symmetric differences (ave.
transition costs) for all pairs of in-neighbor sets. A larger
share ratiomeans that in-neighbor sets of a graph havemany
common vertices for sharing (thus with a smaller d
). The
results show that (1) for � ¼ 0:001, OIP-DSR significantly
outperforms psum-SR by at least one order of magnitude as
m increases. On average, OIP-SR achieves 5X speedups. (2)
The speedups of OIP-DSR are sensitive to graph density
(ave. in-degree d) The larger the d is, the higher the likelihood
of overlapping in-neighbors is for partial sums sharing, as
expected. The biggest speedups are observed for larger d
(higher density)—with nearly two orders of magnitude
speedup for d ¼ 50. (3) When d increases from 40 to 50,
there is a decreasing tendency in the elapsed time for both
OIP-DSR andOIP-SR. This is because in our methods, more
partial sub-summations can be shared for later reuse even
though the graph density d is increased, as opposed to psum-
SR whose time complexity is proportional to d and n. Thus,
for the fixed number of vertices in a graph, the performance
of our methods mainly hinges on the share ratios among
common partial sub-summations (which increases from 0.75
ðd ¼ 40Þ to 0.83 ðd ¼ 50Þ). The more share ratios, the more
time can be reduced.

Exp-2: memory space. We next evaluate the memory
space efficiency of OIP-DSR and OIP-SR on real data.
Note that we only use mtx-SR on small DBLP as a base-
line; for large BERKSTAN and PATENT, the memory space
of mtx-SR will explode as the SVD method of mtx-SR
destroys the graph sparsity.

Fig. 4d shows the results on space. We observe that (1) on
DBLP, OIP-DSR and OIP-SR have much less space than
mtx-SR by at least one order of magnitude, as expected. (2)
In all the cases, the space cost ofOIP-DSR andOIP-SR fairly
retains the same order of magnitude as psum-SR. Indeed,
both OIP-DSR and OIP-DSR merely need about 1.8X, 1.9X,
1.6X space of psum-SR on DBLP, BERKSTAN, PATENT,

respectively, for outer partial sums sharing. This is consistent
with our complexity analysis in Section 3, suggesting that
OIP-DSR and OIP-DSR do not require too much extra space
for caching outer partial sums. Moreover, OIP-DSR has
almost the same space as OIP-SR since Eq. (16) does not
need tomemoize the auxiliaryTk in Eq. (15). (3) On BERKSTAN

and PATENT, the space costs of OIP-DSR and OIP-SR are sta-
bilized as K increases. This is because the memoized partial
sums are released immediately after each iteration, thus
maintaining the same space during the iterations.

Exp-3: convergence rate. We next compare the conver-
gence rate of OIP-DSR and OIP-SR, using real and syn-
thetic data. For the interest of space, below we only
report the results on DBLP D11 ðC ¼ 0:8Þ. The trends on
other data sets are similar.

By varying � from 10�2 to 10�6, Figs. 4e and 4f show that
(1) OIP-DSR needs far fewer iterations than OIP-SR (also

psum-SR), for a given accuracy. Even for a small � ¼ 10�6,
OIP-DSR only requires eight iterations, whereas the conver-
gence of OIP-SR in this case becomes sluggish, yielding
over 60 iterations. This is consistent with our observation in
Proposition 8 that OIP-DSR has an exponential rate of con-
vergence. (2) The two curves labeled “Lambert W Est.” and
“Log Est.” (dashed line) visualize our apriori estimates of
K0 derived from Corollaries 1 and 2, respectively. We can
see that these dashed curves are close to the actual number
iterations of OIP-DSR, suggesting that our estimates of K0

for OIP-DSR are fairly precise.
Exp-4: relative order. We next analyze the relative order of

similarities from OIP-DSR on real data sets (DBLP, BERK-

STAN, and PATENT). On every data set, relative order preserva-
tions for both node and node-pairs ranking are evaluated, as
shown in Fig. 4g. For node ranking, we fix a vertex a as a
given query, and compute the average NDCGp of OIP-DSR

relative to OIP-SR via similarities sða;$Þ from the top-p
query perspective. For query selection, we sort all the verti-
ces in order of their degree into four groups, and then ran-
domly choose 100 vertices from each group, in order to
ensure that the selected vertices can systematically cover a
broad range of all possible queries. The results are shown in
left Fig. 4g. For node-pairs ranking, we find the NDCGp of
OIP-DSR relative to OIP-SR from SimRank scores sð$;$Þ of
the top-p similar pairs, as illustrated in right Fig. 4g. The
results for p ¼ 10; 30; 50 show that OIP-DSR can perfectly
maintain the relative order of the similarity scores produced
by OIP-DSR with only <0:8% loss in NDCG30 and NDCG50

on average for all the data sets. For p ¼ 10 (i.e., top-10 node
and node-pair queries),OIP-DSR produces exactly the same
results of OIP-SR on each dataset. Thus, we can gain a lot in
speedup fromOIP-DSRwhile suffering little loss in quality.

A case study for qualitative ranking results on real data is
also provided in Appendix H, available in the online sup-
plemental material.

Exp-5: minimax SimRank variation. Finally, we evaluate
the time and memory of max-MSR against the baseline
psum-MSR and MSR on bipartite real COURSE and IMDB,
and synthetic SYNBI.

To compare the CPU time of the three Minimax Sim-
Rank variations, on COURSE and IMDB, we vary K from 5
to 25; on SYNBI, we fix n ¼ 200 K with each side of the
bipartite graph having 100 K vertices, and vary the

YU ET AL.: FAST ALL-PAIRS SIMRANK ASSESSMENT ON LARGE GRAPHS AND BIPARTITE DOMAINS 1821

average out-degree from 5 to 35. The results are reported
in Fig. 5a. (1) In all the cases, max-MSR is always the fast-
est, and psum-MSR the second, both of which outperform
MSR by several times on COURSE and by one order of mag-
nitude on IMDB. This is because partial max memoization
can achieve high speedups for Minimax SimRank compu-
tation. Moreover, the finer-grained partial max memoiza-
tion of max-MSR can share much more common subparts
that are neglected by psum-MSR. Thus, max-MSR is con-
sistently better than psum-MSR. On large IMDB, the
speedup is more apparent, e.g., for K ¼ 5, the time of
max-MSR (0.6 hr) is 5.15X faster than psum-MSR (3.2 hr);
however, it takes too long time for MSR to finish the com-
putation within one day. Hence, we stop iterating for
MSR after K � 5 iterations on IMDB and K � 15 on
SYNBI. (2) The graph density has a huge impact on the
speedup of max-MSR. The denser a graph, the more likely
common out-neighbors (bicliques) can be shared for par-
tial max memoization. This explains why the reduced
amount of time for max-MSR relative to psum-MSR is
more pronounced on IMDB than on COURSE, as IMDB has
a higher average out-degree (12.09) than COURSE (5.53).
The results on SYNBI are also consistent with this observa-
tion—the share ratio increases w.r.t. the growing average
out-degree of the synthetic graph.

The memory space of these Minimax SimRank variations
on real and synthetic data sets are evaluated in Fig. 5b. Due
to space limitations, we merely report the results on SYNBI
with the average out-degree of 25. We notice that in all the
cases, the memory space of max-MSR is a bit higher than
that of psum-MSR, both of which are a bit higher thanMSR,
yet maintain the same order of magnitude during the itera-
tions. For instance on IMDB, the space cost for max-MSR
(0.2 M) is slightly higher than psum-MSR (0.14 M) andMSR
(0.10 M). This is because the partial max memoization
requires extra space to cache similarities of all dummy verti-
ces. The finer the granularity for memoization, the more
space it requires, as expected.

7 CONCLUSIONS

We proposed efficient methods to speed up the computa-
tion of SimRank on large networks and bipartite domains.
First, we leveraged a novel clustering approach to optimize
partial sums sharing. By eliminating duplicate computa-
tional efforts among partial summations, an efficient algo-
rithm was devised to greatly reduce the time complexity of
SimRank. Second, we proposed a revised SimRank model
based on the matrix differential representation, achieving

an exponential speedup in the convergence rate of Sim-
Rank, as opposed to its conventional counterpart of a geo-
metric speedup. Third, in bipartite domains, we developed
a novel finer-grained partial max clustering method for
greatly accelerating the computation of the Minimax Sim-
Rank variation, and showed that the partial max sharing
approach is different from the partial sums sharing method
in that the “subtraction” is disallowed in the context of
max operation. Our experiments on both real and synthetic
data sets have shown that the integration of our proposed
methods for the basic SimRank equation can significantly
outperform the best known algorithm by about one order
of magnitude, and that the computational time of our
finer-grained partial max sharing method for the Minimax
SimRank variation in bipartite domains is 5X-12X faster
than that of the baselines.

ACKNOWLEDGMENTS

Xuemin Lin is currently supported by NSFC61232006,
NSFC61021004, ARC DP140103578 and DP120104168.
Wenjie Zhang is supported by ARC DE120102144 and
DP120104168.

REFERENCES

[1] I. Antonellis, H. G. Molina, and C. Chang, “SimRank++: Query
rewriting through link analysis of the click graph,” Proc. VLDB
Endowment, vol. 1, pp. 408-421, 2008.

[2] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Dif-
ferential Equations and Differential-Algebraic Equations. Philadelphia,
PA, USA: SIAM, 1998.

[3] P. Berkhin, “Survey: A survey on PageRank computing,” Internet
Math., vol. 2, pp. 73–120, 2005.

[4] G. Buehrer and K. Chellapilla, “A scalable pattern mining
approach to web graph compression with communities,” in Proc.
Int. Conf. Web Search Data Mining, 2008, pp. 95–106.

[5] J. Cho and S. Roy, “Impact of search engines on page popularity,”
in Proc. 13th Int. Conf. World Wide Web, 2004, pp. 20–29.

[6] D. Fogaras and B. R�acz, “Scaling link-based similarity search,” in
Proc. 14th Int. Conf. World Wide Web, 2005, pp. 641–650.

[7] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka,
“Efficient search algorithm for SimRank,” in Proc. IEEE Int. Conf.
Data Eng., 2013, pp. 589–600.

[8] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan, “Efficient
algorithms for finding minimum spanning trees in undirected
and directed graphs,” Combinatorica, vol. 6, pp. 109–122, 1986.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA, USA:
Freeman, 1979.

[10] M. Hassani, “Approximation of the LambertW function,” RGMIA
Res. Rep. Collection, vol. 8, pp. 1–2, 2005.

[11] G. He, H. Feng, C. Li, and H. Chen, “Parallel SimRank computa-
tion on large graphs with iterative aggregation,” in Proc. 16th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010,
pp. 543–552.

Fig. 5. Performance evaluation of bipartite SimRank variation max-MSR on real and synthetic data sets.

1822 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 7, JULY 2015

[12] G. Jeh and J. Widom, “SimRank: A measure of structural-context
similarity,” in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2002, pp. 538–543.

[13] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of
online social networks,” in Proc. 12th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2006, pp. 611–617.

[14] P. Lee, L. V. Lakshmanan, and J. X. Yu, “On Top-k structural simi-
larity search,” in Proc. IEEE Int. Conf. Data Eng., 2012, pp. 774–785.

[15] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T.Wu, “Fast computa-
tion of SimRank for static and dynamic information networks,” in
Proc. 13th Int. Conf. Extending Database Technol., 2010, pp. 465–476.

[16] P. Li, H. Liu, J. X. Yu, J. He, and X. Du, “Fast single-pair
SimRank computation,” in Proc. SIAM Int. Conf. Data Mining,
2010, pp. 571–582.

[17] X. Lin, “On the computational complexity of edge concentration,”
Discr. Appl. Math., vol. 101, no. 1–3, pp. 197–205, 2000.

[18] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov,
“Accuracy estimate and optimization techniques for SimRank
computation,” VLDB J., vol. 19, no. 1, pp. 45–66, 2010.

[19] W. Yu, X. Lin, andW. Zhang, “Towards efficient SimRank compu-
tation on large networks,” in Proc. IEEE 29th Int. Conf. Data Eng.,
2013, pp. 601–612.

Weiren Yu received the PhD degree from the
School of Computer Science and Engineering,
University of New South Wales, Australia, in
2013. He is currently a postdoctoral research
associate at the Department of Computing,
Imperial College London. His current research
interests include graph database, data mining,
and link analysis. He received two Canon Infor-
mation Systems Research Australia (CiSRA)
Best Research Paper Awards in 2013 and 2014,
one “One of the Best Papers of ICDE” in 2013,

and three Best (Student) Paper Awards at APWEB 2010, WAIM 2010,
andWAIM 2011, respectively. He is a member of the IEEE and the ACM,
and was an active reviewer for many CS conferences and journals.

Xuemin Lin received the BSc degree in applied
math from Fudan University in 1984, and the
PhD degree in computer science from the Univer-
sity of Queensland, in 1992. He is currently a pro-
fessor in the School of Computer Science and
Engineering, University of New South Wales. He
has been the head of database research group at
UNSW since 2002, and a concurrent professor at
East Normal University since 2009. Before joining
UNSW, he held various academic positions at the
University of Queensland and the University of

Western Australia. During 1984–1988, he studied for a PhD degree in
applied math at Fudan University. He is currently an associate editor of
the ACM Transactions on Database Systems, an associate editor of the
IEEE Transactions on Knowledge and Data Engineering, and an associ-
ate editor of the World Wide Web Journal. His current research interests
include data mining, data streams, distributed database systems, spatial
database systems, web databases, and graph visualization.

Wenjie Zhang received the PhD degree in com-
puter science and engineering in 2010 from the
University of New South Wales. She is a currently
a lecturer in the School of Computer Science and
Engineering, University of New South Wales,
Australia. Since 2008, she has published more
than 30 papers in SIGMOD, SIGIR, VLDB, ICDE,
TODS, TKDE, and VLDBJ. She received the
Best (Student) Paper Award of National Data-
Base Conference of China 2006, APWeb/WAIM
2009, Australasian Database Conference 2010

and DASFAA 2012, and also co-authored one of the best papers in
ICDE 2010, ICDE 2012, DASFAA 2012, and ICDE 2013. In 2011, she
received the ARC Discovery Early Career Researcher Award. She is
currently supported by ARC DE120102144 and DP120104168.

Julie A. McCann is currently a professor of
Computer Systems at Imperial College. Her
research centers on highly decentralized and
self-organizing scalable algorithms for spatial
computing systems. She leads both the AESE
group and the Intel Research Institute for Sus-
tainable Cities, and is currently working with NEC
and others on substantive smart city projects.
She has received significant funding through bod-
ies such as the UKs EPSRC, TSB and NERC as
well as various international funds, and is an

elected peer for the EPSRC. She has actively served on, and chaired,
many conference committees and is currently associative editor for the
ACM Transactions on Autonomous and Adaptive Systems. She is a
member of the IEEE and the ACM as well as a chartered engineer, and
was elected as a fellow of the BCS in 2013.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YU ET AL.: FAST ALL-PAIRS SIMRANK ASSESSMENT ON LARGE GRAPHS AND BIPARTITE DOMAINS 1823

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

