
Fast Incremental SimRank on Link-Evolving Graphs
Weiren Yu †,♭, Xuemin Lin †, Wenjie Zhang †

† The University of New South Wales, Sydney, Australia ♭ NICTA, Australia
{weirenyu, lxue, zhangw}@cse.unsw.edu.au

Abstract—SimRank is an arresting measure of node-pair sim-
ilarity based on hyperlinks. It iteratively follows the philosophy
that 2 nodes are similar if they are referenced by similar nodes.
Real graphs are often large, and links constantly evolve with
small changes over time. This paper considers fast incremental
computations of SimRank on link-evolving graphs. The prior ap-
proach [1] to this issue factorizes the graph via the singular value
decomposition (SVD) first, and then incrementally maintains
this factorization for link updates at the expense of exactness.
Consequently, all node-pair similarities are estimated in O(r4n2)
time on a graph of n nodes, where r is the target rank of the
low-rank approximation, which is not negligibly small in practice.

In this paper, we propose a novel fast incremental paradigm.
(1) We characterize the SimRank update matrix ∆S, in response
to every link update, via a rank-one Sylvester matrix equation. By
virtue of this, we devise a fast incremental algorithm computing
similarities of n2 node-pairs in O(Kn2) time for K iterations.
(2) We also propose an effective pruning technique capturing the
“affected areas” of ∆S to skip unnecessary computations, with-
out loss of exactness. This can further accelerate the incremental
SimRank computation to O(K(nd+ |AFF|)) time, where d is the
average in-degree of the old graph, and |AFF| (≤ n2) is the size
of “affected areas” in ∆S, and in practice, |AFF| ≪ n2. Our
empirical evaluations verify that our algorithm (a) outperforms
the best known link-update algorithm [1], and (b) runs much
faster than its batch counterpart when link updates are small.

I. INTRODUCTION

With many recent eye-catching advances of the Internet,
link analysis has become a common and important tool for
web data management. Due to the proliferative applications
(e.g., link prediction, recommender systems, citation analysis),
a surge of link-based similarity measures have come into play.
For instance, Brin and Page [2] proposed a very successful
relevance metric called Google PageRank to rank web pages.
Jeh and Widom [3] introduced a novel measure, SimRank, to
assess structural similarity between nodes based on hyperlinks.
Sun et al. [4] invented PathSim to quantify node proximity for
heterogeneous graphs. In these emerging similarity measures,
SimRank has stood out as an arresting one over the last decade,
due to its succinct and iterative philosophy that “two nodes are
similar if they are referenced by similar nodes”, coupled with
the base case that “every node is maximally similar to itself”.
This recursion not only allows SimRank to capture the global
structure of the graph, but also equips SimRank with appealing
mathematical insight that has inspired research in recent years.
For example, Fogaras and Rácz [5] interpreted SimRank as the
first meeting time of the coalescing path-pair random walks.
Li et al. [1] harnessed an elegant matrix equation to depict the
closed form of SimRank.

Nevertheless, the batch computation of SimRank is costly:
O(Kd′n2) time for all node-pairs [6], where K is the number

of iterations, and d′ ≤ d (d is the average graph in-degree).
In general, real graphs are often large, with links constantly
evolving with minor changes. This is particularly evident in
e.g., co-citation networks, web graphs, and social networks.
As a statistical example [7], there are 5%–10% links updated
every week in a web graph. It is rather expensive to reassess
similarities for all pairs of nodes from scratch when the graph
is updated. Fortunately, we observe that when link updates are
small, the affected areas for SimRank updates are often small
as well. With this comes the need for incremental algorithms
computing changes to SimRank in response to link updates,
to skip unnecessary recomputations. Hence, we investigate the
following problem in this paper.
Problem (INCREMENTAL SIMRANK COMPUTATION)
Given a graph G, the similarities S for G, the link changes

∆G 1 to G, and the damping factor C ∈ (0, 1).
Compute the changes ∆S to the similarities S.

In contrast with the work on batch SimRank computation,
the study on incremental SimRank for link updates is limited.
Indeed, due to the recursive nature of SimRank, it is hard to
identify “affected areas” for incrementally updating SimRank.
To the best of our knowledge, there is only one work [1] by Li
et al. who gave a pioneering method for finding the SimRank
changes in response to link updates. Their idea is to factorize
the backward transition matrix Q 2 of the original graph into
U ·Σ ·VT 3 via the singular value decomposition (SVD) first,
and then incrementally estimate the updated matrices of U, Σ,
VT for link changes at the expense of exactness. As a result,
updating the similarities of all node-pairs entails O(r4n2) time
without guaranteed accuracy, where r (≤ n) is the target rank
of the low-rank approximation4, which is not always negligibly
small in practice, as illustrated in the following example.

Example 1. Fig. 1 is a citation graph G (a fraction of DBLP)
where each edge depicts a reference from one paper to another.
Assume G is updated by adding an edge (i, j), denoted by ∆G
(see the dash arrow). Using the damping factor C = 0.8 5, we
want to compute SimRank scores in the new graph G ∪∆G.
The existing method by Li et al. (see Algorithm 3 in [1]) first
decomposes the old Q = U ·Σ ·VT as a precomputation step,
then, when edge (i, j) is added, it incrementally updates the
old U,Σ,VT , and utilizes their updated versions to obtain

1∆G consists of a sequence of edges to be inserted/deleted.
2In the notation of [1], the backward transition matrix Q is denoted as W̃,

which is the row-normalized transpose of the adjacency matrix.
3We use XT (instead of X̃ in [1]) to denote the transpose of matrix X.
4According to [1], using our notations, r ≤ rank(Σ + UT · ∆Q · V),

where ∆Q is the changes to Q for link updates.
5According to [3], the damping factor C is empirically set around 0.6–0.8,

which indicates the rate of decay as similarity flows across edges.

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (excluding

edge (i, j))

inserted edge
(i, j)

Node-Pair
in G in G ∪∆G

sim simtrue simLi et al.

(a, b) 0.075 0.062 0.073
(a, d) 0.000 0.006 0.002
(i, f) 0.246 0.246 0.246
(k, g) 0.128 0.128 0.128
(k, h) 0.288 0.288 0.288
(j, f) 0.206 0.138 0.206
(m, l) 0.160 0.160 0.160
(j, b) 0.000 0.030 0.001

Fig. 1: Compute SimRank incrementally as edge (i, j) is added

the new SimRank scores in G∪∆G. The results are shown in
Column ‘simLi et al.’ of the table. For comparison, we also use
a batch algorithm [6] to compute the “true” SimRank scores
in G ∪ ∆G from scratch, as illustrated in Column ‘simtrue’.
It can be noticed that for several node-pairs (not highlighted
in gray), the similarities obtained by Li et al.’s incremental
method [1] are different from the “true” SimRank scores even
if the lossless SVD is used 6 during the process of updating
U,Σ,VT , that is, Li et al. ’s incremental approach [1] is
inherently approximate. In fact, as will be rigorously explained
in Section IV, their incremental strategy may miss some eigen-
information whenever rank(Q) < n.

We also observe that the target rank r for the SVD of the
matrix C 7 may not be chosen to be negligibly smaller than n.
As an example, in Column ‘simLi et al.’ of Fig. 1, r is chosen
to be rank(C) = 9 for the lossless SVD of C. Although
r = 9 is not negligibly smaller than n = 15, the accuracy
of ‘simLi et al.’ is still undesirable as compared with ‘simtrue’,
not to mention choosing r < 9. �

Example 1 tells that Li et al.’s incremental method [1] is
approximate, and the O(r4n2) time for updating all node-pair
scores might be costly, as r is not always much smaller than n.
Inspired by this, we propose a novel fast (exact8) algorithm for
incrementally computing SimRank on link-evolving graphs.
Instead of incrementally finding the changes to the SVD of Q
for computing new similarities, our method can cope with the
dynamic nature of link updates, by precomputing SimRank on
the old entire graph once via a batch algorithm first, and then
incrementally finding SimRank updates ∆S w.r.t. link updates.
Moreover, as links are often updated with small changes, not
all node-pair similarities need to be updated. As an example in
the table of Fig. 1, many node-pair similarities (highlighted in
gray) remain unchanged when edge (i, j) is added. However,
it is a grand challenge to identify the “affected areas” of ∆S,
as SimRank is defined in a recursive fashion. To resolve this
problem, we formulate ∆S as an aggregation of similarities
based on incoming paths. There are opportunities to find its
“affected areas” by detecting the changes in these paths.
Contributions. Our main contributions are summarized below.

6A rank-α SVD of the matrix X ∈ Rn×n is a factorization of the form
Xα = U ·Σ ·VT , where U,V ∈ Rn×α are column-orthonormal matrices,
and Σ ∈ Rα×α is a diagonal matrix, α is called the target rank of the SVD,
which is given by the user.

If α = rank(X), then Xα = X, and we call it the lossless SVD of X.
If α < rank(X), then ∥X−Xα∥2 gives the least square estimate error,

and we call it the low-rank SVD of X.
7As defined in [1], r is the target rank for the SVD of the auxiliary matrix

C , Σ+UT ·∆Q ·V, where ∆Q is the changes to Q for link updates.
8Here, the “exactness” of our iterative algorithm means that it can converge

to the exact SimRank solution as the number of iterations increases.

• We characterize the SimRank update matrix ∆S w.r.t. ev-
ery link update via a rank-one Sylvester matrix equation.
In light of this, we devise a fast incremental algorithm that
can update similarities of all n2 node-pairs in O(Kn2)
time for K iterations. (Section V-A)

• We also propose an effective pruning strategy to identify
the “affected areas” of ∆S to skip unnecessary similarity
recomputations, without loss of exactness. This enables a
further speedup in the incremental SimRank computation,
which is in O(K(nd + |AFF|)) time, where d is the
average in-degree of the old graph, and |AFF| (≤ n2)
is the size of “affected areas”, in practice, |AFF| ≪ n2.
(Section V-B)

• We conduct extensive experiments on real and synthetic
datasets to demonstrate that our algorithm (a) consistently
outperforms the best known link-incremental algorithm
[1], from several times to over one order of magnitude,
and (b) runs much faster than the batch counterpart [6]
when link updates are small. (Section VI)

II. RELATED WORK

SimRank is arguably one of the most appealing link-based
similarity measures in a graph. Recent results on SimRank
computation can be distinguished into two broad categories:
(i) incremental SimRank on dynamic graphs (e.g., [1], [8]),
and (ii) batch SimRank on static graphs (e.g., [6], [9]–[13]).

A. Incremental Algorithm
Incremental computation is useful as real graphs are often

updated with small changes. However, few results are known
about incremental SimRank computation, much less than their
batch counterparts (e.g., [5], [6], [9]–[15]). Generally, there
are two types of updates for dynamic graphs: (i) link up-
dates, and (ii) node updates. About link-incremental SimRank
algorithms, we are merely aware of [1] by Li et al. who
gave an excellent matrix representation of SimRank, and was
the first to show a SVD method for incrementally updating
similarities of all node-pairs in O(r4n2) time 9, where r (≤ n)
is the target rank of the low-rank approximation. However,
(i) their incremental approach is inherently inexact, without
guaranteed accuracy. It may miss some eigen-information
(as proved in Section IV) even though r is chosen to be
exactly the rank (instead of low-rank) of the target matrix
for the lossless SVD. (ii) In practice, r is not much smaller
than n for attaining the desirable accuracy. This may lead
to prohibitively expensive updating costs for [1] since its
time complexity O(r4n2) is quartic w.r.t. r. In comparison,
our work adopts a completely different framework from [1].
Instead of incrementally updating SVD [1], we characterize the
changes to SimRank in response to each link update as a rank-
one Sylvester equation first, and then exploit the link structure
to prune “unaffected areas” for speeding up the incremental
computation of SimRank, without loss of exactness, which
only needs constant time (independent of r) to incrementally
compute every node-pair similarity for each link update.

9According to the proof of Lemma 2 in [1], the time is actually O(r4n2),
though, the statement of Lemma 2 says “it is bounded by O(n2)”. Observing
that r ≪ n is not often the case, we do not explicitly omit r4 in O(⋆) here.

2

Another interesting piece of work is due to He et al. [8],
who devised the parallel computation of SimRank on digraphs,
by leveraging the iterative aggregation strategy. Indeed, the
parallel computing technique in [8] can be regarded as an
efficient node-incremental updating framework for SimRank.
It differs from this work in that [8] improves the efficiency by
reordering and parallelizing the first-order Markov chain for
node updates on GPU, instead of capturing the “unaffected
areas” of SimRank w.r.t. link updates, whereas our methods
utilize pruning rules to eliminate unnecessary recomputations
for links updates on CPU via a rank-one Sylvestor equation.

There has also been work on the incremental computations
for other hyperlink-based relevance measures (e.g., [16]–[19]).
Desikan et al. [16] proposed an efficient incremental PageRank
algorithm for node updating. Their underlying principle is
based on the first-order Markov model. Banhmani et al. [17]
utilized the Monte Carlo method for incrementally computing
Personalized PageRank. Sarma et al. [18] gave an excellent
exposition of concatenating the short random walks for esti-
mating PageRank with provable accuracy on graph streams.
All of these incremental methods are probabilistic in nature,
with the focus on node ranking, and hence cannot be directly
applied in SimRank node-pair scoring. Fujiwara et al. [19]
proposed K-dash for finding top-k highest Random Walk with
Restart (RWR) proximity nodes for a given query, which in-
volves a strategy to incrementally estimate proximity bounds.
However, their incremental process is approximate.

B. Batch SimRank Computation

In contrast to the incremental algorithm, the batch SimRank
computation has been well-studied on static graphs. Recent
results on batch SimRank can be mainly categorized into (i)
deterministic computation (e.g., [1], [3], [6], [9], [13]), and (ii)
probabilistic estimation (e.g., [5], [10]–[12]). The deterministic
methods may obtain similarities of high accuracy, but the time
complexity is less desirable than the probabilistic approaches.

For deterministic methods, Jeh and Widom [3] are the
first to propose an iterative paradigm for SimRank, entailing
O(Kd2n2) time for K iterations, where d is the average in-
degree. Later, Lizorkin et al. [13] utilized the partial sums
memoization to speed up SimRank computation to O(Kdn2).
Li et al. [1] proposed a novel non-iterative matrix formula
for SimRank. Apart from the incremental SimRank requiring
O(r4n2) time, they also used a SVD method for computing
batch SimRank in O(α4n2) time, where α is the target rank of
matrix Q. Most recently, Yu et al. [6] have further improved
SimRank computation to O(Kd′n2) time (with d′ ≤ d) via a
fine-grained memoization to share the common parts among
different partial sums. Fujiwara et al. [9] exploited the matrix
form of [1] to find the top-k similar nodes in O(n) time.

For probabilistic approaches, Fogaras and Rácz [11] pro-
posed P-SimRank in linear time to estimate s(a, b) from the
probability that two random surfers, starting from a and b, will
finally meet at a node. In [5], the lower bounds are further
analyzed for the accuracy of P-SimRank on large graphs.
Li et al. [10] harnessed the random walks to compute local
SimRank for a single node-pair. Lee et al. [12] deployed the
Monte Carlo method to find top-k SimRank node-pairs.

III. BACKGROUND OF SIMRANK

In this section, we briefly revisit the SimRank background.
Intuitively, the central theme of SimRank is that “two nodes
are similar if their incoming neighbors are themselves similar”.
Based on this idea, there have emerged two forms of SimRank:
iterative form (e.g., [3], [13]), and matrix form (e.g., [1], [8]).
(1) Iterative Form of SimRank. Given a digraph G = (V,E)
with a vertex set V and an edge set E, the SimRank similarity
between two nodes a and b, denoted by s(a, b), is defined as
(i) s(a, b) = 0, if I(a) = ∅ or I(b) = ∅; (ii) otherwise,

s(a, b) =

{
1, a = b;

C
|I(a)||I(b)|

∑
j∈I(b)

∑
i∈I(a) s(i, j), a ̸= b.

(1)

where C ∈ (0, 1) is a damping factor, I (a) is the in-neighbor
set of node a, and |I(a)| is the cardinality of I(a).

The exact s(a, b) in Eq.(1) can be iteratively reached as
s0(a, b) =

{
1, a=b;
0, a ̸=b. ; sk(a, b) = 0, if I (a) = ∅ or I (b) = ∅,

for k = 1, 2, · · · , otherwise,

sk(a, b) =

{
1, a = b;

C
|I(a)||I(b)|

∑
j∈I(b)

∑
i∈I(a) sk−1(i, j), a ̸= b.

The resulting sequence {sk(a, b)}∞k=0 converges to s(a, b).
(2) Matrix Form of SimRank. In matrix notations, SimRank
can be formulated as follows.

S = C · (Q · S ·QT) + (1− C) · In, (2)

where S is the similarity matrix whose entry [S]i,j denotes the
similarity score s(i, j), Q is the backward transition matrix
whose entry [Q]i,j = 1/|I(i)| if there is an edge from j to i,
and 0 otherwise, and In is an n× n identity matrix.

The notation (⋆)
T denotes the matrix transpose.

The consistency of the two forms is discussed in [1].
In this paper, for ease of presentation, our incremental tech-

niques are mainly based on the matrix form [1] of SimRank.
The similar incremental paradigm can be ported to computing
the iterative form [3] of SimRank.

IV. A FLY IN THE OINTMENT IN [1]
In this section, we provide theoretical analysis to show that

Li et al.’s incremental approach [1] is approximate in nature,
which might miss some eigen-information even if the lossless
SVD is utilized for computing SimRank.

The existing incremental method [1] computes SimRank by
expressing similarity matrix S in terms of matrices U,Σ,V,
where U,Σ,V are the decomposed matrices of Q via SVD:

Q = U ·Σ ·VT . (3)

Then, when links are changed, [1] incrementally computes the
new SimRank matrix S̃ by updating the old U,Σ,V as

Ũ = U ·UC, Σ̃ = ΣC, Ṽ = V ·VC,
10 (4)

where UC,ΣC,VC in Eq.(4) are the decomposed matrices
of the auxiliary matrix C , Σ+UT ·∆Q ·V via SVD, i.e.,

C = UC ·ΣC ·VC
T , (5)

10In the sequel, we abuse a tilde to denote the updated version of a matrix,
e.g., Ũ is the updated matrix of old U after link updates.

3

and ∆Q is the changes to Q in response to link updates.
However, in the above process, we observe that using Eq.(4)

to update the old U,Σ,V may miss some eigen-information.
The main problem in [1] is that the derivation of Eq.(4) rests
on the assumption that

U ·UT = V ·VT = In. (6)

Unfortunately, Eq.(6) does not hold (unless Q is a full-rank
matrix, i.e., rank(Q) = n) because in the case of rank(Q) < n,
even a “perfect” (lossless) SVD of Q via Eq.(3) would produce
n×α rectangular matrices U and V with α = rank(Q) < n.
Thus, rank(U ·UT) = α < n = rank(In), which implies that
U ·UT ̸= In. Similarly, V · VT ̸= In when rank(Q) < n.
Hence, Eq.(6) is not always true.

Example 2. Consider the matrix Q = [0 1
0 0], and its lossless

SVD: Q = U · Σ ·VT with U = [10] , Σ = [1], V = [01].
One can readily verify that

U ·UT = [10] · [1 0] = [1 0
0 0] ̸= [1 0

0 1] = In (n = 2),

whereas

UT ·U = [1 0] · [10] = 1 = Iα
11 (α = rank(Q) = 1).

Hence, when Q is not full-rank, Eq.(6) does not always hold,
but one can prove that the following identity always holds:

UT ·U = VT ·V = Iα

since the SVD ensures that U and V are column-orthonormal
matrices, i.e., every two column-vectors, say xi and xj of U
(resp. V) satisfy xi

T · xj =
{

1, i=j;
0, i̸=j. �

To clarify that Eq.(6) is involved in the derivation of Eq.(4),
let us briefly recall from [1] the 4 steps for obtaining Eq.(4),
and the problem lies in the last step.

STEP 1. Initially, when links are changed, the old Q is
updated to new Q̃ = Q+∆Q. Replacing Q by Eq.(3) yields

Q̃ = U ·Σ ·VT +∆Q. (7)

STEP 2. Premultiply by UT and postmultiply by V on both
sides of Eq.(7), and use the property UT ·U = VT ·V = Iα.12

It follows that

UT · Q̃ ·V = Σ+UT ·∆Q ·V. (8)

STEP 3. Let C be the right-hand side of Eq.(8). Applying
Eq.(5) to Eq.(8) yields

UT · Q̃ ·V = UC ·ΣC ·VC
T . (9)

STEP 4. Li et al. [1] attempted to premultiply by U and
postmultiply by VT on both sides of Eq.(9) first, and then
rested on the assumption of Eq.(6) to obtain

U ·UT︸ ︷︷ ︸
?= In

·Q̃ ·V ·VT︸ ︷︷ ︸
?= In

= (U ·UC)︸ ︷︷ ︸
,Ũ

· ΣC︸︷︷︸
,Σ̃

· (VC
T ·VT)︸ ︷︷ ︸
,ṼT

, (10)

which is the result of Eq.(4).

11The notation Iα denotes the α× α identity matrix.
12As mentioned in Example 2, since U ∈ Rn×α is column-orthonormal

(not row-orthonormal), it follows that UT ·U = Iα, whereas U ·UT ̸= In.

However, the problem lies in STEP 4. As mentioned before,
Eq.(6) does not hold when rank(Q) < n. That is, for Eq.(10),
Q̃ ̸= Ũ · Σ̃ · ṼT . Consequently, updating the old U,Σ,V via
Eq.(4) may produce an error (up to ∥In−U·UT ∥2 = 1, which
is not practically small) in incrementally “approximating” S̃.

Example 3. Consider the old Q and its SVD in Example 2.
Suppose there is an added edge, associated with ∆Q = [0 0

1 0].
Li et al. [1] first computes the auxiliary matrix C as

C , Σ+UT ·∆Q ·V = [1] + [1 0] · [0 0
1 0] · [01] = [1].

Then, the matrix C is decomposed via Eq.(5) into

C = UC ·ΣC ·VC
T with UC = ΣC = VC = [1].

Finally, Li et al. [1] update the new SVD of Q̃ via Eq.(4) as

Ũ = U ·UC = [10] , Σ̃ = ΣC = [1], Ṽ = V ·VC = [01] .

However, one can readily verify that

Ũ · Σ̃ · ṼT = [0 1
0 0] ̸= [0 1

1 0] = Q+∆Q = Q̃.

In comparison, a “true” SVD of Q̃ should be

Q̃ = Û · Σ̂ · V̂T with Û = [0 1
1 0] , Σ̂ = V̂ = [1 0

0 1] .

This suggests that Li et al.’s incremental way [1] of updating
U,Σ,V is approximate (e.g., Ũ = [10], as compared with
its “true” version Û = [0 1

1 0], misses the eigenvector [01]).
Worse still, the approximation error is not small in practice
as ∥Q̃− Ũ · Σ̃ · ṼT ∥2 = ∥ [0 1

1 0]− [0 1
0 0] ∥2 = 1. �

Our analysis tells that Eq.(6) holds only when (i) Q is full-
rank, and (ii) the SVD of Q is lossless (n = rank(Q) = α).
Only in this case, Li et al.’s incremental method [1] produces
exact SimRank, which does not miss any eigen-information.
However, the time complexity O(r4n2) of [1] would become
O(n6), which is rather expensive. In practice, as evidenced by
our statistical experiments on Stanford Large Network Dataset
Collection (SNAP) 13, most real-life graphs are not full-rank,
which is also in part demonstrated by our evaluations in Fig.2b.
Thus, [1] produces the approximate solution in most cases.

V. OUR INCREMENTAL SOLUTION

We now propose our incremental techniques for computing
SimRank, with the focus on handling unit update (i.e., a
single edge insertion or deletion). Since batch update (i.e., a
list of link insertions and deletions mixed together) can be
decomposed into a sequence of unit updates, unit update plays
a vital role in our incremental method.

The main idea of our solution is based on two methods.
(i) We first show that SimRank update matrix ∆S ∈ Rn×n

can be characterized as a rank-one Sylvester matrix equation14.
By leveraging the rank-one structure of the matrix, we provide
a novel efficient paradigm for incrementally computing ∆S,

13http://snap.stanford.edu/data/
14Given the matrices A,B,C ∈ Rn×n, the Sylvester matrix equation in

terms of X ∈ Rn×n takes the form: X = A · X · B + C. When C is a
rank-α (≤ n) matrix, we call it the rank-α Sylvester equation.

4

which only involves matrix-vector and vector-vector multipli-
cations, as opposed to matrix-matrix multiplications to directly
compute the new SimRank matrix S̃.

(ii) In light of our representation of ∆S, we then identify
the “affected areas” of ∆S in response to link update ∆Q,
and devise an effective pruning strategy to skip unnecessary
similarity recomputations for link updates.

Before detailing our two methods in the subsections below,
we introduce the following notations. (i) ei denotes the n× 1
unit vector with a 1 in the i-th entry and 0s in other entries.
(ii) di denotes the in-degree of the node i in the old graph G.
(iii) For a matrix X, (a) [X]i,j denotes the (i, j)-entry of X,
(b) [X]i,⋆ the i-th row of X, (c) [X]⋆,j the j-th column of X.

A. Characterizing ∆S via Rank-One Sylvester Equation

We first give the big picture, followed by rigorous proofs.
Main Idea. For every edge (i, j) update, we observe that
∆Q is a rank-one matrix, i.e., there exist two column vectors
u,v ∈ Rn×1 such that ∆Q ∈ Rn×n can be decomposed into
the outer product15 of u and v as follows:

∆Q = u · vT .16 (11)

Based on Eq.(11), we then have an opportunity to efficiently
compute ∆S, by characterizing it as

∆S = M+MT , (12)

where the auxiliary matrix M ∈ Rn×n satisfies the following
rank-one Sylvester equation:

M = C · Q̃ ·M · Q̃T + C · u ·wT . (13)

Here, u,w are two column vectors: u is derived from Eq.(11),
and w can be represented in terms of the old Q and S (we will
provide their exact expressions later after some discussions);
and Q̃ = Q+∆Q.

Thus, computing ∆S boils down to solving M in Eq.(13).
The main advantage of solving M via Eq.(13), as compared
to directly computing the new scores S̃ via SimRank formula

S̃ = C · Q̃ · S̃ · Q̃T + (1− C) · In, (14)

is the high computational efficiency. More specifically, solving
S̃ via Eq.(14) needs expensive matrix-matrix multiplications,
whereas computing M via Eq.(13) involves only matrix-vector
and vector-vector multiplications, which is a substantial im-
provement achieved by our observation that (C·uwT) ∈ Rn×n

in Eq.(13) is a rank-1 matrix, as opposed to the (full) rank-n
matrix (1 − C) · In in Eq.(14). To further elaborate on this,
we readily convert the recursive forms of Eqs.(13) and (14),
respectively, into the following series forms: 17

M =
∑∞

k=0
Ck+1 · Q̃k · u ·wT · (Q̃T)

k
, (15)

S̃ = (1− C) ·
∑∞

k=0
Ck · Q̃k · In · (Q̃T)

k
. (16)

15The outer product of the column vectors x,y ∈ Rn×1 is an n×n rank-1
matrix x · yT , in contrast with the inner product xT · y, which is a scalar.

16The explict expression of u and v will be given after a few discussions.
17One can readily verify that if X =

∑∞
k=0 A

k ·C ·Bk is a convergent
matrix series, it is the solution of the Sylvester equation X = A ·X ·B+C.

To compute the sums in Eq.(15) for M, a conventional way
is to memoize M0 ← C ·u ·wT first (where the intermediate
result M0 is an n× n matrix), and then iterate as

Mk+1 ←M0 + C · Q̃ ·Mk · Q̃T , (k = 0, 1, 2, · · ·)

involving costly matrix-matrix multiplications (e.g., Q̃ ·Mk).
In contrast, our trick takes advantage of the rank-one structure
of u·wT to compute the sums in Eq.(15) for M, by converting
the conventional matrix-matrix multiplications Q̃ ·(uwT) ·Q̃T

into matrix-vector and vector-vector operations (Q̃u)·(Q̃w)
T

.
More specifically, by leveraging two auxiliary vectors ξk,ηk,
we adopt the following iterative paradigm to compute Eq.(15):

initialize ξ0 ← C ·u, η0 ← w, M0 ← C ·u·wT

for k = 0, 1, 2, · · ·
ξk+1 ← C · Q̃ · ξk, ηk+1 ← Q̃ · ηk

Mk+1 ← ξk+1 · ηT
k+1 +Mk

which only requires matrix-vector multiplications (e.g., Q̃ ·ξk)
and vector-vector multiplications (e.g., ξk+1 · ηT

k+1), without
the need to perform matrix-matrix multiplications.

It is worth mentioning that our above trick is solely suitable
for efficiently computing M in Eq.(15), but not applicable to
accelerating S̃ computation in Eq.(16). This is because In is a
(full) rank-n matrix that cannot be decomposed into the outer
product of two vectors. Thus, our trick is particularly tailored
for improving the incremental computation of ∆S via Eq.(13),
rather than the batch computation of S̃ via Eq.(14).

Finding u,v,w for Eqs.(11) and (13). The challenging tasks
in characterizing ∆S for our incremental method are (i) to find
the vectors u,v in Eq.(11) for the rank-one decomposition of
∆Q, and (ii) to express the vector w in Eq.(13) in terms of
the old matrices Q and S for guaranteeing that Eq.(13) is a
rank-one Sylvester equation.

To find u and v in Eq.(11), we show the following theorem.

Theorem 1. If there is an edge (i, j) inserted into G, then the
change in Q is an n×n rank-one matrix, i.e., ∆Q = u ·vT ,
where

u =

{
ej (dj = 0)
1

dj+1
ej (dj > 0) , v =

{
ei (dj = 0)

ei − [Q]Tj,⋆ (dj > 0)
(17)

If there is an edge (i, j) deleted from G, then the change
in Q can be decomposed as ∆Q = u · vT , where

u =

{
ej (dj = 1)
1

dj−1
ej (dj > 1) , v =

{
−ei (dj = 1)

[Q]Tj,⋆ − ei (dj > 1)
(18)

Proof: Due to space limitations, we shall only prove the
insertion case. A similar proof holds for the deletion case.

(i) If dj = 0, [Q]j,⋆ = 0. Thus, for the inserted edge (i, j),
[Q]j,i will be updated from 0 to 1, i.e., ∆Q = eje

T
i .

(ii) If dj > 0, all the nonzero entries in [Q]j,⋆ are 1
dj

. Thus,
for the inserted edge (i, j), the old Q can be converted into the
new Q̃ via 2 steps. (a) We change all nonzero entries of [Q]j,⋆
from 1

dj
to 1

dj+1 , by multiplying dj

dj+1 on the j-th row of Q.
Recall from the elementary matrix property that multiplying
the j-th row of a matrix by α ̸= 0 can be accomplished by
using I− (1−α)eje

T
j as a left-hand multiplier on the matrix.

5

Hence, after this step, Q is converted into the matrix Q′, i.e.,

Q′ = (I− (1− dj

dj+1)eje
T
j) ·Q = Q− 1

dj+1ej · [Q]j,⋆.

(b) We next update the (j, i)-entry of Q′ from 0 to 1
dj+1 ,

which yields the new Q̃, i.e.,

Q̃ = Q′ + 1
dj+1eje

T
i = Q− 1

dj+1ej · ([Q]j,⋆ − eTi).

Since ∆Q = Q̃−Q, it follows that

∆Q = u · vT , with u := 1
dj+1ej , vT := (eTi − [Q]j,⋆).

which proves the case dj > 0 in Eq.(17).

Example 4. Consider the graph G in Fig. 1. Suppose there
is an edge (i, j) inserted into G. As in the old G, dj = 2 > 0
and

[Q]j,⋆ =
[(h) (k)

0 · · · 0 1
2 0 0 1

2 0 · · · 0
]
∈ R1×15,

according to Theorem 1, the change in Q is a 15× 15 rank-
one matrix, which can be decomposed as ∆Q = u · vT with

u = 1
dj+1ej =

1
3ej =

[(j)

0 · · · 0 1
3 0 · · · 0

]
T ∈ R15×1,

v = ei − [Q]
T
j,⋆ =

[(h) (i) (j) (k)

0 · · · 0 − 1
2 1 0 −1

2 0 · · · 0
]
T ∈ R15×1. �

For every link update, Theorem 1 suggests that the change
∆Q has a very special structure — the n×n rank-one matrix.
More importantly, it finds a rank-one decomposition for ∆Q,
by expressing the vectors u and v in terms of dj and [Q]

T
j,⋆.

It should be noted that such a rank-one decomposition is not
unique, since for any scalar λ ̸= 0, the vectors u′ , λ · u
and v′ , v

λ can be another rank-one decomposition for ∆Q.
However, for any u and v that satisfy Eq.(11), there exists a
vector w such that Eq.(13) is a rank-one Sylvester equation.

Capitalizing on Theorem 1, we are now ready to determine
the expression of w in Eq.(13) in terms of the old Q and S.

Theorem 2. Suppose there is an edge (i, j) updated in G. Let
u and v be the rank-one decomposition of ∆Q in Theorem 1.
Then, (i) there exists a vector w = y + λ

2u with

y = Q · z, λ = vT · z, z = S · v (19)

such that Eq.(13) is the rank-one Sylvester equation.
(ii) Utilizing the solution M to Eq.(13), the SimRank update

matrix ∆S can be represented by Eq.(12).

Proof: We show this by following the two steps:
(a) We find a recursion for the SimRank update matrix ∆S.

To characterize ∆S in terms of the old Q and S, we subtract
Eq.(2) from Eq.(14), and apply ∆S = S̃− S, yielding

∆S = C · Q̃ · S · Q̃T + C · Q̃ ·∆S · Q̃T − C ·Q · S ·QT . (20)

By Theorem 1, there exist two vectors u and v such that

Q̃ = Q+∆Q = Q+ u · vT . (21)

Then, we plug Eq.(21) into the term C ·Q̃·S·Q̃T of Eq.(20),
and simplify the result into

∆S = C · Q̃ ·∆S · Q̃T + C ·T (22)

with T = u(QSv)
T
+ (QSv)uT + (vTSv)uuT . (23)

We can readily verify that matrix T is symmetric (T = TT).
Moreover, we note that T is the sum of two rank-one matrices.
This can be verified by letting z , S·v, y , Q·z, λ , vT ·z.

Then, utilizing the auxiliary vectors z,y and the scalar λ,
Eq.(23) can be simplified into

T = u ·wT +w · uT , with w = y + λ
2u. (24)

(b) We next convert the recursion of ∆S into the series form.
One can readily verify that the solution X to the matrix

equation X = A ·X ·B+C has the following closed form:

X = A ·X ·B+C ⇔ X =
∑∞

k=0
Ak ·C ·Bk (25)

Thus, based on Eq.(25), the recursive definition of ∆S in
Eq.(22) naturally leads itself to the following series form:

∆S =
∑∞

k=0
Ck+1 · Q̃k ·T · (Q̃T)

k
.

Combining this with Eq.(24) yields

∆S =
∑∞

k=0
Ck+1 · Q̃k ·

(
u ·wT +w · uT

)
· (Q̃T)

k

= M+MT with M being defined in Eq.(15).

In light of Eq.(25), the series form of M in Eq.(15) satisfies
the rank-one Sylvester recursive form of Eq.(13).

Theorem 2 obtains an exact expression for w in Eq.(13).
To be precise, given Q and S in the old graph G, and an edge
(i, j) updated to G, one can find u and v via Theorem 1 first,
and then resort to Theorem 2 to compute w from u,v,Q,S.
Because of the existence of the vector w, the Sylvester form
of Eq.(13) being rank-one can be guaranteed. Henceforth, our
aforementioned trick can be deployed to iteratively compute
M in Eq.(15), needing no matrix-matrix multiplications.

Computing ∆S. Determining w via Theorem 2 is intended to
speed up the incremental computation of ∆S. Indeed, for each
link update, the whole process of computing ∆S in Eq.(12),
given Q and S, needs no matrix-matrix multiplications at all.
Specifically, the computation of ∆S consists of two phases:
(i) Given Q and S, we compute w via Theorems 1 and 2.
This phase merely includes the matrix-vector multiplications
(e.g., Qz,Sv), the inner product of vectors (e.g., vT z), and
the vector scaling and additions, i.e., SAXPY (e.g., y + λ

2u).
(ii) Given w, we compute M via Eq.(15). In this phase, our
novel iterative paradigm for Eq.(15), as mentioned earlier, can
circumvent the matrix-matrix multiplications. Thus, taking (i)
and (ii) together, it suffices to harness only matrix-vector and
vector-vector operations in whole process of computing ∆S.

Leveraging Theorems 1 and 2, we are able to characterize
the SimRank change ∆S, based on the following theorem.

Theorem 3. When there is an edge (i, j) updated in G, then
the SimRank change ∆S can be characterized as

∆S = M+MT with

M =
∑∞

k=0
Ck+1 · Q̃k · ej · γT · (Q̃T)

k
, (26)

where the auxiliary vector γ is obtained as follows:

6

(i) For the edge insertion, γ ={
Q · [S]⋆,i +

1
2 [S]i,i · ej (dj = 0)

1
(dj+1)

(
Q · [S]⋆,i −

1
C · [S]⋆,j + (λ

2(dj+1) +
1
C − 1) · ej

)
(dj > 0)

(27)

(ii) For the edge deletion, γ ={
−Q · [S]⋆,i +

1
2 [S]i,i · ej (dj = 1)

1
(dj−1)

(
1
C · [S]⋆,j −Q · [S]⋆,i + (λ

2(dj−1) −
1
C + 1) · ej

)
(dj > 1)

(28)

and the scalar λ can be derived from

λ = [S]i,i +
1
C · [S]j,j − 2 · [Q]j,⋆ · [S]⋆,i −

1
C + 1. (29)

Proof: For space interests, we merely show insertion case.
(i) When dj = 0, by Eq.(17) in Theorem 1, v = ei, u = ej .

Plugging them into Eq.(19) gets z = [S]⋆,i, y = Q · [S]⋆,i,
λ = [S]i,i. Thus, by virtue of w = y+ λ

2u in Theorem 2, we
have w = Q · [S]⋆,i +

1
2 [S]i,i · ej . Coupling this with Eq.(15),

u = ej , and Theorem 2 proves the case dj = 0 in Eq.(27).
(ii) When dj > 0, Eq.(17) in Theorem 1 indicates that

v = ei − [Q]Tj,⋆, u = 1
dj+1 · ej . (30)

Substituting these back into Eq.(19) yields

z = [S]⋆,i − S · [Q]Tj,⋆, y = Q · [S]⋆,i −Q · S · [Q]Tj,⋆,

λ = [S]i,i − 2 · [Q]j,⋆ · [S]⋆,i + [Q]j,⋆ · S · [Q]Tj,⋆.

To simplify Q · S · [Q]Tj,⋆ in y, and [Q]j,⋆ · S · [Q]Tj,⋆ in λ,
we postmultiply both sides of Eq.(2) by ej to obtain

Q · S · [Q]Tj,⋆ = 1
C · ([S]⋆,j − (1− C) · ej). (31)

We also premultiply both sides of Eq.(31) by eTj to get

[Q]j,⋆ · S · [Q]Tj,⋆ = 1
C · ([S]j,j − 1) + 1. (32)

Plugging Eqs.(31) and (32) into y and λ, respectively, and
then plugging the resulting y and λ into w = y+ λ

2u produce

w = Q · [S]⋆,i −
1
C · [S]⋆,j + (1

C + λ
2(dj+1) − 1) · ej ,

with λ = [S]i,i +
1
C · [S]j,j − 2 · [Q]j,⋆ · [S]⋆,i −

1
C + 1.

Combining this with Eqs.(15), (30) shows the case dj > 0
for Eq.(27). Finally, taking (i) and (ii) together with Theorem 2
completes the proof for the link insertion case.

For each link update, Theorem 3 provides a novel method to
compute the incremental SimRank matrix ∆S, by utilizing the
previous information of Q and S in the original graph G, as
opposed to [1] that entails the incremental SVD maintenance.
To efficiently compute ∆S via Theorem 3, two tricks are worth
mentioning. (i) We observe that, by viewing the matrix Q as
a stack of row vectors, the j-th row of the term (Q · [S]⋆,i) in
Eqs.(27) and (28) is actually the inner product [Q]j,⋆ · [S]⋆,i,
being the term in Eq.(29). Thus, the resulting [Q · [S]⋆,i]j,⋆,
once computed, can be reused to compute [Q]j,⋆ · [S]⋆,i in λ.
(ii) As suggested earlier, computing the matrix series for M
needs no matrix-matrix multiplications at all, but involves the
matrix-vector multiplications iteratively (e.g., ηk+1 ← Q̃ ·ηk).
Since Q̃ = Q+u·vT via Theorem 1, we notice that Q̃·ηk can
be computed more efficiently, with no need to memoize Q̃ in
extra memory space, as follows: Q̃·ηk = Q·ηk+(vT ·ηk)·u.

Algorithm 1: Inc-uSR (G,S,K, (i, j), C)
Input : a graph G, old similarities S for G, total #-iteration K,

the edge (i, j) updated to G, and damping factor C.
Output: the new similarities S̃ for G ∪ {(i, j)}.

1 initialize the transition matrix Q in G ;
2 dj := in-degree of node j in G ;
3 memoize w := Q · [S]⋆,i ;
4 compute λ := [S]i,i +

1
C
· [S]j,j − 2 · [w]j −

1
C
+ 1 ;

5 if edge (i, j) is to be inserted then
6 if dj = 0 then u := ej , v := ei, γ := w+ 1

2
[S]i,i · ej ;

7 else u := 1
dj+1

ej , v := ei − [Q]Tj,⋆ ;
8 γ := 1

(dj+1)

(
w− 1

C
[S]⋆,j +(λ

2(dj+1)
+ 1

C
− 1)ej

)
;

9 else if edge (i, j) is to be deleted then
10 if dj = 1 then u := ej , v := −ei, γ := 1

2
[S]i,i · ej −w;

11 else u := 1
dj−1

ej , v := [Q]Tj,⋆ − ei ;
12 γ := 1

(dj−1)

(
1
C
[S]⋆,j −w+ (λ

2(dj−1)
− 1

C
+ 1)ej

)
;

13 initialize ξ0 := C · ej , η0 := γ, M0 := C · ej · γT ;
14 for k = 0, 1, · · · ,K − 1 do
15 ξk+1 := C ·Q · ξk + C · (vT · ξk) · u ;
16 ηk+1 := Q · ηk + (vT · ηk) · u ;
17 Mk+1 := ξk+1 · ηT

k+1 +Mk ;

18 S̃ := S+MK +MT
K ;

19 return S̃ ;

Algorithm. Based on Theorem 3, we provide an incremental
SimRank algorithm, denoted as Inc-uSR, for each link update.

Given the old graph G, the old similarities S in G, the edge
(i, j) updated to G, and the damping factor C, the algorithm
incrementally computes the new similarities S̃ in G∪{(i, j)}.
It works as follows. First, it initializes the transition matrix Q
and in-degree dj of node j in G (lines 1–2). Using Q and S,
it precomputes the auxiliary vector w and scalar λ (lines 3–4).
Once computed, both w and λ are memoized for precomputing
(i) vectors u and v for a rank-one factorization of ∆Q, and
(ii) initial vector γ for subsequent Mk iterations (lines 5–12).
Then, the algorithm maintains two auxiliary vectors ξk and ηk

to iteratively compute matrix Mk (lines 13–17). The process
continues until the number of iterations reaches a given K.
Finally, the new scores S̃ are obtained by MK

18 (line 18).

Example 5. Recall the old graph G and S of G from Fig. 1.
When edge (i, j) is added, we show how Inc-uSR computes
the new S̃, which is in part depicted in Column ‘simtrue’.

Given the following information from the old S below: 19

[S]⋆,i =
[(f) (g) (h) (i) (j)

0, · · · , 0, 0.246, 0, 0, 0.590, 0.310, 0, · · · , 0
]
T ∈ R15×1,

[S]⋆,j =
[(f) (g) (h) (i) (j)

0, · · · , 0, 0.246, 0, 0, 0.310, 0.510, 0, · · · , 0
]
T ∈ R15×1,

as dj = 2, Inc-uSR first precomputes w and λ via lines 3–4:

w =
[(a) (b)

0.104, 0.139, 0, · · · , 0
]
T ∈ R15×1,

λ = 0.590 + 1
0.8 × 0.510− 2× 0− 1

0.8 + 1 = 0.978.

As an “edge insertion” operation, the vectors u and v for

18It can be proved that ∥MK −M∥max ≤ CK+1, with M in Eq.(26).
19Due to space limitations, we only show the i-th and j-th columns of S

here, which is sufficient for computing the new S̃ in G ∪ {(i, j)}.

7

a rank-one decomposition of ∆Q can be computed via line 7.
Their results are depicted in Example 4.

Utilizing w and λ, the vector γ can be obtained via line 8:

γ = 1
(2+1) ×

(
w − 1

0.8 [S]⋆,j + (λ
2×(2+1) +

1
0.8 − 1)ej

)
=

[(a) (b) (f) (i) (j)

0.035, 0.046, 0, 0, 0, −0.086 0, 0, −0.129, −0.075, 0, · · · , 0
]
T ∈ R15×1

Then, in light of γ, Inc-uSR iteratively computes Mk via
lines 13–17. After K = 10 iterations, MK is derived as

(a) (b) (c) (d) (e) (f) · · · (i) (j) (k) · · · (o)



(a) −0.005 −0.009 0 0.009 −0.009
(b) −0.004 −0.006 0 0.006 0 −0.007 0
(c) 0 0 0 0 0
(d) −0.002 −0.002 0 −0.005 0

... 0 0 0 0
(i)
(j) 0.028 0.037 0 0 −0.068 −0.104 −0.060
... 0 0 0 0

(o)

Finally, using MK and the old S, the new S̃ can be obtained
via line 18, as partly shown in Column ‘simtrue’ of Fig. 1. �
Correctness & Complexity. (i) Algorithm Inc-uSR correctly
updates the SimRank scores, which can be readily verified by
Theorems 1–3. (ii) The total time of Inc-uSR can be bounded
by O(Kn2) for updating all similarities of n2 node-pairs.20 To
be specific, Inc-uSR runs in two phases: preprocessing (lines
1–12), and incremental iterations (lines 13–19). (a) For the
preprocessing, it requires O(m) time in total (m is the number
of edges in the old G), which is dominated by computing w
(lines 3), involving the matrix-vector multiplication Q · [S]⋆,i.
The time for computing vectors u,v,γ is bounded by O(n),
which only includes vector scaling and additions, i.e., SAXPY.
(b) For the incremental iterative phase, computing ξk+1 and
ηk+1 needs O(m + n) time for each iteration (lines 15–16).
Computing Mk+1 entails O(n2) time for performing one outer
product of two vectors and one matrix addition (lines 17).
Thus, the cost of this phase is O(Kn2) time for K iterations.
Collecting (a) and (b), all n2 node-pair similarities can be
incrementally computed in O(Kn2) total time, as opposed to
the O(r4n2) time of its counterpart [1] via SVD.

B. Pruning Unnecessary Node-Pairs in ∆S

After the SimRank update matrix ∆S has been character-
ized in terms of a rank-one Sylvester equation, the pruning
techniques in this subsection can further skip the node-pairs
with unchanged similarities in ∆S (i.e., “unaffected areas”),
avoiding unnecessary score recomputations for link update.

In practice, we observe that when link updates are small,
affected areas in similarity updates ∆S are often small as well.
As demonstrated in Example 5, many entries in matrix MK

are 0s, implying that ∆S (= MK +MT
K) is a sparse matrix.

However, it is a big challenge to identify such “affected areas”
in ∆S in response to link updates. To address this problem,
we first introduce a nice property of the adjacency matrix:

Lemma 1. Let A be the adjacency matrix of G. The entry
[Ak]i,j counts the number of length-k paths from node i to j.

20In the next subsection, we shall further reduce the time complexity via a
pruning strategy to eliminate node-pairs with unchanged similarities in ∆S.

For example, [A4]i,j counts the number of the specific paths
ρ : i→ ◦ → ◦ → ◦ → j in G, with ◦ denoting any node.

Lemma 1 can be extended to count the number of “specific
paths” whose edges are not necessarily in the same direction.
For example, we can use [AATAAT]i,j to count the paths
ρ : i → ◦ ← ◦ → ◦ ← j in G, where A (resp. AT) appears
at the positions 1,3 (resp. 2,4), corresponding to the positions
of → (resp. ←) in ρ.

As Q is the weighted (i.e., row-normalized) matrix of AT ,
we can verify [Qk · (QT)

k
]i,j = 0 ⇔ [(AT)

k ·Ak]i,j = 0.
The following corollary is immediate.

Corollary 1. Given k = 0, 1, · · · , the entry [Qk · (QT)
k
]i,j

counts the weights of the specific paths whose left k edges in
“←” direction and right k edges in “→” direction as follows:

i← ◦ ← · · · ←︸ ︷︷ ︸
length k

•→ · · · → ◦ → j︸ ︷︷ ︸
length k

. (33)

Definition 1. We call the paths in Eq.(33) the symmetric in-
link paths of length 2k for node-pair (i, j).

By virtue of Eq.(25), the recursive form of SimRank Eq.(2)
naturally leads itself to the following series form:

[S]a,b = (1− C) ·
∑∞

k=0
Ck · [Qk · (QT)

k
]a,b. (34)

Capitalizing on Corollary 1, Eq.(34) provides a reinterpre-
tation of SimRank: [S]a,b is the weighted sum of all in-link
paths of length 2k (k = 0, 1, 2, · · ·) for node-pair (a, b). The
weight Ck in Eq.(34) is to reduce the contributions of in-
link paths with long lengths relative to those with short ones.
The factor (1−C) aims at normalizing [S]a,b into [0, 1] since

∥
∑∞

k=0 C
k ·Qk · (QT)

k∥
max
≤

∑∞
k=0 C

k ≤ 1
1−C .

Affected Areas in ∆S. In light of our interpretation for S
via Eq.(34), we next reinterpret the series M in Theorem 3,
with the aim to identify the “affected areas” in ∆S.

Due to space limitations, we shall mainly focus on the edge
insertion case of dj > 0. Other cases have the similar results.

By substituting Eq.(27) (the case dj > 0) back into Eq.(26),
we can readily split the series form of M into three parts:

[M]a,b = 1
dj+1

(∑∞

k=0
C

k+1 · [Q̃k
]a,j [S]i,⋆Q

T · [(Q̃T
)
k
]⋆,b︸ ︷︷ ︸

Part 1

−

−
∑∞

k=0
C

k
[Q̃

k
]a,j [S]j,⋆[(Q̃

T
)
k
]⋆,b︸ ︷︷ ︸

Part 2

+µ
∑∞

k=0
C

k+1
[Q̃

k
]a,j [(Q̃

T
)
k
]j,b︸ ︷︷ ︸

Part 3

)

with the scalar µ := λ
2(dj+1) +

1
C − 1.

By Lemma 1 and Corollary 1, when edge (i, j) is inserted
and dj > 0, Part 1 of [M]a,b tallies the weighted sum of the
following new paths for node-pair (a, b) in graph G∪{(i, j)}:

[Q̃k]a,j︷ ︸︸ ︷
a← ◦ · · · ◦ ← j︸ ︷︷ ︸

length k

⇐

[S]i,⋆︷ ︸︸ ︷
i← ◦ · · · ◦ ← • → ◦ · · · ◦ → ⋆︸ ︷︷ ︸

all symmetric in-link paths for node-pair (i,⋆)

QT︷︸︸︷→ [(Q̃T)
k
]N,b︷ ︸︸ ︷

N→ · · · ◦ → b︸ ︷︷ ︸
length k

(35)

Such paths are the concatenation of four types of sub-paths
(as depicted above) associated with four matrices, respectively,
[Q̃k]a,j , [S]i,⋆,Q

T , [(Q̃T)
k
]N,b, plus the inserted edge j ⇐ i.

When such entire concatenated paths exist in the new graph,

8

they should be accommodated for assessing the new SimRank
[S̃]a,b in response to the edge insertion (i, j) because our
reinterpretation of SimRank indicates that SimRank counts all
the symmetric in-link paths, and the entire concatenated paths
can prove to be symmetric in-link paths.

Likewise, Parts 2 and 3 of [M]a,b, respectively, tally the
weighted sum of the following new paths for node-pair (a, b):

[Q̃k]a,j︷ ︸︸ ︷
a← ◦ · · · ◦ ←︸ ︷︷ ︸

length k

j

[S]j,⋆︷ ︸︸ ︷
← ◦ · · · ◦ ← • → ◦ · · · ◦ →︸ ︷︷ ︸

all symmetric in-link paths for node-pair (j,⋆)

⋆

[(Q̃T)
k
]⋆,b︷ ︸︸ ︷

→ · · · ◦ → b︸ ︷︷ ︸
length k

(36)

[Q̃k]a,j︷ ︸︸ ︷
a← ◦ · · · ◦ ←︸ ︷︷ ︸

length k

j

[(Q̃T)
k
]j,b︷ ︸︸ ︷

→ ◦ · · · ◦ → b︸ ︷︷ ︸
length k

(37)

Indeed, when edge (i, j) is inserted, only these three kinds
of paths have extra contributions for M (therefore for ∆S).
As incremental updates in SimRank merely tally these paths,
node-pairs without having such paths could be safely pruned.
In other words, for those pruned node-pairs, the three kinds of
paths will have “zero contributions” to the changes in M in
response to edge insertion. Thus, after pruning, the remaining
node-pairs in G constitute the “affected areas” of M.

To find the “affected areas” of M, we prune the redundant
node-pairs in G, based on the following theorem.

Theorem 4. For the edge (i, j) insertion, let O(a) and Õ(a)
be the out-neighbors of node a in old G and new G∪{(i, j)},
respectively. Let Mk be the k-th iterative matrix in Line 17
of Algorithm 1, and let

F1 := {b | b ∈ O(y), ∃y, s.t. [S]i,y ̸= 0} (38)

F2 :=

{
∅ (dj = 0)
{y | [S]j,y ̸= 0} (dj > 0)

(39)

Ak × Bk :={
{j} × (F1 ∪ F2 ∪ {j}) (k = 0)

{(a, b)| a ∈ Õ(x), b ∈ Õ(y), ∃x, ∃y, s.t. [Mk−1]x,y ̸= 0} (k > 0)

(40)

Then, for every iteration k = 0, 1, · · · , the matrix Mk has
the following sparse property:

[Mk]a,b = 0 for all (a, b) /∈ (Ak × Bk) ∪ (A0 × B0).

For the edge (i, j) deletion case, all the above results hold
except that, in Eq.(39), the conditions dj = 0 and dj > 0 are,
respectively, replaced by dj = 1 and dj > 1.

Proof: We only show the edge insertion case for dj > 0,
due to space limitations. The proofs of other cases are similar.

For k = 0, it follows from Eq.(26) that [M0]a,b = [ej]a[γ]b.
Thus, ∀(a, b) /∈ A0 × B0, there are two cases: (i) a ̸= j, or
(ii) a = j, b ∈ F1

C ∩ F2
C , and b ̸= j.

For case (i), [ej]a = 0 since a ̸= j. Thus, [M0]a,b = 0. For
case (ii), [ej]a = 1 since a = j. Thus, [M0]a,b = [γ]b, where
[γ]b is the linear combinations of the 3 terms: [Q]b,⋆ · [S]⋆,i,
[S]b,j , and [ej]b, according to the case of dj > 0 in Eq.(27).

In the sequel, our goal is to show the 3 terms are all 0s. (a)
For b /∈ F1, by definition in Eq.(38), b ∈ O(y) for ∀y, we have

[S]i,y = 0. Due to symmetry, b ∈ O(y)⇔ y ∈ I(b) 21, which
implies that [S]i,y = 0 for ∀y ∈ I(b). Thus, [Q]b,⋆ · [S]⋆,i =
1

I(b)
∑

x∈I(b) [S]x,i = 0. (b) For b /∈ F2, it follows from the
case dj > 0 in Eq.(39) that [S]j,b = 0. Hence, by S symmetry,
[S]b,j = [S]j,b = 0. (c) [ej]b = 0 since b ̸= j.

Taking (a)–(c) together, it follows that [M0]a,b = 0, which
completes the proof for the case k = 0.

For k > 0, one can readily prove that the k-th iterative Mk

in Line 17 of Algorithm 1 is the first k-th partial sum of M
in Eq.(26). Thus, Mk+1 can be derived from Mk as follows:

Mk = C · Q̃ ·Mk−1 · Q̃T + C · ej · γT .

Thus, the (a, b)-component form of the above equation is

[Mk]a,b =
C

|Ĩ(a)||Ĩ(b)|

∑
x∈Ĩ(a)

∑
y∈Ĩ(b) [Mk−1]x,y + C · [ej]a · [γ]b.

To show that [Mk]a,b = 0 for (a, b) /∈ A0 × B0 ∪ Ak × Bk,
we follow the 2 steps: (i) For (a, b) /∈ A0 × B0, as proved in
the case k = 0, the term C · [ej]a[γ]b in the above equation is
obviously 0. (ii) For (a, b) /∈ Ak×Bk, by virtue of Eq.(40), a ∈
Õ(x), b ∈ Õ(y), for ∀x, y, we have [Mk−1]x,y = 0. Hence, by
symmetry, it follows that x ∈ Ĩ(a), y ∈ Ĩ(b), [Mk−1]x,y = 0.

Taking (i) and (ii) together, we conclude that [Mk]a,b = 0
for (a, b) /∈ A0 × B0 ∪ Ak × Bk.

Theorem 4 provides a pruning strategy to iteratively elimi-
nate node-pairs with a-priori zero values in Mk (thus in ∆S).
Hence, by leveraging Theorem 4, when edge (i, j) is updated,
we just need to consider node-pairs in (Ak×Bk)∪ (A0×B0)
for incrementally updating ∆S.

Intuitively, F1 in Eq.(38) captures the nodes “N” in (35). To
be specific, F1 can be obtained via 2 phases: (i) For the given
node i, we first build an intermediate set T := {y|[S]i,y ̸= 0},
which consists of nodes “⋆” in (35). (ii) For each node x ∈ T ,
we then find all out-neighbors of x in G, which produces F1,
i.e., , F1 =

∪
x∈T O(x). Analogously, the set F2 in Eq.(39), in

the case of dj > 0, consists of the nodes “⋆” depicted in (36).
When dj = 0, F2 = ∅ since the term [S]⋆,i does not appear
in the expression of γ in Eq.(27) for the case when dj = 0,
in contrast with the case dj > 0.

After obtaining F1 and F2, we can readily find A0 × B0,
according to Eq.(40). For k > 0, to iteratively derive the node-
pair set Ak×Bk, we take the following two steps: (i) we first
construct a node-pair set T1 × T2 := {(x, y)|[Mk−1]x,y ̸= 0}.
(ii) For every node x ∈ T1 (resp. y ∈ T2), we then find all
out-neighbors of x (resp. y) in G ∪ {(i, j)}, which yields Ak

(resp. Bk), i.e., Ak =
∪

x∈T1
Õ(x) and Bk =

∪
y∈T2

Õ(y).
The node selectivity of Theorem 4 hinges on ∆S sparsity.

Since real graphs are constantly updated with minor changes,
∆S is often sparse in general. Hence, a huge body of node-
pairs with zero scores in ∆S can be eliminated in practice. As
demonstrated by our experiments in Fig.2d, 76.3% paper-pairs
on DBLP can be pruned, significantly reducing unnecessary
similarity recomputations in response to link updates.

Example 6. Recall Example 5 and the old graph G in Fig. 1.
When edge (i, j) is inserted to G, according to Theorem 4,
F1 = {a, b}, F2 = {f, i, j}, A0 × B0 = {j} × {a, b, f, i, j}.

21Recall that, as mentioned before, I(a) is the in-neighbor set of node a.

9

Algorithm 2: Inc-SR (G,S,K, (i, j), C)
Input / Output: the same as Algorithm 1.

1-2 the same as Algorithm 1 ;
3 find B0 via Eq.(40) ;

memoize [w]b := [Q]b,⋆ · [S]⋆,i, for all b ∈ B0 ;
4-12 almost the same as Algorithm 1 except that the computations

of the entire vector γ in Lines 6, 8, 10, 12 are replaced by the
computations of only parts of entries in γ, respectively, e.g., in
Line 6 of Algorithm 1, “γ := w + 1

2
[S]i,i · ej” are replaced by

“[γ]b := [w]b +
1
2
[S]i,i · [ej]b, for all b ∈ B0” ;

13 set [ξ0]j := C, [η0]b := [γ]b, [M0]j,b := C · [γ]b, ∀b ∈ B0;
14 for k = 1, · · · ,K do
15 find Ak × Bk via Eq.(40) ;
16 memoize σ1 := C · (vT · ξk−1), σ2 := vT · ηk−1 ;
17 [ξk]a := C · [Q]a,⋆ · ξk−1 + σ1 · [u]a, for all a ∈ Ak ;
18 [ηk]b := [Q]b,⋆ · ηk−1 + σ2 · [u]b, for all b ∈ Bk ;
19 [Mk]a,b := [ξk]a · [ηk]b + [Mk−1]a,b, ∀(a, b) ∈ Ak ×Bk;

20 [S̃]a,b := [S]a,b + [MK]a,b + [MK]b,a, ∀(a, b) ∈ AK × BK ;
21 return S̃ ;

Hence, instead of computing the entire vector γ in Eq.(27),
we only need to compute part of its entries [γ]x for ∀x ∈ B0.

For the first iteration, since A1×B1 = {a, b}×{a, b, d, j},
then we only need to compute 18 (= 3×6) entries [M1]x,y for
∀(x, y) ∈ {a, b, j}×{a, b, d, f, i, j}, skipping the computations
of 207 (= 152 − 18) remaining entries in M1. After K = 10
iterations, many unnecessary node-pairs are pruned, as in part
highlighted in the gray rows of the table in Fig. 1. �

Algorithm. We provide a complete incremental algorithm for
computing SimRank, referred to as Inc-SR (in Algorithm 2),
by incorporating our pruning strategy into Inc-uSR.
Correctness. The algorithm Inc-SR can correctly prune the
node-pairs with a-priori zero scores in ∆S, which is verified
by Theorem 4. It also correctly returns the new similarities,
as evidenced by Theorems 1–3.
Complexity. The total time of Inc-SR is O(K(nd+ |AFF|))
for K iterations, where d is the average in-degree of G, and
|AFF| := avgk∈[0,K](|Ak|·|Bk|) with Ak,Bk in Eq.(40), being
the average size of “affected areas” in Mk for K iterations.
More concretely, (a) for the preprocessing, finding B0 (line 3)
needs O(dn) time. Utilizing B0, computing [w]b reduces from
O(m) to O(d|B0|) time, with |B0| ≪ n. Analogously, γ in
lines 6,8,10,12 of Algorithm 1 needs only O(|B0|) time. (b)
For each iteration, finding Ak × Bk (line 15) entails O(dn)
time. Memoizing σ1, σ2 needs O(n) time (line 16). Computing
ξ (resp. η) reduces from O(m) to O(d|Ak|) (resp. O(d|Bk|))
time (lines 17–18). Computing [Mk]a,b reduces from O(n2)
to O(|Ak||Bk|) time (line 19). Thus, the total time complexity
can be bounded by O(K(nd+ |AFF|)) for K iterations.

It is worth mentioning that Inc-SR, in the worst case, has
the same complexity bound of Inc-uSR. However, in practice,
|AFF| ≪ n2, as demonstrated by our experimental study in
Fig.2e, since real graphs are constantly updated with small
changes. Hence, O(K(nd+|AFF|)) is generally much smaller
than O(Kn2). In the next section, we shall further confirm the
efficiency of Inc-SR by conducting extensive experiments.

VI. EXPERIMENTAL EVALUATION

We present an empirical study, using real and synthetic
data, to show (i) the efficiency of Inc-SR for incremental
computation in terms of time and space, as compared with
(a) Inc-SVD, the best known link-update algorithm [1], (b)
Inc-uSR, our incremental algorithm without pruning, and (c)
Batch, the batch algorithm [6] via fine-grained memoization;
(ii) the effectiveness of our pruning technique for identifying
“affected areas” to speed up Inc-SR computation; and (iii) the
exactness of Inc-SR and Inc-uSR, in contrast with Inc-SVD.

A. Experimental Settings
Datasets. We use both real and synthetic datasets.

(1) DBLP22, a co-citation graph, where each node is a paper
with attributes (e.g., publication year), and edges are citations.
By virtue of the year of the papers, we extract dense snapshots,
each consisting of 93,560 edges and 13,634 nodes.

(2) CITH23, a reference network (cit-HepPh) from e-Arxiv.
If a paper u references v, the graph has one link from u to v.
The dataset has 421,578 edges and 34,546 nodes.

(3) YOUTU24, a YouTube graph, where each node is a video.
A video u is linked to v if v is in the related video list of u.
We extract snapshots according to the age of the videos, and
each has 953,534 edges and 178,470 nodes.

We use GraphGen25 to build synthetic graphs and updates.
The graphs are controlled by (a) the number of nodes |V |,
and (b) the number of edges |E|. We produce the sequence
of graphs following the linkage generation model [20]. Two
parameters are utilized to control the updates: (a) update type
(edge insertion/deletion), and (b) the size of updates |∆G|.

All the algorithms are implemented in Visual C++ v10.0.
Each experiment is run 5 times; we report the average here.
We use a machine with an Intel Core(TM) 2.80 GHz CPU and
8GB RAM, running Windows 7.

We set the decay factor C = 0.6, as in the prior work [3].
Our default iteration number is set to K = 15, with which a
high accuracy CK ≤ 0.0005 is attainable, according to [13];
on large dataset YOUTU, K is set to 5, the same value as [3].
For Inc-SVD, the target rank r is a time-accuracy trade-off; as
shown in the experiments [1], the highest speedup is achieved
when r = 5. Thus, in our time evaluations, r = 5 is adopted,
whereas in the exactness evaluations, we shall tune this value.

B. Experimental Results
Exp-1: Time Efficiency. We first evaluate the running time
of Inc-SR, Inc-uSR against Inc-SVD and Batch on real data.

To favor Inc-SVD that only works on graphs of small sizes
(due to memory crash for high-dimension SVD, e.g., n > 105),
DBLP and CITH are used, though Inc-SR works well on a
variety of graphs (e.g., YOUTU, SYN).

Fig.2a depicts the results for edges inserted into DBLP,
CITH, YOUTU, respectively. For each dataset, we fix |V |, and
increase |E| by |∆E|, as shown in the x-axis. Here, the edge
updates are the differences between snapshots w.r.t. the “year”

22http://dblp.uni-trier.de/˜ley/db/
23http://snap.stanford.edu/data/
24http://netsg.cs.sfu.ca/youtubedata/
25http://www.cse.ust.hk/graphgen/

10

Inc-SR Inc-uSR Inc-SVD Batch

75K 79K 83K 87K 91K
0

300

600

900

|E|+ |∆E| (DBLP)

E
la
ps
ed

T
im

e
(s
ec
)

395K 401K 407K 413K 419K
0

1K

3K

5K

|E|+ |∆E| (CitH)

E
la
ps
ed

T
im

e
(s
ec
)

889K 895K 901K 907K 913K
0

0.5

1

1.5

2
·104

|E|+ |∆E| (YouTu)

E
la
ps
ed

T
im

e
(s
ec
)

(a) Time Efficiency of Incremental SimRank on Real Data

DBLP CitH
70

80

90

100

%
o
f
L
o
ss
le
ss

S
V
D

R
a
n
k

|∆E| = 6K

|∆E| = 12K

|∆E| = 18K

(b) % of Lossless SVD Rank w.r.t. |∆E|

Inc-SR Inc-uSR Inc-SVD Batch

485K 500K 515K 530K 545K 560K
0

1K

2K

3K

Edge Insertion (Syn)

E
la
p
se
d
T
im

e
(s
ec
)

560K 545K 530K 515K 500K 485K
0

1K

2K

3K

Edge Deletion (Syn)

E
la
p
se
d
T
im

e
(s
ec
)

(c) Time Efficiency of Incremental SimRank on Synthetic Data

DBLP CitH YouTu101

102

103

104

% of Pruned

Node-Pairs

76.3%

82.1%

79.4%

E
la
p
se
d
T
im

e
(s
ec
)

Inc-uSR

Inc-SR

(d) Effect of Pruning
DBLP CitH YouTu

0

20

40

60

80

100

%
o
f
|A
F
F
|

|∆E| = 6K

|∆E| = 12K

|∆E| = 18K

(e) % of Affected Areas w.r.t. |∆E|

Fig. 2: Performance Evaluations of Inc-uSR and Inc-SR on Real and Synthetic Datasets

(resp. “video age”) attribute of DBLP, CITH (resp. YOUTU),
reflecting their real-world evolution. We observe the following.
(1) Inc-SR always outperforms Inc-SVD and Inc-uSR when
edges are increased. For example, on DBLP, when the edge
changes are 10.7%, the time for Inc-SR (83.7s) is 11.2x faster
than Inc-SVD (937.4s), and 4.2x faster than Inc-uSR (348.7s).
This is because Inc-SR deploys a rank-one matrix trick to
update the similarities, with an effective pruning strategy to
skip unnecessary recomputations, as opposed to Inc-SVD that
entails rather expensive costs to incrementally update the SVD.
The results on CITH are more pronounced, e.g., Inc-SR is
about 30x better than Inc-SVD when |E| is increased to 401K.
On YOUTU, Inc-SVD fails due to the memory crash for SVD.
(2) Inc-SR is consistently better than Batch when the edge
changes are fewer than 19.7% on DBLP, and 7.2% on CITH.
When the link updates are 5.3% on DBLP (resp. 3.9% on
CITH), Inc-SR improves Batch by 10.2x (resp. 4.9x). This
is because (i) Inc-SR exploits the sparse structure of ∆S
for incremental update, and (ii) small link perturbations may
keep ∆S sparsity. Hence, Inc-SR is highly efficient when
link updates are small. (3) The running time of Inc-SR,
Inc-uSR, Inc-SVD, unlike Batch, is sensitive to the edge
updates |∆E|, as expected. The reason is that Batch needs
to reassess all similarities from scratch in response to link
updates, whereas Inc-SR and Inc-uSR can reuse the old
information in SimRank for incremental updates. In addition,
Inc-SVD is too sensitive to |∆E|, as it needs costly tensor
products to compute SimRank from the updated SVD matrices.

Fig.2b shows the target rank r required for the lossless SVD
of Eq.(5) w.r.t. the edge changes |∆E| on DBLP and CITH.
The y-axis is r

n × 100%, where n = |V |, and r is the rank
of the lossless SVD for C in Eq.(5). On each dataset, when
increasing |∆E| from 6K to 18K, we see that r

n is 95% on
DBLP (resp. 80% on CITH), Thus, r is not negligibly smaller
than n in real graphs. Due to the time being quartic w.r.t. r,
Inc-SVD may be slow in practice to get a high accuracy.

Fixing |V | = 79, 483 on synthetic data, we vary |E| from
485K to 560K (resp. 560K to 485K) edges in 15K increments

(resp. decrements). The results are reported in Fig.2c, confirm-
ing our observations on real datasets. For example, when 6.4%
edges are increased, Inc-SR runs 8.4x faster than Inc-SVD,
4.7x faster than Batch, and 2.7x faster than Inc-uSR. When
8.8% edges are deleted, Inc-SR outperforms Inc-SVD by
10.4x, Batch by 5.5x, and Inc-uSR by 2.9x. This justifies the
complexity analysis of our algorithms Inc-SR and Inc-uSR.
Exp-2: Effects of Pruning. As mentioned in Subsection V-B,
Inc-SR skips needless computations for incremental updates.

To show the effectiveness of our pruning strategy in Inc-SR,
we compare its time with that of Inc-uSR, i.e., original version
of Inc-SR without pruning rules, on DBLP, CITH, YOUTU.
The results are shown in Fig.2d, where the percentage of the
pruned node-pairs in each graph is depicted on the black bar.
The y-axis is in a logarithmic scale. It can be discerned that,
on every dataset, Inc-SR constantly outperforms Inc-uSR by
nearly 0.5 order of magnitude. For instance, the running time
of Inc-SR (64.9s) improves that of Inc-uSR (314.2s) by 4.8x
on CITH, with approximately 82.1% node-pairs being pruned.
That is, our pruning technique is effective in finding unneces-
sary node-pairs on real graphs with various link distributions.

Since our pruning strategy hinges on the size of the “affected
areas” in SimRank update matrix, it is imperative to evaluate,
on real graphs, that how large these “affected areas” are when
links are evolved. The results are visualized in Fig.2e, showing
that the percentage of the “affected areas” in similarity changes
w.r.t. link updates |∆E| on real DBLP, CITH, and YOUTU.
We find the following. (1) When |∆E| is varied from 6K to
18K on every real dataset, the “affected areas” in similarity
changes are relatively small. For instance, when |∆E| = 12K,
the percentage of the “affected areas” is only 23.9% on DBLP,
27.5% on CITH, and 24.8% on YOUTU, respectively. This
demonstrates the potential benefits of our pruning technique
in real applications, where a larger number of elements in ∆S
with a-priori zero scores can be pruned. (2) For each dataset,
the size of “affect areas” mildly grows when |∆E| is increased.
For example, on YOUTU, the percentage of |AFF| increases
from 19.0% to 24.8% when |∆E| is changed from 6K to 12K.

11

DBLP CitH YouTu
1

101

102

103

70.3

MB

3.12

GB

M
em

o
ry

S
p
a
ce

(M
B
)

Inc-SR
Inc-uSR
Inc-SVD (5)
Inc-SVD (15)
Inc-SVD (25)

Fig. 3: Memory Space

DBLP CitH YouTu
0

0.2

0.4

0.6

0.8

1

N
D
C
G

3
0 Inc-SR (5)

Inc-SR (15)
Inc-uSR (5)
Inc-uSR (15)
Inc-SVD (5)
Inc-SVD (15)

Fig. 4: NDCG30 Exactness

This confirms our observation in the time efficiency analysis,
where Inc-SR speedup is more obvious for smaller |∆E|.
Exp-3: Memory Space. We next evaluate the memory require-
ments of Inc-SR, Inc-uSR, against Inc-SVD on real datasets.
Here, the memory space means “intermediate space”, where
the last step of writing n2 node-pairs of the similarity outputs
is not accommodated. We also tune the default target rank
r = 5 larger for Inc-SVD to see how memory increases w.r.t. r.

The results are depicted in Fig.3, where, for Inc-SVD, we
report r = 15, 25 on only small DBLP, as its memory space
will explode on larger networks when r and |V | grow. We
notice that (1) Inc-SR and Inc-uSR consume far smaller
space than Inc-SVD by at least 1.5 orders of magnitude on
DBLP and CITH no matter what target rank r might be. This
is because Inc-SR and Inc-uSR use the rank-one trick to con-
vert ∆S computations into the sequence of vector operations,
whereas Inc-SVD needs to memoize the decomposed SVD
matrices and to perform costly matrix tensor products. (2)
Inc-SR has 4.1x (resp. 4.5x) smaller space than Inc-uSR on
DBLP (resp. YOUTU), due to our pruning method reducing
the memoization of many entries in auxiliary vectors, e.g., w.
(3) When r is varied from 5 to 25, the space of Inc-SVD is
increased from 637.9M to 3.15G on DBLP, but crashes on
CITH and YOUTU. This tells that r has a large impact on
the performance of Inc-SVD, which cannot be ignored in the
big-O notation of the complexity analysis [1]. Thus, to get
Inc-SVD feasible on CITH, we set r = 5 in prior evaluations.
Exp-4: Exactness. Finally, we evaluate the exactness of
Inc-SR and Inc-uSR against Inc-SVD. We adopt the NDCG
metrics [1] to assess top-30 most similar node-pairs on DBLP,
CITH, YOUTU. For baselines of NDCG30, we use the results
of Batch on each dataset for 35 iterations.26 For Inc-SR and
Inc-uSR, we perform K = 5, 15 iterations on each graph; for
Inc-SVD, due to its non-iterative paradigm, we tune the rank
r from 5 to 15. The results are depicted in Fig.4, telling us the
following. (1) In all the cases, Inc-SR and Inc-uSR have much
better accuracy than Inc-SVD. For example, the NDCG30 of
Inc-SR and Inc-uSR are both 0.88 at K = 5, much better than
Inc-SVD (0.36) at r = 25. This confirms our observations
in Section IV, where we envision that Inc-SVD may miss
some eigen-information in many real graphs. When K = 10,
the NDCG30 of Inc-SR and Inc-uSR are 1s, indicating that
their top-30 node-pairs are perfectly accurate. This justifies
the correctness of our algorithms. (2) For each dataset and the
fixed iteration K, the NDCG30 of Inc-SR and Inc-uSR are
exactly the same. This indicates that our pruning strategy is

26As the diameters (i.e., the longest paths) of DBLP, CITH, YOUTU are
16,11,7, respectively, it suffices to perform K = 35 iterations to accommodate
all path-pairs between two nodes for assessing SimRank. Thus, the resulting
scores of Batch for K = 35 can be viewed as the exact baseline solutions.

lossless, i.e., it does not sacrifice any exactness for speedup.

VII. CONCLUSIONS

In this paper, we have proposed an efficient algorithm for
incrementally computing SimRank on link-evolving graphs.
Our algorithm, Inc-SR, is based on two ideas: (1) The
SimRank update matrix ∆S is characterized via a rank-one
Sylvester equation. Based on this, a novel efficient paradigm
is devised, which improves the incremental computation of
SimRank from O(r4n2) to O(Kn2) for every link update. (2)
An effective pruning strategy is proposed to skip unnecessary
similarity recomputations for link updates, further reducing the
computation time of SimRank to O(K(nd + |AFF|)), where
|AFF| (≤ n2) is the size of “affected areas” in SimRank
update matrix, which can be practically much smaller than
n2 in real evolution. Our empirical evaluations show that (1)
Inc-SR consistently outperforms the best known link-update
algorithm [1], from several times to over one order of magni-
tude, without loss of exactness. (2) Inc-SR runs substantially
faster than its batch counterpart when link updates are small.

REFERENCES

[1] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu, “Fast computation
of SimRank for static and dynamic information networks,” in EDBT,
2010.

[2] P. Berkhin, “Survey: A survey on PageRank computing,” Internet
Mathematics, vol. 2, 2005.

[3] G. Jeh and J. Widom, “SimRank: A measure of structural-context
similarity,” in KDD, 2002.

[4] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “PathSim: Meta path-
based top-k similarity search in heterogeneous information networks,”
PVLDB, vol. 4, 2011.

[5] D. Fogaras and B. Rácz, “Practical algorithms and lower bounds for
similarity search in massive graphs,” IEEE Trans. Knowl. Data Eng.,
vol. 19, 2007.

[6] W. Yu, X. Lin, and W. Zhang, “Towards efficient SimRank computation
on large networks,” in ICDE, 2013.

[7] A. Ntoulas, J. Cho, and C. Olston, “What’s new on the web?: The
evolution of the web from a search engine perspective,” in WWW, 2004.

[8] G. He, H. Feng, C. Li, and H. Chen, “Parallel SimRank computation
on large graphs with iterative aggregation,” in KDD, 2010.

[9] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka, “Efficient
search algorithm for SimRank,” in ICDE, 2013.

[10] P. Li, H. Liu, J. X. Yu, J. He, and X. Du, “Fast single-pair SimRank
computation,” in SDM, 2010.

[11] D. Fogaras and B. Rácz, “Scaling link-based similarity search,” in WWW,
2005.

[12] P. Lee, L. V. Lakshmanan, and J. X. Yu, “On top-k structural similarity
search,” in ICDE, 2012.

[13] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov, “Accuracy es-
timate and optimization techniques for SimRank computation,” PVLDB,
vol. 1, 2008.

[14] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei, “More is simpler:
Effectively and efficiently assessing node-pair similarities based on
hyperlinks,” in PVLDB, 2014.

[15] I. Antonellis, H. G. Molina, and C. Chang, “SimRank++: query rewriting
through link analysis of the click graph,” PVLDB, vol. 1, 2008.

[16] P. K. Desikan, N. Pathak, J. Srivastava, and V. Kumar, “Incremental
PageRank computation on evolving graphs,” in WWW, 2005.

[17] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and
personalized PageRank,” PVLDB, vol. 4, no. 3, 2010.

[18] A. D. Sarma, S. Gollapudi, and R. Panigrahy, “Estimating PageRank on
graph streams,” J. ACM, vol. 58, p. 13, 2011.

[19] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa, “Fast and
exact top-k search for random walk with restart,” PVLDB, vol. 5, 2012.

[20] S. Garg, T. Gupta, N. Carlsson, and A. Mahanti, “Evolution of an
online social aggregation network: An empirical study,” in Internet
Measurement Conference, 2009.

12

