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P-Rank Overview




 Information Network (IN)
— Physical / Conceptual entities = vertices

— Interconnected relationships = edges
* INs form a critical component of

modern information infrastructure
— highway or urban transportation networks /| |

— research collaboration and publication n
— Biological networks |
— social networks




* P(enetrating)-Rank similarity
— A new promising structural measure (CIKM'09
— An extension of SimRank metrics

 Basic Philosophy k »
— Two entities are similar, if - | w i

- they are referenced by similar entities =

* they reference similar entities //

« Mathematical Formula L\ G
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* P-Rank Computation
— Naive way: a fixed-point iterative paradigm
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* |terative P-Rank Properties
— Symmetry: s® (a,b) = sk (b,a) » |
— Monotonicity: 0 < s® (a,b) < sk+l) (g ,b) < 1 .
— Existence & Uniqueness (0<c<1)

lim s*) (u,v) = sup {s(k) (u,v)} = s(u,v)

k— o0 k>0




* Despite the convergence of P-Rank
iteration, a precise P-Rank accuracy
estimation is not provided.

 P-Rank condition number Is not
studied, which can measure how much
networks may change in proportion to
small perturbation in P-Rank scoring
results.

* No efficient algorithm Is designed
specially for computing P-Rank on
undirected graphs.




* We provide an accuracy estimation of the
P-Rank convergence rate with a
prescribed iterative error in the fixed
number of iterations.

« We show that P-Rank is well-conditioned §
for small choices of the damping factors, § ' &
by providing a tight stability bound for ks: §¢

- We propose a novel non-iterative O(n3=" %4~
time algorithm (ASAP) for efficiently 2 |
computing similarities over undlrected‘"’“
graphs.
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« P-Rank iterative paradigm:

s+ (u,u) = 1.
(k1) AC 1 Z(u)| | Z(v)] (k)
s (u,v) = ZT@IZ@)] i; j;l s\ (Z; (u) . Z; (v))
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lim s(k) (u,v) = sup {S(k) (u,v)} = s(u,v)
k— o0 k>0

- N\

« P-Rank accuracy estimate problem: 4
Given a network G, for each iteration k = 1,2, ...
it is to find an upper bound €, S.t. |

s¥ (U, v) ~s (U V)| S6
for any vertices u and v in G. o




deciraey astimztjor)

 Theorem 1. The P-Rank accuracy estimate
problem has a tight upper bound

€ — ()\Cin e (1 1 ) out)k+1
such that v k=0,1,..., Yu,v € V
IS (u, v) = s(u,v) | £ €.

 Theorem 1 provides an a-priori estima‘ e
the gap between iterative and exact P =}
S|m|Iar|ty. b &

= [log €/ log (\-C;, + (1-A)-C




« Example:
Setting C,,=0.6,C,;,=04,A=03,k=5
produces the high accuracy :

€. = (0.3X0.6+(1-0.3)X0.4) >** = 0.0095.

* The "="in Theorem 1 can be attainable :
s (u,v) =0,
vV k=1,2...
s® (u,v) = AC;,+(1=A)Cyyy
Hence, for k=0,
[s(u,v)=s(u,v)| = (AC;+(1 A)Cout) o
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* P-Rank stabillity:
— how the slight perturbation of the network
affects P-Rank similarity scores s(:, -).

« P-Rank Matrix Representation
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 P-Rank conditional number :
et

M=T:-A0i(Q®eQ)—(1—-\NCou(PeP).

\ v |

P-Rank conditional number of G is defined as

i

structure of the network G. ‘
(e.g., inserting or deleting vertices Or,efd‘g?':_;_,



 Theorem 2. Given a network G, V A€][0,1]
andV C,,, C_
number has the following tight bound:

1 + /\ . Cin + (1 - A) ' G(.JLH
hDC (g) o 1 - A " cfﬂ - (1 - A) ) C{)LH

» Small choices of k., (G) would make P-
Rank stable (well-conditioned). |

(i.e., a small change AM in link structure to M may not -

cause a large change As in P-Rank scores).
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Rank, which makes P-Rank ill- conﬁdltloned.

—whenC,,<C,,and A 7, - Ll
a small change in G produces a small ch;zg > 1) P~

Rank, which makes P-Rank well-condition
— when C,, =C,,, K., (G) is independent of )ﬁ

X
5 AT O\ GO




* The upper bound of k..(G) Is attainable Iif

each vertex in G has at least one in-degre
and one out-degree.

Example:

67;
i

Ko(G)=||M]]. - ]| ML||..=1.7 X 3.333 = 546 :

.

L+A-Cint (1=A)-Couw _ 1+0.5x08+(1—-05) x0.6 . . CSEEs
1 =X Cin—(1—=X)-Cox 1-05x%x08—(1—-05)%x0.6
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Algorithm on Undirected Graphs
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e Theorem 3. For undirected networks
Rank similarity problem

S=XCin Q- S- QT +(1=\)Cou-P-S- P'T + (1= AGqy

can be solvable in O(n3) worst-case ti

Comparison: |
— O(Kn%) time [CIKM 09’] via naive iterative

— O(n3) time [this work] via non-iterative pa
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* The key idea In our optimization Is to maxi
use the adjacency matrix A :

— Characterizing Sasa power series form

= AT for undirected graphs, |mpIy|ng 3D st
Q=P=D-A i
— diagonalizing A into A to compute AKX

Hence, calculating f(AX) reduces to compulti
function on each eigenvalue for A.




* Proposition. For the undirected network G 4

with n vertices, let
D = (15613((2?'1:1 a'lgj)_la T (anl a'n-,
and

- } v"! // "4
—1\
J? -4 v_.// ’
P /’r 7
: " y

[U, A\] = eig (DY2ADY2)
Then, S' can be computed as

where

Py

U= (0 u'D U], B
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Algorithm 1: ASAP (G. A, Ciy. Coy)

Input :a labeled undirected network G = (Vg E,A; J), the weighting factor A,
and in- and out-link damping factors Cin and Cloy.
Output: similarity matrix S = (s4.;) with s; ; denoting P-Rank score between vertices 7 and .

TL X TL

initialize the adjacency matrix A of G ; O(n2)
compute the diagonal matrix D = diag(di,1,d2,2,- - ,dn.n) O(M)
with its entry d; ; = (Z;;l ;. ; )_l, if Z;.;l a; ; # 0;and d; ; = 0, otherwise;

3 compute the auxiliary matrix T = D*/2. A - D2 O(n?)

4 decompose T into the diagonal matrix A = diag(A; 1, A2.2, -+, A, ) and the orthogonal U
via QR factorization s.t. T=U - A - UT; O(n?’)
compute the auxiliary matrix I' = (I3;), . =U”-D~'-Uand V =D*?.U O(n*+n?)
and the constant C = ACiy + (1 — \)Chy ;

 compute the matrix ¥ = (¢ 5),, ., whose entry ¥ ; = I5; /(1 = C - A5 - Aj ;)5 O(n?)
compute the P-Rank similarity matrix S = (1 - C) -V - ¥ . VT, O(n3)
return S ;

>

The total time complexity of ASAP is bounded by O(n3)-.{'




* Running Example for ASAP:
Consider an undirected G, with

vertex setV =V, UV, ={a, c, d}U{b}
edge set E ={(a, c), (a, d), (c, d), (b, c)}'.

A= {Using (16)} = Q=P=DA = A = cigval(DY2ADY?) = U = eigvec(DY/2AD'Y/?) = /

o (00ry (s o [0 o055\ [ 0 ~244 707 436 5 | B
= |oo10|= ! =] 0 0 | = —583 0 —.732 354 | P4

S _ ) ) ’/
l 110 1J a3 | | 333 .333 0 333 o 50 0 —290 o | [
S, o ua b 0 ., —.244 —707 436 5 | @

T =U'DT'U = _ ¥ = {Using Eq.(18)} =
. [2.201 0 —.640 .656 3231 0 —.582 457 07 995 134 1
( ‘ o 5 - . ® ) i = . LD s
: 0 2 0 0 :: 0 2353 0 0 L | 995 770 067

—640 0 1.549 .081 582 0 1.599 .004 134 067 615 1:

0560081225 45T 0 .094 5.625 156 225 134 62
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¢ Dataset DBLP Data 3- 5-2 995-200: 995-2002

n | 1,525 3,208 J,: 084

Real-life = 592 13,441 24,762 39,399
DBLP (co-authorships among scientists from 1998 to 2007)‘
The papers published on 6 conferences are picked up {.

("ICDE”,"VLDB’, “SIGMOD”, “WWW", *SIGIR’, *KD y
Synthetic.

Using a C++ boost generator to produce graphs
with vertices ranging from 100K to 1M
and edges being randomly chosen

Algorithms.

(i) Iter: conventional P-Rank algorithm [CIKM '09]
with the radius-based pruning technigue 5

(||)Memo the memoization-based algorlthm [VLDI J ?10




* P-Rank Accuracy

Accura Cy €

"9 4 6 8 10 12 14 16 18 20

#H#-iterations k

(a) #-iteration k w.r:t. accuracy €



* P-Rank Accuracy

{f-iteration k

et A P
in-link damping factor Cj,

(b) damping factor Ci, w.r.t. k

iterations required for a fixed accuracy.




« P-Rank Accuracy

Accu racy ¢

The residual becomes huge only when Cj;and C,,, are bothine
the iterative P-Rank is accurate when C;, and C, are less than 0.6.

why small choices of damping factors are suggested in P-Rank Eter | .




* P-Rank Stability

0 .1 .2 .3 4 .5 6 .7T 8.9
weighting factor A

(a) weighting factor A w.iit. Kaoc

When C,, < 0.6, K.(G) is decreased as A grows.



* P-Rank Stability

—
-

conditional number £, (G)

0.1 0.2 0.3 04 0.5 0.6 0.7

in-link damping factor C} .

(b) damping factor Ci, W.EI. Koo




* P-Rank Stability

Cond. Num. £ (G)

(C¢) damping factors Cip, Cout WEL Koo
The result demonstrates that P-Rank Is comparatively stable W:- tH
small (less than 0.6). When C;, and C,, = 1, P-Rank is ill-conditioned sj,icl
perturbations in similarity computation may cause P-Rank scores drastically



« P-Rank Time Efficiency

ASAP 33 Memo mmm Iter

—
Cl

#-vertices

.\_

PU Time (sec)

1
A

C
ALY,

oM .AM .6M .8M 1M
Synthetic Data Real-life Data (DBLP)

(d) #-vertices n w.r.t. CPU time over synthetic and real-life data

In all cases, ASAP performed the best, by taking advantage df its
iterative paradigm.




« P-Rank Time Efficiency

ASAP 30,027
- AUG

IXl =1

('__.."in = Cqut = 0.6

CPU time (sec)

PU Time (scc)

1
A

1,706 2,111
g8) a2p7 602 .

OM  AM  .6M
Synthetic Data

(e) ASAP v.s. AUG on synthetic data

C

ASAP runs approx. 3x faster than AUG because after eigen-deco
requires extra iterations to be performed in the small eigen- subs' ace wh
significant amount of time, whereas ASAP can straightforwardly com te
in terms of eigenvectors with no need for iterations, and therefore takes le



Rank iterative paradigm, by finding out the exact &~
number of iterations needed to attain a given
accuracy.

The notion of P-Rank conditional number was

provided to show how the weighting factor ani » el
damping factors affect the P-Rank stability. |

undlrected networks.






