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What is SimRank? 

 The similarity in a domain can be modeled as graphs. 

 [ vertices objects ,  edges  relationships ] 

 SimRank is an important similarity measure which exploits 

the relationships between vertices on web graphs.  

(Glen Jeh & Jennifer Widom , ’02) 

 Basic intuition:  

 Two objects are similar if their neighbors are similar. 

 (the recursive definition) 

 Objects are maximally similar to themselves. 

 (the base case ) 



Existing Similarity measures 

 Textual-Content Similarity (text-based) 

 Vector-cosine similarity,  Pearson correlation in IR 

 

 Structural-Context Similarity (link-based) 

 PageRank 

• One page’s authority is decided by its neighbors’ authorities. 

 SimRank 

• Two objects are similar if they are referenced by similar objects. 
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G vs. G2 Model 

 Basic Graph Model: G = (V, E)  

For each vertex v∈V , we define: 

 N(v):  all the neighbors of vertex v 

 Ni(v):  individual member of N(v) 

 Node-pair Graph:  G2 = (V2, E2) 

∀ (a, b) ∈ V2  represents a pair (a, b) of nodes in G. 

∀ ⟨(a1, b1) , (a2, b2)⟩ ∈ E2 denotes the edges ⟨a1, a2⟩ and ⟨ b1, b2 ⟩ exist in G. 

N(v) N(u) 

v u 

SimRank propagating similarity 

from node to node in G is 

associated with the propagation 

from pair to pair in G2. 



SimRank Equation 

 Definition 1 (SimRank similarity)  

 Let s: V2 → [0, 1]  be a similarity function on G2 

• if  a = b,    s (a, b) = 1,  

• if  N(a) or N(b) = ∅,    s (a, b) = 0, 

• otherwise: 

 

 

where c is a decay factor btw. 0 & 1 
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Similarity btw. a & b is the average similarity 
btw. neighbors of a and neighbors of b. 



Existing Techniques for SimRank Optimization 

 Deterministic Method     [VLDB J. ’10, EDBT ’10, APWEB ’10, etc] 

( computing s(∙, ∙) iteratively for finding a fixed point ) 

 

 

Advantage: accurate 

Disadvantage: high time complexity  (O(Kn3) in the worse case) 

 Probabilistic Method       [WWW ’05, SIGIR ’06] 

( estimating s(∙, ∙) stochastically by using Monte-Carlo ) 

    s(a,b) = E (cT(a,b)) ,  where  T (a,b) : the first meeting time btw. a & b 

Advantage: scalable (linear time) 

Disadvantage: low similarity quality 
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Existing Techniques for  

SimRank Deterministic Computation 

 Jeh and Widom first proposed a SimRank model, [WWW ’02] 

taking O(Kn4) worst-case time. 

 Li et al. proposed a non-iterative approximate algorithm, [EDBT ’10] 

yielding O(r4n2) time for dynamic information networks. 

 Lizorkin et al. used a partial sum function,  [VLDB ’10] 

reducing the time to O(Kn3) in the worst case. 

 Yu et al. showed a fast matrix multiplication for digraph,  [APWEB ’10] 

 requiring O(K·min (m·n, nr)), where 2<r<log27. 



Motivations 

 The time required for SimRank deterministic algorithms 

is still about cubic in the number of vertices for each 

iteration, which is costly over large graphs. 

 

 As for SimRank deterministic computation, parallel 

implementation has not been addressed in scientific 

literature yet. 



Our Contributions 

 We present an efficient spectral decomposition based algorithm 

for SimRank computation over undirected graphs, which reduces 

the time complexity from O(Kn3) to O(n3 + Kn2). 

 We develop a block partition technique in combination with the 

Parallel Linear Algebra Package (PLAPACK) to parallelize 

SimRank algorithm on distributed memory multi-processors. 

 We perform extensive evaluations of our proposed methods 

demonstrating the efficiency and effectiveness of our algorithms.  
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3.1  AUG-SimRank 



Graph Spectrum 

 Definition 1. (Graph Spectrum)  Given a web graph G, let QG 

denote its transition probability matrix. The spectrum of G is 

defined to be the set of the eigenvalues of QG. In symbols, 
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Graph Spectrum 

 For a digraph G,  

 some elements in σ(G) might be complex numbers. 

 For an undirected graph G, 

 all elements in σ(G) must be real numbers. 

 

 Theorem 1. Given an undirected graph G, all the eigenvalues of 

its transition probability matrix QG are real numbers associated 

with a complete set of orthonormal eigenvectors. 



Graph Spectrum 
 Theorem 2. For an undirected graph G, let Q = U·Λ·U−1 be a 

complete spectral decomposition of Q, where 

 U  is an orthogonal matrix with real entities whose columns are 

eigenvectors of Q, 

 Λ  is a real diagonal matrix whose diagonal entities give the 

corresponding eigenvalues. 

Then we can construct the following iteration: 

 

 

And SimRank similarity can be thereby obtained as follows: 



Key Observations 
 0. SimRank Matrix Representation  

 

 

 1. Spectral Predecomposition    [Theorem 1] 

 2. Iterative Element-wise Matrix Multiplication 

 

 

 3. SimRank Matrix Computation 

O(n3) 

O(Kn2) 

O(n3) 



Key Observations (cont.) 

 Notice that  Λ· S ·Λ =[diag (Λ) · diag(Λ)T ] ⊙ S is our trick to reduce 

the time complexity from O(n3) to O(n2) per iteration. 

=
 

=
 

= 



AUG-SimRank Algorithm 

 Theorem 3. For undirected graphs, SimRank can be performed for K 

iterations in O(n3 + K·n2) time in the worst case, where n is the 

number of vertices, and n ≫ K. 

 

 

 

 

 

 Preconditioning techniques may be adopted when we calculate diag (Λ) · diag(Λ)T . 

Once computed, this rank-1 matrix is memorized and is therefore not recomputed 

when subsequently required. 
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3.2  PAUG-SimRank 



Parallel AUG-SimRank 

 To parallelize the AUG-SimRank algorithm, we utilize PLAPACK in 

combination with matrix partition techniques on distributed memory 

architectures.  

 PLAPACK is a parallel ARPACK version based on MPI (Message 

Passing Interface) for constructing parallel linear algebra libraries. 

 It provides a high-level object-oriented programming interface. 

 The coding of parallel linear algebra routines becomes a 

straightforward translation of algorithms.  



Parallel AUG-SimRank 

 In the spectral predecomposition phase, 

 Use a PLAPACK eigen-solver to decompose Q → U · Λ · U−1. 

 Partition the row vector diag(Λ)T → (Λ(1)  Λ(2)  · · ·  Λ(N) ). 

 In the iterative element-wise matrix multiplication phase, 

 Initialize the upper triangular part of M(i) ← c · diag (Λ) · Λ(i) . 

 Partition the similarity matrix as 

 

 Calculate each partition in parallel as 



Parallel AUG-SimRank (cont.) 

 In the SimRank matrix computation phase,  

parallel computation of Sk can be performed by the following substeps: 

 A symmetric matrix-matrix multiplication 

can be parallelized in PLAPACK. 

 The upper (or lower) triangular part of Sk can be updated as 

 

 

 hence, Sk  can be computed as   
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Experimental Studies 

 Hardware 

 2.0GHz Pentium(R) Dual-Core / 2GB RAM  

 Windows Vista OS / Visual C++ 6.0 

 Data Sets 

 Synthetic 

 graph with an average of 8 links per page. 

 10 sample adjacency matrices from 1K to 10K 

 with ξ ∼uniform[0; 16] out-links on each row.  

 Real-life 

 Wikipedia (3.2M articles with 110M intra-wiki links / Oct. ’07) 

 We choose the relationship :  “a category contains an article to 

be a link btw. the category and the article”. 



Experimental Studies 

 Algorithms for Comparison 

 SimRank with partial sums. [VLDB ’10] 

 SOR SimRank. [APWEB ’10] 

 AUG SimRank.  ＆  Parallel AUG SimRank. 

 Evaluation Measures 

 CPU time  : computational complexity 

 absolute speedup : parallel efficiency 

 

 

 

 Parameter Settings 

 c = 0.8, ω = 1.3, ϵ = 0.05 

• p number of processors 

• T1 execution time of the sequential algorithm on one processor 

• Tp time taken on p processors 



Time Efficiency Evaluation 



Time Efficiency Evaluation 



Time Efficiency Evaluation 



Time Efficiency Evaluation 



Time Efficiency Evaluation 



Parallel Efficiency Evaluation 



Parallel Efficiency Evaluation 




