
Weiren Yu1, Xuemin Lin1, Wenjie Zhang1,

Ying Zhang1 Jiajin Le2,

SimFusion+: Extending SimFusion Towards Efficient

Estimation on Large and Dynamic Networks

1 University of New South Wales & NICTA, Australia

2 Donghua University, China

SIGIR 2012

2

2. Problem Definition

Contents

4. Experimental Results

1. Introduction

3. Optimization Techniques

3

1. Introduction

 Many applications require a measure of “similarity” between objects.

similarity
search

Citation of
Scientific

Papers

(citeseer.com)
(amazon.com)

Recommender
System

Graph
Clustering Web Search Engine

 (google.com)

4

SimFusion: A New Link-based Similarity Measure

 Structural Similarity Measure

 PageRank [Page et. al, 99]

 SimRank [Jeh and Widom, KDD 02]

 SimFusion similarity

 A new promising structural measure [Xi et. al, SIGIR 05]

 Extension of Co-Citation and Coupling metrics

 Basic Philosophy

 Following the Reinforcement Assumption:

The similarity between objects is reinforced by the similarity of

their related objects.

5

SimFusion Overview

 Features

 Using a Unified Relationship Matrix (URM) to represent

relationships among heterogeneous data

 Defined recursively and is computed iteratively

 Applicable to any domain with object-to-object relationships

 Challenges

 URM may incur trivial solution or divergence issue of SimFusion.

 Rather costly to compute SimFusion on large graphs

 Naïve Iteration: matrix-matrix multiplication

 Requiring O(Kn3) time, O(n2) space [Xi et. al. , SIGIR 05]

 No incremental algorithms when edges update

6

Existing SimFusion: URM and USM

 Data Space: a finite set of data objects (vertices)

 Data Relation (edges) Given an entire space

 Intra-type Relation carrying info. within one space

 Inter-type Relation carrying info. between spaces

 Unified Relationship Matrix (URM):

 λi,j is the weighting factor between Di and Dj

 Unified Similarity Matrix (USM):

1 2{ , , }o o

,i i i i 

,i j i j 

1

N

ii


 

 

 
 

1

1
, ,

, if ;

, , if , ;

0, otherwise.

j

j

jn

i j i jx

x

x y x y

 


 



L

1,1 1,1 1,2 1,2 1, 1,

2,1 2,1 2,2 2,2 2, 2,

URM

,1 ,1 ,2 ,2 , ,

N N

N N

N N N N N N N N

  

  

  

 
 
 
 
  
 

L L L

L L L
L

L L L

1,1 1,

,1 ,

. . .

n

n n T

n n n

s s

s t

s s



 
 

      
 
 

S S L S L

7

Example.

1
2

3

intra-type
relationship

inter-type
relationship

data
space

data object

1v

2v 3v

4v
5v

6v

1 2 3

1 1 1
1 4 4 2

51 1
2 8 4 8

31 1
3 5 5 5

Λ

1 1 1 1 1
8 8 4 4 4

1 1 1
4 4 2

5 5 51 1 1
16 16 4 24 24 24

URM 31 1 1 1 1
10 10 5 15 15 15

31 1 1 1 1
10 10 5 15 15 15

31 1 1 1
10 10 5 10 10

0

0 0 0

0

 
 
 
 

  
 
 
  
 

L

High complexity !!!

O(Kn3) time

O(n2) space

. . .n n Ts t    S S L S L

1,2 1,

2,1 2,

USM

,1 ,2

1

1

1

n

n

n n

s s

s s

s s

 
 
 
 
  
 

S

SimFusion Similarity on Heterogeneous Domain

Trivial Solution !!!

S=[1]nxn

8

Contributions

 Revising the existing SimFusion model, avoiding

 non-semantic convergence

 divergence issue

 Optimizing the computation of SimFusion+

 O(Km) pre-computation time, plus O(1) time and O(n) space

 Better accuracy guarantee

 Incremental computation on edge updates

 O(δn) time and O(n) space for handling δ edge updates

9

Revised SimFusion

Motivation: Two issues of the existing SimFusion model

 Trivial Solution on Heterogeneous Domain

 Divergent Solution on Homogeneous Domain

Root cause: row normalization of URM !!!

10

From URM to UAM

 Unified Adjacency Matrix (UAM)

 Example

 

 

 

1

, ,

, if ;

, if , ;

0, otherwi e

1

s

,

.

j jn

i j i j

x

x y x y




 



A

11

Revised SimFusion+

 Basic Intuition

 replace URM with UAM to postpone “row normalization”

in a delayed fashion while preserving the reinforcement

assumption of the original SimFusion

 Revised SimFusion+ Model Original SimFusion

squeeze similarity scores in S into [0, 1].

12

Optimizing SimFusion+ Computation

 Conventional Iterative Paradigm

 Matrix-matrix multiplication, requiring O(kn3) time and O(n2) space

 Our approach: To convert SimFusion+ computation into

finding the dominant eigenvector of the UAM A.

 Matrix-vector multiplication, requiring O(km) time and O(n) space

Pre-compute σmax(A) only once, and cache it for later reuse

13

Example

 Conventional Iteration:

 Our approach:

Assume with

14

Key Observation

 Kroneckor product “⊗”:

e.g.

 Vec operator:

 e.g.

 Two important Properties:

5 6 5 6 5 6 10 12
1 2

7 8 7 81 2 5 6 7 8 14 16
, ,

3 4 7 8 15 18 20 245 6 5 6
3 4

21 24 28 327 8 7 8

      
       

                           
       
       

X Y X Y

() [1 3 2 4]Tvec X

15

Key Observation

 Two important Properties:

P1.

P2.

 Our main idea:

(1)

(2)

Power Iteration

16

Accuracy Guarantee

 Conventional Iterations: No accuracy guarantee !!!

Question: || S(k+1) – S || ≤ ?

 Our Method: Utilize Arnoldi decomposition to build an

order-k orthogonal subspace for the UAM A.

Due to Tk small size and almost “upper-triangularity”,
Computing σmax(Tk) is less costly than σmax(A).

17

Accuracy Guarantee

 Arnoldi Decomposition:

 k-th iterative similarity

 Estimate Error:

18

Example

 Arnoldi Decomposition:

Assume with

Given

(1)

(2)

(3)

19

Edge Update on Dynamic Graphs

 Incremental UAM

Given old G =(D,R) and a new G’=(D,R’), the incremental UAM is

a list of edge updates, i.e.,

Main idea

 To reuse and the eigen-pair (αp, ξp) of the old A to compute

 is a sparse matrix when the number δ of edge updates is small.

 Incrementally computing SimFusion+

O(δn) time

O(n) space

20

Example

Suppose edges (P1,P2) and (P2,P1) are removed.

21

Experimental Setting
 Datasets

 Synthetic data (RAND 0.5M-3.5M)

 Real data (DBLP, WEBKB)

 Compared Algorithms

 SimFusion+ and IncSimFusion+ ;

 SF, a SimFusion algorithm via matrix iteration [Xi et. al, SIGIR 05];

 CSF, a variant SF, using PageRank distribution [Cai et. al, SIGIR 10];

 SR, a SimRank algorithm via partial sums [Lizorkin et. al, VLDBJ 10];

 PR, a P-Rank encoding both in- and out-links [Zhao et. al, CIKM 09];

DBLP

WEBKB

22

Experiment (1): Accuracy

On DBLP and WEBKB

SF+ accuracy is consistently
stable on different datasets.

SF seems hardly to get sensible similarities
as all its similarities asymptotically approach
the same value as K grows.

23

Experiment (2): CPU Time and Space

 On DBLP

On WEBKB

SF+ outperforms the other approaches, due to the use of σmax(Tk)

24

Experiment (3): Edge Updates

IncSF+ outperformed SF+ when δ is small.

For larger δ, IncSF+ is not that good because
the small value of δ preserves the sparseness
of the incremental UAM.

Varying δ

25

Experiment (4) : Effects of

The small choice of imposes more iterations
on computing Tk and vk, and hence increases
the estimation costs.

26

Conclusions

 A revision of SimFusion+, for preventing the trivial solution

and the divergence issue of the original model.

 Efficient techniques to improve the time and space of

SimFusion+ with accuracy guarantees.

 An incremental algorithm to compute SimFusion+ on

dynamic graphs when edges are updated.

 Devise vertex-updating methods for incrementally

computing SimFusion+.

 Extend to parallelize SimFusion+ computing on GPU.

Future Work

27

