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Abstract—This paper presents a method for producing hard-
ware designs for elliptic curve cryptography (ECC) systems over
the finite field GF(2™), using the optimal normal basis for the
representation of numbers. Our field multiplier design is based
on a parallel architecture containing multiple m-bit serial multi-
pliers; by changing the number of such serial multipliers, designers
can obtain implementations with different tradeoffs in speed, size
and level of security. A design generator has been developed which
can automatically produce a customised ECC hardware design
that meets user-defined requirements. To facilitate performance
characterization, we have developed a parametric model for
estimating the number of cycles for our generic ECC architecture.
The resulting hardware implementations are among the fastest
reported: for a key size of 270 bits, a point multiplication in a
Xilinx XC2V6000 FPGA at 35 MHz can run over 1000 times faster
than a software implementation on a Xeon computer at 2.6 GHz.

Index Terms—Field-programmable gate arrays (FPGAs), par-
allel architectures, public key cryptography, security.

1. INTRODUCTION

LLIPTIC curve cryptography (ECC) is a public key cryp-

tography system superior to the well-known RSA cryptog-
raphy: for the same key size, it gives a higher security level than
RSA [3]. ECC has been adopted to a wide spectrum of applica-
tions from digital certificates in webserver authentication [36]
to embedded processors [51] in wearable devices.

This paper presents a scalable method for producing hard-
ware designs for ECC systems over binary field GF(2™) [26],
using the optimal normal basis (ONB) [34] for the representa-
tion of numbers. Our design is based on a field multiplier ar-
chitecture with multiple m-bit serial multipliers operating in
parallel. An unique feature of our approach is a design gener-
ator which can automatically produce a customised ECC hard-
ware design that satisfies specific user-defined requirements tar-
geting to different applications. This method enables designers
to rapidly explore and implement a design with the best trade-
offs in speed, size and level of security.

When optimized for speed, our design generator produces
ECC designs with extensive parallelization and pipelining.
These designs do not involve instructions, to avoid overhead
associated with instruction fetch and decode. Our architecture
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is generic: for instance, a user-defined parameter controls the
amount of parallelism in evaluating field multiplication. Note
that the value of this parallelism does not affect the level of
security, but the time to complete a field multiplication. Once
this and other parameters such as the number of parallel field
multipliers are decided, various design-specific constants,
wiring patterns and data widths are generated automatically.
Since our approach applies two levels of parallelisms in field
and point multiplications and does not involve instruction fetch
and decode, significant speedup is achieved when compared
with previous customised processor designs.

To facilitate performance characterization, we have devel-
oped a parametric model for estimating the number of cycles
for our generic ECC architecture. This model is expressed in
terms of various customization parameters, such as the key size,
the amount of parallelism in field operations, and the number
of cycles for basic operations, such as point addition and point
multiplication.

As an example of our implemented designs, for a key size of
270 bits, a point multiplication, which is the slowest operation
in the ECC method, can be computed in 0.17 ms with our hard-
ware design implemented in an XC2V6000 field-programmable
gate array (FPGA) at 35 MHz. In contrast, a software implemen-
tation requires 196.71 ms on a Xeon computer at 2.6 GHz; so
our FPGA design is more than 1150 times faster, while its clock
speed is almost 74 times slower than the Xeon processors.

To summarize, our major achievements include:

* afully parametric parallel and pipelined design for field
multiplication operation (Section IV);

e an optimized point multiplication using parallel field
multipliers (Section V);

e aparametric model for calculating the number of cycles
for our generic ECC system and for estimating the secu-
rity/size/speed tradeoffs (Section VI);

e adesign generator that takes the key size and degree of
parallelism of the design and generate efficient “hard-
core” control and data path (Section VII).

The rest of the paper is organized as follows. Section II de-
scribes related work in ECC cryptosystems. Section III covers
the mathematics behind ECC designs. Section IV focuses on a
parallel field multiplier. Section V presents the architecture of
our ECC cryptosystem and its components. Section VI provides
the mapping from the architecture to reconfigurable hardware,
and the parametric model for estimating design tradeoffs. Sec-
tion VII addresses design automation and customization by a de-
sign generator. Section VIII evaluates our results and compares
them against existing hardware ECC implementations. Finally,
Section IX summarizes our approach and outlines current and
future research.

1063-8210/$20.00 © 2005 IEEE
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II. RELATED WORK

The difficulty of the underlying elliptic curve discrete loga-
rithm problem (ECDLP) makes ECC cryptosystems suitable for
applications that need long-term security and low bandwidth
measurements. In 2002, the U.S. Government adopted ECC for
protecting mission-critical information [9]. For instance, the
NIST has recommended specific curves for implementations
[37] and the IEEE has provided detailed specification for the
choices of private key length and fields [42].

ECC research has been extensively conducted [19], [32] and
it can be first divided into two groups depending on the under-
lying field representation: prime field, GF(p) and binary field,
GF(2™). Two bases, Optimal Normal Basis and Polynomial
Basis are commonly used for manipulating binary fields. With
PB representation, field elements are represented as polyno-
mials, while with NB the irreducible polynomial used in PB
is not required. It is known that binary field is more suitable
for hardware implementation, and ONB is said to dominate fast
squaring. A recent study [13] reports that ONB ECC hardware
design can outperform the same design using PB by 27 times.
Fast point multiplication requires efficient field multiplication,
inversion [20], squaring and an efficient coordinate system [27].
In recent years, there has been much research in software [8],
[18] and hardware [39], [40] for both GF(p) and GF(2™) fo-
cusing on the performance of point multiplication, and it is ob-
vious that a fast point multiplication design is necessary and
crucial.

The first ECC hardware implementation [1] is presented
in 1989. Previous hardware work includes: the first ASIC
implementation with Motorola M68008 microcontroller [1],
reconfigurable finite-field multiplier [22], ASIC designs for
field operations over specific GF(2™) fields [29], an ECC
implementation on the 8051 microprocessor in smart cards
[53], an ECC processor on a smart card device [43], and recent
FPGA implementations for ECC designs including [5], [6],
[17], [24], [25], [28], [36], [39]-[41]. In this paper, we aim at
optimising the field multiplier for normal basis and adopting
state-of-the-art algorithm for point multiplication, to build a
customisable and efficient ECC cryptosystem.

III. MATHEMATICAL BACKGROUND

The field and group theories relevant to ECC designs have
been extensively studied [26]. In this section, we briefly describe
the mathematical basics that are necessary for building the field
multiplier. The polynomial basis (PB) is formed by the set of
{1,a,a?,...,a™"1} where « is a root of the nonreducible
prime polynomial P(z) of degree m, while the Normal Basis
(NB) uses another set {cv, a2, ..., a>" '} [26]. There is always
a tradeoff using different bases for both software and hardware
implementation. For instance, squaring is easier in NB than in
PB, while inversion in NB is slower than in PB. The underlying
arithmetic of both PB and NB has been extensively studied [31]
and the corresponding high-performance multipliers [44], [49]
are also reported.

We first introduce field multiplication for normal basis in
this section, and describe the architecture of our field multiplier
in Section IV. Given that we multiply two elements A, B of
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Fig. 1. Parametized, pipelined, and parallel field multiplier design.

GF(2™) using normal basis and the product is another element
C' in the same field, then

m—1 m—1 m—1

i j k

A= E a;a®, B= E bjoz2 , C= cral’
i=0 §=0 k=0

where C = A x B, and the coefficients of element C, ¢ (k €
[0,m — 1]) can be expressed as follows [45]:

m—1
=2
=0

The \;;’s are the elements of the multiplication matrix A, which
are either 0 or 1 [45]. An optimal normal basis means that the
number of nonzero A;; is minimized. Since most of the A values
are zero, the sum of the inner products in the above equation can
be written in the form:

-1

3

itk bjtk - Aije

Il
<)

i

m—1

> ikbjpehi; = be(ap + ag)
1=0

for some r, p, g € [0, m — 1], except for j = 0 where (for some
r,p € [0,m — 1]):

m—1

> aigrbjpedi; = br(ap).
1=0

There are two types of ONB, Types I and II, which are de-
termined by the m value and the values in the A matrix. In this
paper, we handle both cases.

IV. PARALLELIZED FIELD MULTIPLIER

One of the contribution of this paper is the design of a par-
allel field multiplier for normal basis. This multiplier is used in
many different parts of our customisable cryptosystem which is
described in Section V.

Our field multiplier architecture is based on having p copies
of an m-bit multiplier operating in parallel. Fig. 1 shows the
datapath of our field multiplier, which is inspired by a nonpa-
rameterised architecture [30], [50]. The wiring block is auto-
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Fig. 2. Example of a wiring block when m = 5 and p = 1.

matically generated for different 1 values, an example of wiring
pattern is shown in Fig. 2 in which the degree of parallelism p is
one. The details of design generation is described in Section V.
The field multiplication operation is presented in pseudo-
code as follows with the following properties.
. parallel{do(a);do(b)} means that both operations
do(a) and do(b) are executed in parallel.
. In a given clock cycle, the value of a field element x is
the one it had at the previous clock cycle. This prop-
erty results that the program parallel{a = b;b = a}
swaps the values of the field element a and b because
the following two operations are performed simultane-
ouslyattime t : a(t) = b(t—1)andb(t) = a(t—1).
. x, denotes the kth bit of the field element x.
We first describe our serial field multiplier in the pseudo-code
format, given that the wiring pattern has been first generated.

1field mult(a,b)

{

2 fori=0...m—-1
{
//compute the wiring pattern
3 inputs = wiring(a,b);
//compute the outputs of the L functions
4 parallel for k=0...m—1
{
5 temp k <— L(inputs);
}
//left rotate all registers
{
a <— left_rotate(a);
b <— left_rotate(b);
c <— left_rotate(c);
}
//XOR. with the output register
9 c <— c XOR temp;
}
//final rotation:every ck is at the right
position

10 ¢ <— left_rotate(c);
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11  return c;

}

The algorithm shows that such a computation takes 4m +
1 cycles, as we can see that steps 3, 5-8, and 9 are repeated
m times, plus one final rotation in step 10. We pipeline this
field multiplier since the computation of the L functions, the
wiring pattern operations and the input/output rotations can be
performed concurrently in different pipeline stages.

The time complexity of the original m-bit serial algorithm
is O(m). The key element of our design is to parallelise it to
achieve the complexity of O(m/p) where p is the degree of
parallelism. Thus, the pipelined field multiplier is mapped into a
parallel design such that for each k value, instead of computing
only L(k, a,b) at one specific cycle, it will also compute

L(k,lrotate(1, a),lrotate(1,b)),
L(k,lrotate(2, a), lrotate(2,b)), ...,

’

L(k,lrotate(p — 1,a), lrotate(p — 1, b)),

where lrotate(n, x) returns x rotated left by n bits.

In order to compute these functions, a new wiring pattern
which outputs p layers of m groups of three values is devel-
oped. These layers are derived from the wiring pattern that we
generate for the serial multiplier as shown in Fig. 1. If a layer
(number 0) outputs for some k (for the kth group of three values)
the values ag, a, and b, then the ith layer will output the values
ag—;, ar—; and b,_; at position k — 7. Besides the wiring mod-
ification, in each step the registers are rotated by p bits instead
of only one bit that is used in the serial design. Next, we define

m=uXp+v

where p is the quotient and v is the remainder, when m is not
divisible by p. If v # 0, an extra step that calculates the last v
elements of each sum is added.

The parallel and pipelined algorithm is shown below. Note
that if m = p, this design only takes (1 + m/p+ 1+ 1 = 4)
cycles to compute the result.

1 field mult_par(a,b,p)

{

2 parallel
{
3 inputs = wiring(a,b); //inputs is
a m*p*3 table
4 a <— left_rotate(a,p);//left rotate
by p bits

5 b <— left_rotate(b,p);
clear(output[0]...output[p — 1]);

}

7 fori=0...(u)—1

{

8 parallel

{

//pipeline stage 1: compute wiring
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9 inputs = wiring(a,b);
//pipeline stage 2: compute L
10 parallel for j=0...p
{
11 parallel for k=0...m—1
{
12 output[j]) <— L(wiring_ inputs);

}
}

//pipeline stage 3: rotating

13 a <— left_rotate(a,p);
14 b <— left_rotate(b,p);
15 c <— left_rotate(c,p) XOR

output[0] XOR...X0R output[p — 1];

}
}

16 c <— left_rotate(c,p) XOR
output[0] XOR...X0R output[p — 1];
17 if((v)! =0)
{

18 parallel

{

19 a <— left_rotate(a,r); //realign a
20 b <— left_rotate(b,r); //realign b
21 c <— left_rotate(c,p);

22 parallel for j=0...(v){

23 parallel for k=0...m— 1{

24 output[j]) < L(wiring inputs);

}
}

25 ¢ <— c XOR output[0] XOR...XOR output[(v) — 1];
26 c <— left_rotate(c,p); //final rotation
}
27 else //only do the final rotation
28 c <— left_rotate(c,p)

29 return c;

The number of cycles is reduced if a larger p value is used.
A field multiply operation takes |m/p| + 5 cycles if r # 0,
and (m/p) + 3 cycles otherwise. The two remainder cycles are
from step 18-25 in the above pseudocode. In contrast, the non-
pipelined serial version takes 4m + 1 cycles.

V. SYSTEM ARCHITECTURE

This section describes the operations supported by our ECC
architecture. These operations include field multiplication, field
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inversion and point multiplication, and their interaction is sum-
marized in Fig. 3. In the following, m is the key size for our
ECC architecture, which is a characteristic of the field. The sub-
sections below cover field multiplication, field inversion, field
squaring, point multiplication, point addition and data embed-
ding respectively.

A. Field Multiplication

In the proposed ECC customizable cryptosystem, the field
multiplier presented in Section IV is the crucial component that
is repeatedly used by other operations, as shown in Fig. 3. The
datapath of our system for various operations is shown in Fig. 4.
Users are able to select the second level parallelism in term of
the number of executable field multipliers to the maximum four
parallel field multipliers. Different scheduling optimizations
have been applied to various designs which are summarized in
the parametric model as shown in Section VI. Additional field
multipliers do not bring further speed gains but result in an area
penalty. There is a tradeoff between efficiency and area.

B. Field Inversion

The algorithm we use for field inversion is based on Fermat’s
theorem which states that in a normal basis

a71 _ a277172 _ (a(27717171))2

for all a # 0 in GF4m . This method was proposed by Itoh and
Tsujii [20] and has been widely used for computing inversion.
Using this formula to compute an inverse, it would require m
multiplications. The following reduces the complexity of the
. . . 2("1—1)/2+1 . .
inversion, as it is easy to calculate where z is shifted
(m — 1)/2 times and then multiplied by z.

m — 1 is even:

P B e

9(m—1)/2+1

(az(m—l)/Z_l

m — 1 is odd:

a<2m71_1) _ a<2(m71)/2+1).(2(w171)/2_1)
o(m—1)/2+1

(a2(m,—1)/271
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Fig. 4. Datapath of the customizable ECC system (FM denotes a field multiplier).

The algorithm is described below.

Input: a € GF(2™) to be inverted
Output: x = a~!
oz —a; s logy(m)—1
e while s> 0
— «— right shift m by s bits
—y — left shift z by |r/2]
—y «— multiply =z by y
—if z is odd
y «— left shift y by 1 bit
y «— multiply =z by y
— —y
—s —s5—1
e r— left shift = by 1 bit
e return x

Since the time to perform a multiplication is usually much
longer than the time to perform a shift operation, the number of
cycles for this inversion algorithm can be approximated by the
following equation [45] where T,,,,,1¢ represents the number of
cycles to perform a field multiplication:

(logy(m — 1) +number_of bits_set_in(m — 1) — 1) X Tpput.

C. Field Squaring and Field Addition

The key benefit of using ONB representation is the simplicity
of the squaring operation. Each element in the field GF(2™)
is represented by m binary digits. Field squaring is simply a
cyclic shift [50] while field addition is a Boolean XOR opera-
tion. Therefore these two functions take up little space and are
efficient in hardware.

D. Point Multiplication

This part presents the point operations based on the following

elliptic curve:
y2 +xy = 3+ a2x2 + ag.

A pointis described by its & and y value in the above equation.
In our point multiplication, we use projective coordinates such
that each point on the curve is described by (X,Y, Z) on the
following curve:

Y2Z 4+ XYZ = X34 asX?Z% + agZ3.

Instead of using the “add-and-double” (binary) method [7],

we adopt the improved Montgomery Scalar Multiplication [27]

in our design for point multiplication. Let P, P, and P; be three
points of an elliptic curve F, and assume that the property P —
P; = P holds. Let the (affine) z-coordinate of P; (: € {1,2})
be X;/Z; where X; and Z; are the first and third projective
coordinate of P.

It can be shown that the y-coordinate of any of the three
points are not required in computing the z-coordinate (X/7)
of P + P» or of 2F;. Hence, in the main loop of the algorithm,
we can get rid of these y-coordinates and use the above formula
to compute the z-coordinate of point doubling, 2P; and point
addition, P; + P, at each step. When the main computation is
over, we can get the y-coordinate of the result point by using the
following formula which is proved in [27]:

= (1 4 7) - <(x1+x)-((:v2+:v)—|—a: -H/)) +y

T

The Montgomery algorithm [27] for point multiplication we
used is shown below:

Input: k€ GF(2™) (k= (k_1,...,k1,ko0)), Plz,y)
a point of a certain curve F defined by
az and ag
Output: @ =k -P
o Xi —X; Z1—1; Xo—a*4ag; Zy—2?
e for i from [ —1 downto 0 do
if k; =1 then
(Zl,Xl) — Madd(X17Z1,X27Z2);
(ZQ,XQ) — MdO’ll,ble(X27Z2)
else
(Z27X2> — Madd(X27Z27X1,Z1);
(Z1,X41) «— Mdouble(X1,Z1)
e return Q = May(X1,Z1, X2, Z2)
where:
o Madd(X,,Z1,X2,7Z5) returns (Z3,X3) where
Zs = (X1 Zo+ Xo - Z1)°
X3:JZ-Z3+(X1-Z2)-(X2-Z1)
e Mdouble(X1,7,) returns (Z3,X3) where
Zs = 72 X;?
X; =X 4a¢- 24
o Muzy(X1,7Z1,X5,7Z5) returns Q(z1,y1) where
ry = Xl/Zl
y1=(z1+2) (21 +2) - (22 +2) + 2% +y) /v +y.
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Fig. 5. Applying multiple parallel field multipliers in point multiplication.

This algorithm requires 6/ + 10 multiplications and only one
inversion, where [ is the number of bits needed to represent &
in base 2. The value of [ is usually close to the value of m.
The algorithm used for point multiplication is mainly sequential,
since each step of the loop needs the results of the previous step
to start.

Since the two functions M add and M double can be computed
independently in parallel as illustrated in Fig. 5, the number of
cycles for point multiplication can be reduced. The reason is
that the M add function requires four field multiplications, and
the M double function requires two field multiplications; the
sequential execution of Madd and M double takes the time of
six field multiplications, while a design using four parallel field
multipliers will significantly reduce the time to that for one field
multiplier. Due to data dependency and area overhead, there is no
gain in using more than four field multipliers. This improvement
is significant, since each step in the loop is executed m times,
where m is typically between 100 and 500 for a secure system
[37]. This flexible field multiplication function can be made large
or small, fast or slow depending on the performance required.
Since other functions involve extensive use of the field multi-

Some temporary variables
are not shown in here.

-
— ‘\ Time
X2 ’/X1=X1X22 é1+x1 Z12 Kr2=X1 .ZKM’X1+T2 )
\Z N R
22 22 _ 21 X 9 T12 Q1 — 21 . X\/l {\\\Fleld mult )

 rieigads )
Field add/

Field
square

The details of the algorithm can be found in [45]. Our system
will also support point subtraction. To compute subtraction, we
develop an algorithm that can invert a point. The negation of a
point P(z,y) is — P(z,z + y). The addition algorithm requires
one field inversion and two field multiplications. The point in-
version algorithm takes negligible time, as it only requires an
XOR operation.

F. Data Embedding

Data embedding embeds data onto a point of an elliptic curve.
Not all elements of GF(2™) are the x-coordinate of a point
of a given elliptic curve, and the ECC technique only allows
the encryption of a point on an elliptic curve. It is therefore
necessary to embed data into a point in order to encrypt them.

It has been shown [45] that, given a specific elliptic curve, if
5 don’t care bits are appended to m — 5 bits of data and forms
data embed_data, there always exists at least one combination
of the don’t care bits such that the value z of embed_data
stays on the curve. The outline of the embedding algorithm is
as follows.

plier, an optimized design is crucial and has a large impact on
the final ECC system.

E. Point Addition and Point Subtraction

Although point addition is not as common as point multi-
plication, some security protocols require both. The algorithm
used to compute this operation is simple. Adding P(z1, y1) and

Q(z2,y2) (P # Q) gives R(x3,y3) where

Input: d data written in base 2 (the
data must be of length m —5 bits)
Output: M(z,y) point in which the data
to be encrypted are stored

e 1z — append(d,000005)

e while not on_curve(x)

increment =z

e compute_y(x)

e return M(z,y)

0 — (y2 —y1)

(w2 — 21)
T3 :92-1-9-}-:51 + 20+ ao
y3 =0(x1 + x3) — y1.

where on_curve(z) checks if z € GF(2™) is the z-coordinate
of a point of the curve that we are working on. compute_y(z)
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returns the y-coordinate of one of the two points whose z-coor-
dinate is . The equation of the curve is

v+ oy =23 +ax? +ag =y  +ay+ f(z) =0

where f(z) = — (2* + as2® 4 ag). Let y = zz. Given z # 0,
the equation becomes

(22 + 322+ fz) =0= 2>+ 2+c¢=0

where ¢ = f(x) - 2 2. The function on_curve(z) is described
below:

Input: z € GF(2™) bits
Output: true if z is the z-coordinate of
a point, false otherwise
® C — (:E?’ +a2x2+a6) cxT2
e trace «— XOR of all bits in c
e if trace =1 then
return false
e else
return true

We compute —f(x) - 72 instead of f(z) - x2 since for all
u € GF(2™), —u is defined by u + (—u) = 0, that is u XOR
(—u) = 0 and —u = u. To compute the y-coordinate given the
z-coordinate, we can rewrite the equation that we are working
onas (1 € [0,m — 1]):

zZ = 21/2 -i-cl/2 =z, = Zi—1+Ci—1.

Moreover, if z is a solution to our equation, then the other
solution is z+1. It is easy to prove this by assuming 224 z+4c =
0 and by calculating

(z4+1)2+(z+)+ec=22+22+1+2+1+c
=224 z4+c+2z+1)
=224+z+¢=0

In this proof, an addition is just an XOR operation in
GF(2™), then for all u € GF(2™), 2u = 0. Since z + 1 is
actually 7 in a normal basis, in one of the two solutions the least
significant bit will be 0 and the other one will be 1. As a result,
the least significant bit of the solution that we are looking for
is equal to 0. We then further compute all the other bits one by
one. To compute the y value, we simply multiply z by x.

The algorithm that performs the operation compute_y(z) is
described below:

Input: 2 € GF(2™) (and ¢ calculated in
function on_curve(z))
Output: M(z,y) a point of the curve we
are working on
o z5— 0
e for ¢+ from 1 to m—1
® 2, — zi—1+ Ci—1
o y— 1 2
e return y
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Fig. 6. Overview of the customizable ECC system.

VI. FPGA IMPLEMENTATION

This section presents the implemention of our design to pro-
duce a customisable encryption/decryption system. We have im-
plemented our designs in the Handel-C language [10]. The key
components in our design are: field operations (multiplication,
inversion, squaring, addition), point operations (multiplication,
addition), and data embedding. Fig. 6 provides an overview of
our system.

Functions are implemented as shared logic. They will only
be mapped once on the hardware. We then generate the routing
logic and the control logic to send the appropriate data to these
functions and fetch the result when necessary. The system per-
formance has been optimized by exploring the maximum pos-
sible parallelism between operations at both the field-operation
level and the point-operation level (Fig. 3). We also notice that
because these functions called each other many times and have
to send large values (usually two or three m bits values) to each
other every time, the design’s speed is limited by parameter
passing. To tackle this problem, all function calls are pipelined.

The estimation of the number of clock cycles required by
each function is presented in Table 1. Notations for this table
include: Tinuie, Tinv and Tpoint_add Which represent the number
of cycles for field multiplication, field inversion and point ad-
dition functions respectively, and s(z) and ns(z) represent the
number of set bits and of clear bits in the binary representation
of x. The nb_attempts in the data embedding formula repre-
sents the number of times the data need to be incremented to
find the z-coordinate of a point.

VII. AUTOMATIC GENERATION AND CUSTOMISATION

This section presents a design generator which can automat-
ically produce implementations with optimized speed, size and
level of security. The major customisable elements of a cryp-
tosystem are: the key size m, the degree of parallelism p, and
the protocols of the system.

We develop a program that takes a valid ONB m-value (type
I or type II optimal normal basis) and the degree of parallelism
in the field multiplication function, and produces synthesizeable
Handel-C code. This design generator first computes the A table
for the given m using the algorithm presented in [45]. This al-
gorithm generates an m X 2 matrix (Lambda) where the jth row
contains two values of ¢ for which:
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TABLE 1
NUMBER OF CLOCK CYCLES REQUIRED FOR EACH FUNCTION TO EXECUTE. FM MEANS THE NUMBER OF FIELD MULTIPLIER, Tinuits Tinvs Tpoint_ada MEANS
THE NUMBER OF CYCLES FOR FIELD MULTIPLICATION, FIELD INVERSION, AND POINT ADDITION

Operation | Number of cycles
Field Operations

Addition 1

Squaring 1

Multiplication 54 [m/p| or 3+ (m/p) if m is divisible by p

Inversion 24 ([loga(m)] — 2) X (3 + Topaue) + s(m — 1) X (34 Trpuir) + ns(m — 1)
Point Operations

Addition 12 + QTnLult + Tinw

Subtraction

1+ Tpoint-add

Point Multiplication

Unoptimised
1 FM
2 FM
4 FM

28 + 10T m it + Tino + (m — [log2(K)[) + ([loga (k)] — 1) x (14 + 6Trmuue)
14 + 10T uit + Tinw + (m — [log2(k)]) + ([log2(k)] — 1) X (8 + 6T uit)
10 + 6Tmult + Tinv + (m - “092 (kﬂ) + (’—ZOQQ(kﬂ - 1) X (9 + 4Tmult)

9 + 5T muit + Tiny + (m — [loga(K)]) + ([log2(k)] — 1) X (4 4 2Timuir)

Data embedding |

6 + 3Lnui + nb_attempts(S + Tinv + Trnult)

TABLE 11
COMPARISON BETWEEN OUR DESIGN (VIRTEX-II XC2V6000 DEVICE USING 0.15 MICRON) AND THE REFERENCE DESIGNS [25], [45] (VIRTEX XCV 1000 DEVICE
USING 0.25 MICRON). THE SYMBOL (*) DENOTES EXTRAPOLATED RESULTS BASED ON PUBLISHED DATA FOR DIFFERENT 1 VALUES

Parallelism P&R results Measured results Software [45] Hardware (serial) [25]

2 clock | time(ms) [ clock [ time(ms) clock [ time(ms) | speedup clock [ time(ms) | speedup
m = 113

2 42MHz 0.36 S6MHz 0.27 2.6GHz 15.99 59.22 31MHz 43 15.93

8 42MHz 0.13 S56MHz 0.09 2.6GHz 15.99 177.67 31MHz 43 47.78

16 42MHz 0.08 56MHz 0.06 2.6GHz 15.99 266.50 31MHz 4.3 71.67

32 42MHz 0.07 56MHz 0.04 2.6GHz 15.99 399.75 31MHz 4.3 107.5

56 42MHz 0.05 56MHz 0.04 2.6GHz 15.99 399.75 31MHz 43 107.5
m = 162

2 40MHz 0.83 54MHz 0.55 2.6GHz 45.67 83.04 29MHz* 9.39% 17.07

8 40MHz 0.27 54MHz 0.17 2.6GHz 45.67 268.65 29MHz* 9.39* 55.24

16 40MHz 0.18 54MHz 0.11 2.6GHz 45.67 415.18 29MHz* 9.39% 85.36

32 40MHz 0.13 54MHz 0.07 2.6GHz 45.67 652.43 29MHz* 9.39* 134.14

56 40MHz 0.10 54MHz 0.06 2.6GHz 45.67 761.17 29MHz* 9.39% 156.5
m = 270

2 24MHz 3.28 35MHz 2.24 2.6GHz 196.71 87.82 26MHz* 27.99% 12.50

8 24MHz 0.92 35MHz 0.63 2.6GHz 196.71 312.24 26MHz* 27.99* 44.43

16 24MHz 0.53 35MHz 0.36 2.6GHz 196.71 546.42 26MHz* 27.99%* 77.75

32 24MHz 0.35 35MHz 0.24 2.6GHz 196.71 819.63 26MHz* 27.99* 116.63

56 24MHz 0.25 35MHz 0.17 2.6GHz 196.71 1157.12 || 26MHz* 27.99% 164.65

if GF(2™) has an ONB of type I: 2¢ + 27 equals 1 or
0 in mod(m + 1),

if GF(2™) has an ONB of type II: 2 + 27 equals &1
in mod(2m + 1)

When 5 = 0, there is only one value of ¢ that satisfies the
equations. From the A table, we generate the wiring pattern re-
quired by our field multiplication design. This wiring rearranges
the m-bit inputs a and b into 3p m-bit variables

inputal[0],..., inputallp — 1],
inputa2[0],..., inputa2[p — 1],
inputb[0],..., inputb[p — 1],
where
k'"bit) is b_(2k — i),
inputal[i] k is a_(Lambdalk,0] +k — i),
inputaQ[i]_k is a_(Lambda[k7 1] +k — i).

inputb[i]_k (the

This design generator computes all the constants that are used
by various functions. In particular, it computes s = |m/p| and
r = m mod p used in field multiplication. It also calculates the

size of those variables and various values, such as the constant
1 in GF(2™) which is an m-bit variable with all bits set.

Our design generator enables users to choose appropriate en-
cryption protocols for their applications. For example, a system
can easily implement an encryption/decryption protocol using a
particular elliptic curve. Users can store their private keys in the
FPGA.

VIII. RESULTS AND EVALUATIONS

In this section, we compare the performance of various soft-
ware and hardware implementations for point multiplication,
which is the bottleneck for ECC systems. We have implemented
the software design [45] on a dual-processor Intel Xeon 2.66
GHz (compiled for one processor) with 4 GB of RAM. We also
compare our design with existing FPGA ECC cryptosystems
over GF(2™). The comparison for serial and parallel designs
on different m and p values, where p refers to the degree of
parallelization, is presented in Table II. Note that Place-and-
Route (P&R) results mean the results that are obtained from the
Celoxica DK3 and Xilinx ISE 6.2 tools, and measured results
refer to the measured results from hardware realization. Our
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TABLE III
COMPARISON BETWEEN OUR DESIGN AND THE PARALLEL REFERENCE DESIGNS [25]
Parallelism Hardware (parallel) [25] Our design Hardware (parallel) [25] Our design
P time(ms) time(ms) | speedup time(ms) time(ms) | speedup
m = 113 m = 473
1 4.3 0.51 8.43 126.2 20.76 6.08
2 2.6 0.27 9.63 69.2 10.51 6.58
4 1.7 0.15 11.33 35.7 5.41 6.60
8 1.06 0.09 11.78 19.1 2.85 6.70
16 0.81 0.06 13.5 12.7 1.56 8.14
32 0.79 0.04 19.75 - 0.91 -
64 0.77 0.03 25.67 - 0.61 -
Average 14.3 6.82
18000 T T T T T T
o) mi162-FM4 —+—
. m162-FM2 ---x---
m162—'f::m114 mx
m113-FM4 &
16000 m113-FM2 --m-
X mit3-FM1 - -0
14000 X 1
. -
Q o
S 12000 o B
- »
s e
2 e
© 10000 o X I
@ T
8000 e .
- o —
6000 o g
4000 L 1 1 1 1 1
0 10 20 30 40 50 60 70
degree of parallelism - p
Fig. 7. Area usage for various p and m values.
hardware design has been implemented on an RC2000 board TABLE 1V

containing an XC2V6000 FPGA chip. We have also verified the
correctness of each design using 300 000 consecutive point mul-
tiplications using data sent and received from the local PC. Note
that from our results, for a given m, the change of p does not ob-
viously change the critical path which shows that our designs are
highly scalable and parameterisable. The “Speedup” column in
Tables II, III, and VI shows the performance gain of our design
over other methods. This gain is due to our highly parallel ar-
chitecture which does not involve instruction fetch and decode.

As shown in Fig. 7, the area requirements for various designs
such as m = 113, 162 using one, two, and four parallel field
multipliers (1FM, 2FM and 4FM) show a linear growth of re-
source usage when the degree of parallelism p increases. It is
notable to observe the first three points in the curve m162-FM4
which correspond to when p = 1, 2, 4. We can see that when
p = 4, the circuit for the remainder of the parameterisable
field multiplier causes additional resource usage. The runtime
for performing one point multiplication is shown in Fig. 8 with
respect to four different cases: m is not divisible by p using 1
FM, m is divisible by p using 1 FM, 2 FM and 4 FM. In order
to test the effect of using different curve and base points in the
point multiplication, we have also randomly picked a number of
test cases and verified our designs.

COMPARISON OF SPEED (NUMBER OF POINT MULTIPLICATION IN A SECOND)
PER SLICES USED FOR DIFFERENT DESIGNS USING ONE, TWO, AND FOUR
PARALLEL FIELD MULTIPLIERS

Designs m=113
Leong (parallel) [25] 0.15
FM1 0.77
FM2 0.71
FM4 0.70
TABLE V

COMPARISON OF CRITICAL PATHS FOR DIFFERENT FPGA PLATFORMS USING
Two ECC DESIGNS

Platforms m =53 m =113

Xilinx Virtex : XCV1000-4 27.323ns | 33.132ns
Xilinx Virtex : XCV1000-5 23.753ns | 28.804ns
Xilinx Virtex : XCV1000-6 21.211ns | 25.721ns
Xilinx Virtex-E : XCV2000E-8 18.092ns | 23.441ns
Xilinx Virtex-2 : XC2V6000-4 16.139ns | 21.404ns
Xilinx Virtex-4 : XC4VFX20-11 9.438ns 15.367ns

Moreover, we compare our results with another hardware im-
plementation [25] for different p-values as shown in Table III.
A larger speedup is achieved for the design with a smaller m
value; we expect that this effect is due to the longer critical delay



CHEUNG et al.: CUSTOMIZABLE ELLIPTIC CURVE CRYPTOSYSTEMS

1057

0.7 T T T T T T |
1FM indivisible —+—
1FM divisible ---x---
2FM divisible ------
06 - 4FM divisible i
05 i
w 04F .
£
®
£
T 03 B
02 i
0.1 | B
* G
5]
0 1 1 1 1 1 1 1 1
100 120 140 160 180 200 220 240 260 280
field size - m

Fig. 8.

Field multiplication comparison for various m values using one, two and four parallel field multipliers (divisible means mm is divisible by p).

TABLE VI
COMPARISON BETWEEN OUR DESIGN AND OTHER EXISTING HARDWARE DESIGNS. PB STANDS FOR POLYNOMIAL BASIS AND ONB STANDS FOR OPTIMAL
NORMAL BAasIs. THE SYMBOL (*) DENOTES ESTIMATED RESULTS BASED ON THE CRITICAL PATH INFORMATION SHOWN IN TABLE V

Name Year Platform Basis m Clock Time FPGA Our Speedup Scaled* Speedup
MHz ms Slices Time (ms) Time (ms)

Agnew [2] 1989 ASIC ONB | 155 40.0 3.90 - 0.05 78.00 - -
Rosner [46] 1998 XC4062 PB 168 16.3 4.47 956 0.06 74.50 - -
Gao [14] 1999 XC4044XL ONB 53 - 2.40 813 0.02 120.00 - -
Okada [38] 2000 EPF10K PB 163 3.0 80.30 - 0.05 1606.00 - -
Okada [38] 2000 0.25-um ASIC PB 163 66.0 1.10 - 0.05 22.00 - -
Orlando [39] 2000 XCV400E PB 167 76.7 0.21 1512 0.06 3.50 0.07 3.00
Goodman [15] 2000 ASIC PB 160 50.0 7.00 - 0.05 140.00 - -
Ernst [11] 2001 XC4085XLA ONB | 155 37.0 1.30 2346 0.05 26.00 - -
Smart (Hessian form) [48] | 2001 XC4000XL PB 191 - 11.82 - 0.08 147.75 - -
Leong (serial) [25] 2002 XCV1000 ONB | 173 28.0 11.10 2148 0.07 158.57 0.12 92.50
Leong (parallel) [25] 2002 XCV1000 ONB | 113 31.0 0.75 8753 0.03 25.00 0.05 15.00
Gura [16], [17] 2002 XCV2000E PB 163 66.4 0.14 15768 0.05 2.80 0.055 2.55
Ernst [12] 2002 | Atmel AT94K40 PB 113 12.0 1.40 - 0.03 46.67 - -
Jung [22] 2002 | Atmel AT94K40 PB 128 12.0 0.15 - 0.04 3.75 - -
Kerins [24] 2002 XCV2000 PB 176 40.0 6.90 - 0.07 98.57 0.12 57.50
Bednara (LFSR) [5] 2002 XCV1000 PB 191 50.0 227 - 0.08 28.38 0.13 17.46
Bednara (parallel) [5] 2002 XCV1000 PB 191 50.0 0.27 - 0.08 3.38 0.13 2.08
Nguyen [36] 2003 XC2V6000 PB 233 100 3.35 - 0.12 27.91 0.12 2791
Satoh [47] 2003 0.13-um ASIC PB 160 | 510.2 0.19 - 0.05 3.80 - -
Lutz (Koblitz curve) [28] 2004 XCV2000E PB 163 66.0 0.075 - 0.05 1.50 0.055 1.36
Mentens [33] 2004 XCV800 PB 160 47.0 3.810 - 0.05 76.20 0.08 47.63

path in the design with a larger m value, which can be further
optimized.

Additionally, we compare our designs with previous work in
terms of speed per unit area (the number of point multiplication
per second divided by the number of hardware slices used) as
shown in Table IV. It shows that our approach is more efficient
than designs involving custom instruction processors [25], even
when area is taken into account. We also note that small and fast
are the two major goals of cryptographic designs. For example,
Orlando et al. [39] and Gura et al. [17] have about the same
speed, and [39] is about ten times smaller.

We also compare our design with other existing hardware
cryptosystems. Table VI shows the performance improvement
by using our design (with the maximum implementable value
for p) for the m-values that have been published. We adopt max-

imum parallelism since a large speed improvement can be ob-
tained by a small area increase. Since the comparison of dif-
ferent ECC implementations on different FPGAs is not possible,
we implement our designs on different FPGA architecture as a
reference comparison. As shown in Table V, the timing values
for different FPGA architectures have been compared by using
two ECC designs. It shows how the advance in process tech-
nology brings additional performance gain. For instance, the
latest Virtex-4 architecture can even speedup our m113 design
by 30%. The last two columns in Table VI show the scaled tim-
ings and their speedup when the designs are mapped using the
previous process technology.

We find that area varies approximately linearly with m and
p. Given p = 2, for m = 113 the design requires 6961 FPGA
slices whereas for m = 270, it requires 14 787 slices. So in-
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creasing the key by 2.4 times (or increasing the security level
radix by /2270 — 2113) the design needs 2.1 times as many
slices.

IX. CONCLUDING REMARKS

A customizable pipelined and parallelised ECC design for
various field operations has been proposed. This design sup-
ports various parameters, such as the key size and the degree
of parallelism, to enable tradeoff between level of security,
design size and speed. A design generator has been developed
to facilitate fast implementation. Performance analysis shows
that our design at 35 MHz is the fastest amongst existing hard-
ware implementations. It can compute a point multiplication
up to 1150 times faster than a software ECC application on a
Xeon 2.66-GHz computer. On-going and future work includes
functional extensions and optimizations such as speed improve-
ment, resource minimization, and run-time customization of
ECC designs.
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