Published in Science of Computer Programming, Vol. 15, No. 23, December
1990, pp. 217-233.

A systolic LRU processor and its

top-down development

Wayne Luk
Programming Research Group, Ozford University Compuling Laboratory,
11 Keble Road, Ozford, Fngland OX1 3QD

Geoffrey Brown
School of Electrical Engineering, Cornell University,
Ithaca, New York 14853 USA

March 1990

Abstract. We present a novel systolic processor that implements the least-
recently-used (LRU) policy for multi-level storage systems. The design is
developed by successively refining a high-level description of the algorithm.
The effect of varying the degree of pipelining on performance is discussed.
We also show how the design methodology used for the LRU processor can
be applied to the development of other systolic systems.

1 Introduction

In multi-level storage systems, data are partitioned into pages with fre-
quently used pages kept in a small, fast primary storage and with less
frequently used pages kept in a large, slower secondary storage. It may

become necessary for performance reasons to move a page from secondary

to primary storage, because the frequency with which pages are accessed
varies with time. The replacement policy determines the best candidate for
replacement among the pages in primary storage; LRU dictates that this
candidate is the page that has been accessed least recently.

An LRU implementation needs to perform two tasks: first, to maintain
a sequence of the pages, ordered by most recent time of access, that cur-
rently reside in the primary storage; and second, to provide a mechanism
for detecting the least recently used page in this sequence. Given that the
next page to be accessed is p, updating the sequence of pages consists of
deleting p from the sequence and prepending p to the result. If p is not an
element of the current sequence, then the prepending of p is accompanied
by the removal of the last element of the sequence.

Our proposed LRU processor is based upon a non-systolic algorithm
originally described, without proof, by Dijkstra [1]. It consists of a chain of
identical components similar in both size and speed to the cells of a shift

register. The novel aspects of our development of this design include:

o the architecture of the processor is obtained by successively refining a
high-level description of the LRU algorithm;

o the design is captured as a succinct expression with parameters that
can be varied to give implementations with different performance trade-

offs; and

o the development method is quite general and has been used in deriving

a number of word-level and bit-level systolic designs [4], [7].

We shall first introduce the notation for describing hardware and the
associated algebraic theorems for transforming designs. We then indicate
how the LRU algorithm, expressed as a set of recursion equations, can be
recast in this notation. The resulting representation is further refined by
algebraic transformations to produce a parametrised description from which
a range of designs with different performance trade-offs can be generated.

The application of this development method in deriving other systolic pro-

cessors is also briefly discussed. Finally we summarise our work and provide

the proofs of relevant theorems in the Appendix.

2 Notation

A simple notation for describing recursive algorithms and for expressing
such algorithms using combinators will be presented. To deal with sequen-
tial systems some additional notions, such as relations and streams, will be

considered.

2.1 Recursion equations and combinators

Objects in our notation are either atoms (such as numbers) or sequences
of objects: for instance the object (0,(1,2)) is a 2-sequence containing the
number 0 and the sequence (1,2). A sequence is an ordered collection of
elements with the empty sequence denoted by (). Sequences are appended
using the operator 7, so (1,2,3,4) = (1)°(2,3)(4)"(). #z denotes the num-
ber of elements in sequence xz. The function last is used to extract the last
element of a sequence; so last (g, 21, 22,23) = 23. The k-th component
of an N-element sequence can be extracted by the projection function mj
(1 <k < N); for example 13 (2, (y, 2)) = (y, 2).

Notice that function application is denoted by juxtaposition, and this
can be extended to two or more arguments. For instance, the value of a
function f with arguments z and y is written as f z y and means (f z) y.
To illustrate this style of description, an algorithm for summing a given

number and the elements of a sequence of numbers is as follows:

sum (s + z) zs.

While recursion equations like these are adequate for describing algo-
rithms, a proliferation of such equations tends to produce unstructured de-

scriptions. It is often useful to recast a recursive algorithm in combinators

which are higher-order functions encapsulating common patterns of compu-

tation. For instance given the combinator reduce where

reduce f a () ¥ g,

reduce f a ((z)'zs) 4ot reduce f (f az) s,

by matching these definitions with those for sum it is clear that

sum = reduce add where add z y def o+ Y.

There are two obvious benefits of expressing algorithms in combinators.
The first benefit is that the absence of bound variables in combinatory ex-
pressions results in useful algebraic properties. These properties enable de-
signs to be optimised by equational reasoning, and we shall illustrate that
in the next section. The second benefit arises from the structure associ-
ated with a combinator which indicates how components can be connected

together — for instance
reduce add s (9, 21, 22, 3)

corresponds to the connection structure in Figure 1.
Two combinators will be needed in developing the LRU processor. The
first combinator is (reverse) functional composition, (f ; ¢) = def 4 (f z).

The second combinator is row, a slight generalisation of reduce,

ow [(a,()) < ((),a) (1)
row [{a, {z)as) = ((y)ys, b) (2)
e { (v,2) [{aa),

(ys, by < row f (z,zs),
which corresponds to a linear array of components with connections on every
side (Figure 2).
Combinators such as reduce and row provide a target template for re-

casting algorithms in the first phase of our development process.

2.2 Relations and streams

To deal with sequential circuits, a combinatory expression is promoted to
a binary relation that relates a stream (an infinite sequence of data) in its
domain to a stream in its range — an approach first suggested by Sheeran [7].
Our main motivation for using relations is that it allows a non-constructive
description of circuits with feedback loops. We shall illustrate later how
this description facilitates the statement and proof of useful transformation
rules.

Different brackets will be used to indicate that the operations and data
are ‘lifted’ to the corresponding stream versions; for instance < a,b,c >
denotes a stream of sequences formed by interleaving the sequence of streams
(a, b, c). Hence if ¢ 77 denotes the stream version of “” and y; represents the

value of stream y at time ¢, then for all ¢

<>, (),

(=z>"us); = () wsy.

For instance, given two streams z and y, < z,y > represents a stream of
pairs such that for all ¢, <z, y>= (&, ys).
We shall write binary relations in infix form, so that an adder can be

defined by

<z,y>- Add z ¥ Vi, z = add z, y

= Vit. zz =+ v

We shall follow the convention to denote a stream representation of a com-
binational circuit (such as Add) by capitalising the first letter of the corre-
sponding ‘static’ expression (such as add).

We can also define combinators for relations on streams. Two compo-
nents with a common interconnection can be described by the combinator
relational composition, which is similar to the functional composition com-

binator defined earlier:

(Q;R)z ¥ Jy. (zQuy)A(yR2).

For combinational circuits ¢ and R, it is the case that Vi. z, = (¢;r) 2
implies z (Q; R) 2.
A homogeneous pipe is obtained by repeatedly composing the same com-

ponent using relational composition. Given that Id represents the identity

relation such that = Id y def o = y, we have
R® ¥ g, (3)
Rt & R R (4)

Another common combinator is parallel composition, which describes two

devices operating independently on the components of a stream of pairs,
<z,y> (@I R) <u,v> ¥ (zQu)A(yRv).

We shall adopt the abbreviation fst Q 4 @ || Id and snd @ def 74 | Q.
The stream version of the row combinator will be needed, which can be

defined as follows:

<a,z> (rowgR) <y,b>

© (a=b)A(z=y=<>), (5)
<a, <z>"zs> (row,41 R) <<y>"ys, b>

df 3, (<a,z> R <y,z2>) A(<z,25> (row, R) <ys,b>).

(6)

The subscript denotes the number of components in the row, and is omitted
when the meaning is clear.

This stream version of row can be obtained from the non-lifted version
of row (equation 1 and equation 2) with the appropriate decomposition of
streams of sequences into sequences of streams, and vice versa. Some dis-
cussions of this method can be found in [3].

A delay is given by
r Dy def gy, Ti_1 = Y-

An anti-delay, D=, is such that D; D~' = D~': D = Id. This identity

holds if ¢t belongs to the set of positive and negative integers. A latch can

be modelled by a delay with forward dataflow (such that z is the input and
y is the output in the above definition for D) and by an anti-delay with
backward dataflow.

Note that delays and anti-delays can be used on signals of any type, for

instance
<z,y> D <u,v> = VI. <z,y>1_1 = <u,v>y
= Vt <$t—layt—1> = <Ut,’l]t>‘
= (zDu)A(yDv).
Given that a component is delay-commutative, that is R;D = D; R, a

theorem concerning pipes and delays is
R = (R4 D)"; D7 (7)

which can be verified by induction on m. This theorem corresponds to
pipelining clusters of k¥ components by inserting latches between them. The
expression D~ corresponds to the latency (the number of clock cycles
needed to produce the result) incurred as a consequence of pipelining. We
shall use this theorem to pipeline our LRU design.

Another combinator that we need is a looping construct, defined by
z (loopR) y def 3, <z,2- R <2,y>- (8)

(Figure 3). loop(R; fstD) corresponds to a circuit with a delay on the
feedback path, a standard state machine configuration.

A useful result concerning rows, pipes and loops is
loop (row,, R) = (loop R)", (9)

which can be verified by induction on n (see Appendix). An instance of this
theorem is shown in Figure 4.

This theorem is important because it allows the designer to concentrate
on developing the state-transition logic of a single state machine and subse-

quently decomposing it into a cascade of state machines. The alternative —

designing and synchronising individual state machines from the outset — is

usually more complex.

Note. The loop combinator is defined such that equation 9 is expressed in

its simplest form. In Ruby [7] the loop combinator is defined by
z (loop R) y def 3, <2,z R <y,z>

so that, given that u B~* v %! v R u, the theorem (loop R)™' = loop (R™1)

holds. The relationship between the two looping constructs is given by

loop R = loop(R; Swap)

where swap (z,y) def (y,z).

(End of note.)

3 Developing the LRU processor

We are now ready to develop the LRU processor. There will be two phases
in this development: in the first phase we specify the LRU processor and
transform the specification into a combinatory expression to obtain a pre-
liminary design; in the second phase we optimise the preliminary design by
algebraic theorems to obtain a range of designs with different performance
trade-offs.

3.1 Specifying the LRU processor

Our goal is to develop LRUO, a sequential implementation of the LRU al-
gorithm. LRUOQ should have the following characteristics: its state is the
sequence being maintained, its output is the last element in this sequence,
and its input is the page, if any, to insert on the next clock cycle. This
circuit will be formed by adding latches and feedback paths to a purely
combinational circuit, InsImp, which implements the state-transition logic.
Hence we define LRUO as follows:

LRUO %' loop (InsImp: fstD). (10)

We adopt a specification which requires insImp, the static version of InsImp,

to satisfy
({p,b), zs) insImp (zs',y) = (2s' = insp bas)A(y=last zs). (11)

In this equation zs and zs’ are respectively the current state and the next
state and are sequences of pages. The output y is the last element — the
least recently used page — of the current state zs. The boolean input b issues
a request to insert page p in the current state zs,

ins p true xs def insert p s,

ins p false xs def g,

The functions insert and delete capture the LRU algorithm: insert p zs

prepends p to the sequence zs and calls delete to modify zs,
insert p () ¥ (), (12)
insert p ((z)'zs) % (p) " delete p ((z) zs) (13)

and delete p xs removes the first instance of p from zs or the last element

of zs if there is no such instance:

delete p () € (), (14)
delete p ((z)"zs) def i (z =p)V (zs={()) then zs
O (z# p)A(xs#()) then (z) " delete p xs
fi. (15)
Notice that insert preserves the size of the sequence of pages, since
#(insert p xs) = #uxs. This ensures that the system state is maintained at

a constant size: that is #zs’' = #zs in equation 11.

Expanding the definition of insert using equation 12 and equation 13,

we obtain
ins p true () = (),
ins p true ((z)"zs) = (p) delete p ({z) zs),
ins p false s = us. (16)

This completes the specification of the LRU processor.

3.2 Obtaining a preliminary design

There are many ways to implement the LRU algorithm. Since a systolic im-
plementation is desired, we shall implement the state-transition logic spec-
ified by the function ins by a linear array of N identical cells, where N is
the size of the system state. The state machine LRUO (equation 10) can
then be constructed by adding latches and feedback paths to the array of
cells; developing a systolic version of this machine will consist of distributing
latches between the cells.

In order to make use of the algebraic theorems for the combinators de-
scribed in Section 2.2, we need to transform ins into a form compatible with
the row combinator which describes a linear array structure. This is a cru-
cial step that demands insight: like conducting other inductive proofs, the
difficulty is to find an appropriate generalisation of the induction hypothe-
sis. In this case we generalise ins to a function update by introducing a new
argument ¢ which replaces the second instance of p on the right-hand side

of equation 16,

update p q true () (), (17)
update p q true ((z)zs) X (p)~ delete q ((x) zs), (18)
update p q false zs def zs, (19)
so that
insp brs = wupdate p p b zs. (20)

We now show by induction that update can be implemented by a linear
array of cells which will be called insCell. The definition of insCell will be

chosen so that
update p ¢ b zs = w1 (row insCell ((p, q,b), zs)). (21)

A schematic of the structure on the right-hand side of equation 21 is shown

in Figure 5.

10

Consider first the base case of equation 21.
update p ¢ b ()
= {equation 17 and equation 19: definition of update}
()
= {m (2,9) ¥ 2}
™1 ((), (p, ¢, b))
= {equation 1: definition of row}

71 (row insCell ((p, ¢, b),())).

Consider now the induction cases of update.

update p q false ({(z)zs)
= {equation 19: definition of update}

(x) ws

{equation 19: definition of update}
() " update z q false zs.

In the Appendix we show that

update p q true ((z)'zs) = (p) update z q (q #) zs,
hence for the induction case of equation 21,

update p q b ({z) zs)
= {combining the two induction cases for update}

(u) us

where { = if bthen p else z fi,

us = update z q ((¢ # z)ADb) zs

= {induction hypothesis}

Ty ((u) us, v)

u = if bthenp else x fi,

where (us,v) = row insCell (y,zs),
y L (e, (¢#2)ND)

11

{define y to be second output of insCell}

71 ((u) us, v)

(u,y) = (if bthen p else z fi,(z,q,(q # z)A D))
where def insCell {{p,q,b),z),
(us,v) = row insCell (y,zs)

= {equation 2: definition of row}

m1 (row insCell ({p, q, b), (z) zs)).
From these calculations we have proved that

update p ¢ b zs = w1 (row insCell {({p, q,b), zs))
= (row insCell; m) {(p, q, b), xs) (22)

where
insCell ((p,q,b),z) %' (if bthen p else z fi, (z,q,(q # z) A b)).(23)

It remains for us to show that insImp is realised by appropriately combining
instances of insCell so that InsImp is realised by combining instances of

InsCell (the stream version of insCell).

insTmp {(p, b), 25)
= {equation 11: requirement for insImp}
(ins p b zs, last zs)
= {equation 20: ins generalised to update}
(update p p b zs, last zs)
= {equation 22: update expressed in row}
((row insCell; m1) ((p,p, b),zs), last zs)
= {given dupfst (p,b) % (p,p,b) and fst f (z,y) < (f z,)}
((fst dupfst; row insCell; 1) ((p, b), zs), last zs).

From equation 23 we obtain insCell;my;m = 2, thus

last zs = w3 ((p,p,b), last zs)

12

(insCell;ma;m1) ({p, p, b), last zs)
= (fst dupfst; row insCell;my;m1) ((p, b), zs).

Given that snd f (z,y) def (z,f y) and since

((fstfsrowg;mi) @, (fstf;rowg;ma;me) z)
= (fstf;rowg;sndry) z,

we get
insImp ((p,b),zs) = ((fst dupfst; row insCell; w1) ((p, b), zs), last xs)
= (fst dupfst; row insCell; sndmy) ((p,b), zs).
Hence
insImp 4 fst dupfst; row insCell; sndmy (24)

will satisfy equation 11.

To summarise, in this section we first captured the LRU algorithm as
a set of recursion equations. These equations were then transformed into
a combinatory expression, and during the process of transformation we de-
termined the behaviour of the cells and the connection structure of the
implementation.

It should be noted that only the implementation of the state-transition
logic has been verified correct with respect to the LRU algorithm. In gen-
eral the designer must also ensure that the system will be initialised to an
appropriate state. Fortunately our LRU processor is self-initialising: it will
give the correct result after N insertions where N is the number of cells in

the processor.

3.3 Optimising the preliminary design

So far the LRU processor has been expressed as a single state machine
with a single bank of latches and long feedback paths. Our next step is to

decompose this state machine into a cascade of state machines, which can

13

then be pipelined so that the clock speed is independent of the number of
processors. In other words, we shall first construct a semi-systolic array that
will subsequently be made fully systolic.

To make use of the theorems in Section 2.2, we promote insImp to work
on streams by using the stream version of the components and combinators.
We assume that there are N components in the row of insCell, and that
N = KM where N > K > 1.

LRUO
= {equation 10: definition of LRUO0}
loop (InsImp; fstD)
= {equation 24: definition of InsImp}
loop (fst Dupfst; rowy InsCell; sndmy; fstD)
= {sndF’;fstG = fstG; sndF and loop(fstF'; G;sndH) = F; loopG; H}
Dupfst; loop (rowy InsCell; fstD); w4
= {rowF; fstD = row(F; fstD)}
Dupfst; loop (rowy (InsCell; fstD)); my
= {equation 9: looping a row expressed as a pipe of loops}
Dupfst; (loop(InsCell; fstD))N; T
= {loop(InsCell;fstD); D = D; loop(InsCell; {stD)
and equation 7: pipelining a pipe}
Dupfst; ((loop(InsCell; fstD)); DYM, D=M. 7,
= {D;m =my; D}
LRU1; DM

where
LRU1 %' Dupfst; ((loop(InsCell; fstD))X; DYM: 7.

An instance of LRU1 is shown in Figure 6.
Note that LRU1 can be used to produce pipelined versions of LRU0. The

parameter K controls the degree of pipelining: the array is fully pipelined

14

when K = 1 and M = N, otherwise signal rippling through K cells will
occur. Moreover LRU1 has a latency of M + 1 = (N 4+ K)/K cycles and
requires 3M + N = N(K + 3)/K latches; hence a smaller K results in a
faster circuit, but the latency and the number of latches in the design will
increase.

A designer should therefore select the value of K to achieve the optimal
trade-off in speed, latency and the amount of hardware for a particular LRU
processor implementation. The readers are referred to [5] for additional
discussions and examples on controlling pipelining in regular computational

arrays.

3.4 Further refinement

Two observations will be reported in this section. First of all, one can check
that a true value on the top horizontal output of the proposed architecture
(Figure 6) indicates that the input page is not already residing in the primary
storage. Hence our design can be used for generating requests for page
replacements in the primary storage.

Next, we shall sketch how the number of latches in the LRU proces-
sor can be further reduced by adopting a two-phase non-overlapping clock
scheme. In such a scheme alatch is made up of two half-latches — for instance
in NMOS technology a half-latch is implemented by connecting together a
pass transistor and an inverter. Two adjacent half-latches are activated in

opposite phases of a two-phase clock,
D = TDg1; Dy

such that Dy, is activated during phase ¢1 and Dy, is activated during phase
¢2. One can model this situation by regarding the system as containing two
interleaved but independent computations, with the intermediate results of
one computation stored in Dy;’s and those of the other computation stored
in Dyy’s, forming a 2-slow system [7].

Now the core of LRU1 consists of the expression (Kloopcells; D)M where

Kloopcells def (loop(InsCell; fstD))K,

15

indicating that LRU1 is pipelined by every Kloopcells. Given that M is an
even number, half of the pipelining latches can be saved if we are content to

pipeline by every two Kloopcells instead, giving

Kloopeells®: D M2~ Kloopeells®; Dy Dy M2
¢ ¢
= (Kloopcells; Dy ; Kloopeells; D¢2)M/2.
Of course, the speed of the system is halved as well.

Further discussions on n-slow systems can be found in [7].

4 Developing other systolic processors

Remember that the LRU processor has been developed in two steps: cast-
ing the algorithm in the combinator notation, and optimising the resulting
combinatory expression using algebraic theorems. This is a general strat-
egy for developing systolic processors [4]; and while the first step is usually
problem-dependent, the algebraic theorems used in the second step can be
applied to rewrite any expression in the required form provided that the
preconditions associated with the theorems (such as delay commutativity of
components for pipelining theorems) are satisfied.

Our optimisation of the LRU processor (Section 3.3) consists of a rewrit-
ing sequence for an expression in the form loop (row F'; fstD). This optimi-
sation can be applied to any design with its state-transition logic expressed
in row. In the following we shall outline two examples, one involving a
numerical algorithm and the other a non-numerical algorithm, which are

amenable to this treatment.

Polynomial evaluation. The evaluation of a polynomial by Horner’s rule

can be described by the following recursive algorithm:

a

peval {s,2) ()
peval (s, z) ((a)as) % peval (s x z + a,z) as.

(Notice that given meell (s,z) a % (s x z + a,z), we could have expressed

16

the algorithm as peval = reduce mcell.) It can be shown that

peval (s,z) as = (rowmadd; 72; ™) ((s,z), as)

where madd (s, z), a) < (a, (s x 2+ a,z)). Having expressed the algorithm

in row and checked that Madd is delay-commutative, we can follow the opti-
misation steps described in Section 3.3 to obtain ((loop (Madd; fstD))X; D)M,
a polynomial evaluator with a serial input and with constant coeflicients.
This description abstracts from the details of initialising the feedback latches

with the sequence of polynomial coefficients.

Sorting. The function insort a takes a sorted sequence and inserts the

element a at the appropriate place with respect to the ordering relation:

insort a () ' (a),

insort a ((z)zs) ¥ if a <z then (a,z) s
0 a > z then (z)insort a zs
fi.
It can be shown that
last (insort a xzs) = (rowscell; 72) (a,zs)
where scell (a,z) % if a < z then (a, z) else (z,a) fi. Again we can follow

the rewriting steps described in Section 3.3, since Scell is delay-commutative.
This results in ((loop (Scell; fstD))X; D)M a sorter with a serial input and
a serial output, provided that the feedback latches are initialised with the

greatest element given by the ordering relation.

17

5 Conclusion

Our implementation of the LRU algorithm consists of a regular array of
components and is suitable for integrated circuit technology. The fully-
pipelined version can accept page insertions at a very high rate, comparable
to the speed of a shift register. Furthermore it is very compact: for a system
with N pages of primary storage, it contains approximately (3N logy, N+ N)
bits of storage (for feedback and pipelined latches) and N log, N exclusive-or
gates for equality testing.

A survey of systematic methods for systolic array design can be found
in [2]. In deriving the LRU processor we adopt a simple notation to ex-
press both the algorithm and its implementation. This approach allows
designs to be transformed using ‘traditional’ mathematical manipulations
such as inductive proofs and equational reasoning. The resulting expressions
are concise and can be used to generate designs with different performance
trade-offs; and it has been shown that the transformation strategy is general
enough to optimise other systolic architectures. Currently tools [6] are being

prototyped to support this style of systolic processor development.

Acknowledgements. We thank Michael Goldsmith, Graham Hutton, David
Gries, Geriant Jones, Frank Luk, Fred Schneider and an anonymous referee
for their careful reading of earlier drafts of this paper. The first author
also expresses his gratitude to the Croucher Foundation and to Rank Xerox

(UK) Limited for sponsoring his research.

18

Appendix
We shall first prove that

loop (row,, R) = (loop R)". (25)
The proof is by induction on n. Consider the base case of equation 25,

z (loop (rowg R)) y

{equation 8: definition of loop}

Jz. <z,z> (rowg R) <z,y>

{equation 5: definition of row}
. (z=y)A(z=<>)
= {equation 3: definition of pipe}
z (loop R)° y
as required. Consider now the induction case of equation 25,

+ (loop (rows1 1))
{equation 8: definition of loop}

Jz,28. <z, <z> 28> (row,41 R) <<z>"zs, y>

{equation 6: definition of row}
Ju,z. <z,z> R <z,u> A Jzs. <u,zs> (row, R) <zs,y>

{equation 8: definition of loop}

Ju. z (loopR)u A u (loop(row, R))y

{induction hypothesis}

Ju. z (loopR)u A u (loopR)" y
= {equation 4: definition of pipe}

z (loop R)"*! y.

(End of proof.)

Next, we shall prove that

update p q true ({(z)'zs) = (p) update x q (q # z) xs.

19

The proof is by folding and unfolding the definition of update and delete.

update p q true ((z)'zs)

= {equation 18: definition of update }
(p) " delete q ({z) zs)

= {equation 15: definition of delete}

(p) if (¢g==2)V (2zs={()) then zs
0(¢#z)A(zs#()) then (z)" delete q zs
fi

= {equation 18: definition of update }

(p) if (¢g==2)V (zs=/{()) then zs
0(q¢#z)A(zs# ()) then update z q true zs
fi

= {expanding if }

(p) "if ¢ =z thenzs
0 zs = () then zs
0(qg#z)A(zs# ()) then update z q true zs
fi

= {equation 17 and equation 19: definition of update}

(p) " if ¢ =« then update © ¢ (¢ # ©) ws
0 zs = () then update z q (¢ # z) zs
0(qg#z)A(zs#()) then update z q (¢ # z) zs
fi

— {simplify)
(p) “update z q (q # z) xs.

(End of proof.)

20

References

[1]

E. W. Dijkstra, Monotonic replacement algorithms and their implemen-
tation (EWD 465, 19 December 1974), in: E. W. Dijkstra, Ed., Selected
writings on computing: a personal perspective (Springer-Verlag, 1982)
84-88.

J. A. B. Fortes, K. S. Fu and B. W. Wah, Systematic approaches to
the design of algorithmically specified systolic arrays, in: Proceedings
of International Conference on Acoustics, Speech and Signal Processing
(IEEE, 1985) 300-303.

G. Jones and M. Sheeran, Timeless truths about sequential circuits, in:
S. K. Tewksbury, B. W. Dickinson and S. C. Schwartz, Eds., Concurrent
computations: algorithms, architectures and technology (Plenum Press,
1988) 245-259.

W. Luk and G. Jones, From specification to parametrised architectures,

in: G. J. Milne, Ed., The fusion of hardware design and verification
(North-Holland, 1988) 267-288.

W. Luk and G. Jones, Parametrized retiming of regular computational
arrays, in: P. M. Dew, R. A. Earnshaw and T. R. Heywood, Eds.,
Parallel processing for computer vision and display (Addison-Wesley,
1989) 50-63.

W. Luk, G. Jones and M. Sheeran, Computer-based tools for regular
array design, in: J. McCanny, J. McWhirter and E. Swartzlander, Eds.,
Systolic array processors (Prentice Hall, 1989) 589-598.

M. Sheeran, Retiming and slowdown in Ruby, in: G. J. Milne, Ed.,
The fusion of hardware design and verification (North-Holland, 1988)
289-308.

21

) ih) 3

R S U

add add add add

Figure 1: reduce add s (g, 21, 22, 23) = y.

22

o A) 3

Yo Y1 Y2 Y3

Figure 2: row [(a, (20, 21, 22, 23)) = ((¥0, ¥1, Y2, Y3),).

23

z (loop R) y def 3, <z,2> R <z,y>

Figure 3: The loop combinator.

24

’7
— R — R R R
[|

loop (rows R) = (loop R)?

Figure 4: An instance of a theorem involving loop, row and pipe.

25

(X

xrs

e

e

e

e

e

e

Figure 5: zs' = w1 (row insCell {{p, q,b), zs)). (IC = InsCell.)

26

s

!

e

t

Figure 6: Design LRU1 (N =6, K =2, M = 3). (¢ = D and IC = InsCell.)

t_

ree

e

e

t

27

t

Tt

e

e

t

t_

e

