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Abstract: The paper first proposes requirements for an ideal platform for
codesign research. A new board developed at Imperial College, the Riley-2, is
shown to meet these requirements. It is a PCI based board consisting mainly of
four dynamically reconfigurable FPGAs and an embedded processor. A VHDL
model of the main Riley-2 system, including all components except the PCI
interface, is described. Two design routes, one based on VHDL with
parametrised hardware libraries and the other based on a novel codesign
language called Cedar, have been developed for Riley-2. Finally, an image
processing application running on a PC with the Riley-2 and a Quickcam
camera, is described.

1. Introduction

Electronics systems containing application specific hardware working alongside an
embedded microprocessor are now common place. However, to design such systems
quickly and reliably, while exploring the design space sufficiently to ensure near
optimal solutions presents many new challenges. The problem is further complicated
by reconfigurable hardware such as FPGAs, some of which can be dynamically
reconfigured. This paper describes the design of an experimental platform, known as
Riley-2, that supports our research in codesign and reconfigurable computing at
Imperial College. It will also describes the tools that we have been developing to
assist the design and analysis of such systems. We hope that the collection of tools
would form a framework that facilitates rapid design exploration, evaluation and
validation.
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2. Platform requirements

An ideal platform for codesign and reconfigurable computing would allow us to
investigate both embedded and PC acceleration applications. Such a platform would
comprise the following:

1. A general purpose processor (possibly used in embedded systems), with a
modest amount of memory.

2. An adequate amount of reconfigurable resources, comprising a number of
FPGAs with local memory. This would allow investigation of partitioning
across FPGAs.

3. A flexible interface to the reconfigurable resources, allowing fast, partial and
runtime reconfiguration of the reconfigurable resources.

4. A flexible and extensible external IO interface.
5. A fast host interface.
6. A complete model of the system, which allows detailed examination of  the

interaction between the software and the dynamically changing hardware.

There are many FPGA-based computing machines which could be used in codesign
research, however most fall short of the above requirements. For example the Riley
board (Riley-2’s predecessor) [1] only has one FPGA, has a slow interface to its host
and does not support partial configuration. A more recent PCI-based XC6216 board,
whose architecure is outlined in a previous paper [2], only has a single FPGA and no
processor.

3. Riley-2 overview

Riley-2 is a successor to an earlier system, known as Riley [1], designed by Hewlett
Packard laboratories, Bristol. It is designed to be used in a Pentium PC with a PCI
interface. A photograph of Riley-2 can be seen in Figure 1.

Fig. 1. Riley-2 board



Figure 2 shows a block diagram of the Riley-2. The design has two main buses, the
microprocessor’s local bus and the reconfigurable resource (RR) bus.

 The local bus connects the components meeting requirement 1 of the above list. The
i960JF core is a 33 MHz integer RISC core used in many embedded system designs.
The shared memory is implemented with a single 72 pin SIMM, currently seating a 16
Mbyte 50 ns BEDO DRAM, allowing a burst throughput of 88 Mbytes/sec. The boot
ROM, not shown in the diagram, is a 256 Kbyte FLASH ROM, which contains the
boot-up sequence and initialises the PCI interface.

In accordance with requirement 2, the RR bus connects four reconfigurable resource
units, each unit containing a Xilinx 6216 FPGA and a 512 Kbyte fast local memory
with a 32 bit data bus.

The RR interface along with the 6216s [3] provides the i960JF core with a flexible
interface to the reconfigurable resources (requirement 3). The 6216 has the following
features:

• Advance microprocessor interface with direct read/write access to the
reconfigurable resources. All registers (6216 internal and user defined),
SRAM control store memory and local SRAM are mapped onto the
microprocessor address space.
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Fig. 2. Riley-2 block diagram.



• Advanced dynamic reconfiguration capability with a high speed CPU
interface, unlimited and partial reprogrammability.

The implementation of the PCI interface gives the host programmer flexibility by
mapping the i960JF’s shared memory and the reconfigurable resources into the host
processors address space. The processor, Intel’s i960RP [4], contains a 32 bit PCI
interface in the same chip as the i960JF core. It has inbound and outbound transfer
queues which can support sustained burst transfers of up to 132 MBytes/sec
(requirement 5). Actual speeds will depend on the host’s PCI clock and on its chipset.

The RR interface also has a 44 pin external IO connector,  which provides access to
any external device, such as a video source. Since the RR interface is implemented
with an FPGA, the IO interface can be changed and is very flexible (requirement 4).

4. Cosimulation

One important aspect of a codesign environment is the possibility of cosimulation, as
outlined in requirement 6. Both hardware and software can be simulated together with
proper interface between them. To facilitate cosimulation of the Riley-2 System, we
have developed a functional simulation model in VHDL for the i960 microprocessor.
The model handles i960 machine code level instructions produced by the gnu gcc960
compiler. In addition, we have also developed a VHDL model for the rest of the
Riley-2 system (except for the PCI interface), including models for all the memory
modules and the 6216s. A commercially available VHDL simulator is used for
cosimulation.

The i960JF core model from the Riley system [1] was modified for the Riley-2. This
was a relatively simple task since the processor core is the same. Due to the
complexity of the microprocessor core, the following compromises were made. Only
the functional behaviour of the instruction is modelled. Not all instructions and
processor modes are implemented, however these can easily be added if needed.
Pipeline timing and architecture is only approximate, since Intel does not publish the
detailed internal architecture of its chips. The local bus model does not take account
of setup and hold times. However, the following functionality was modelled correctly:
the local bus protocol, the internal data and instruction caches, the register file and
scoreboarding hardware, and the on-chip memory. Hence, the model only gives an
approximate cycle-by-cycle model, but the bus traffic is modelled correctly.

The RR interface is actually an XC4013E whose functionality is synthesised from
VHDL. The model is the actual code used to create the 4013E configuration.

The following 6216 functionality is modelled: Microprocessor interface; State
accesses; Map register; Cell hierarchy; Cell functionality. The 6216 model can be run
on its own with a given 6216 configuration (CAL file), or the entire Riley-2 system
can be simulated, with i960 code parsing a CAL file. Wildcarding has not yet been
fully tested, since the current tools do not create any CAL files that use this feature.
However, the VHDL code has all the necessary features to support wildcarding. The



model allows us to look in detail at the bus traffic during execution of a program. The
exact details of configuring and executing FPGA designs can also be easily extracted.
The detail in the 6216 model allows us to simulates FPGA designs that change
dynamically. However, because of the complexity of the model, simulation is very
slow and memory hungry. In most cases it is only practical to simulate part of the
6216.

5. Design Tools

In developing design tools for Riley-2, we aim to meet several challenges, including:

1. Efficient utilisation of FPGA resources;
2. Systematic description and compilation of hardware, software and host

programs;
3. Versatile facilities for simulating system operation at different stages of the

development process;
4. Appropriate strategies for partitioning data for local and global memories,

and for partitioning hardware and software;
5. Performance enhancement by reconfiguring FPGAs at run time.

The following provides an overview of how the first three challenges can be met using
parametrised libraries and the Cedar system. Some work on meeting the remaining
challenges, such as design tools for exploiting run-time reconfigurability, can be found
elsewhere [5].

Fig. 3. High level compilation route

5.1 Overview

The  first  challenge  is  to  enable  efficient  utilisation  of FPGA resources.  Our
approach  allows the user to optionally  guide placement in a high-level  language;  for
instance  we have employed  user-defined attributes in VHDL for this purpose. This
development route is supported by a package of commonly-used library components



that have been optimised for the 6200  series  [6].  They  can be customised  by
parameters  such as the size of input and output  operands,  the separation  between
the bits of an operand  and the number  of pipeline  stages.  In particular, the ability to
specify the separation between bits allows the interfaces of connected components  to
be aligned.  This alignment  leads to a more predictable  placement  and  reduces  the
amount  of routing  resources required.

The  second  challenge  is to systematise  description  and  compilation of hardware,
software and host programs.  Our approach supports a style of hardware/software
codesign,  in which  both the hardware  and software parts  of an application  are
defined  in a single  source  file.  This infrastructure  is built on top of the VHDL route
explained  above,  and there is a simple but effective mapping from Cedar to the
VHDL libraries or to Xilinx XBLOX components (Figure 3).

The software components  running on the I960 and the PC host are usually written  in
C or C++,  and the  hardware  components  are  described  in a language called Cedar.
Cedar is loosely based on C, but has extensions to deal  with  parallelism  and
communication;  its  semantics  clearly defines the cycle-by-cycle behaviour  of a
design and is similar to that of Handel  [7].  Cedar achieves  portability  by using a
target-specific interface,  itself  written  in  Cedar,  to provide  a standardised  set of
channels  with  which  to communicate  with  the processor  and other components of
the board. At the most abstract level, therefore, a design can be specified  in a
completely  imperative  manner using C and Cedar.  This method treats the software
and hardware  as parallel processes  of equal status that communicate using a message
passing scheme.

Our  third  challenge  is to provide  facilities  for simulating  system operation at
different stages of the development  process.  At the early stages,  a design for Riley-2
involving  C and Cedar can be tested using a high-level  simulator that we have
developed.  If necessary,  sections of a design may be optimised by redefining  them
using register transfer level  Cedar  or by the direct  use of Riley-specific  features
such as Well Known Address  accesses.  Further  refinement  is possible  via the
creation of custom VHDL libraries,  which can then be included  into the main Cedar
design.  When all hardware  descriptions  have been compiled into  VHDL,  their
behaviour  can  be obtained  using  commercial  VHDL simulators.  After FPGA
programming files have been generated,  detailed interactions  of the Riley-2 system
can be explored using the VHDL model of Riley-2 outlined in the previous section.

Further details of our tools will be given in the next section, when we consider a
simple example.



5.2 Example

We  illustrate  the  design  route  with  an example  which  performs  a threshold
transformation  on an image.  In this example,  the threshold value  is specified  at
compile  time  and the hardware  process  stores just one pixel.  Two fragments  of the
codesign file are shown in Figure 4 and Figure 5,  which contain Cedar and C code
respectively.  The Cedar  part enters  an infinite  loop in which  a pixel is read from
the `original_channel’  channel and the processed  value is returned via the
`processed_channel’.  The code is encased in a `using’  directive  which tells the
compiler  to use the interface  called `riley6216channels’  to provide these channels.
The software  in Figure 5  uses the matching communication  primitives to send each
pixel of an image to the hardware and reads back the processed result.

The implementation  of Cedar  is based on the one-hot  encoding  method, which
relies  on a small set of token-passing  control  components  [7]: the presence  of a
token in a circuit  indicates  that the corresponding statement is being executed.  A
library-based strategy is adopted in the design of the Cedar compiler.  From the source
code,  an abstract syntax tree is generated  which  is then transformed  into modules

typedef unsigned int pixel : 8;
using riley6216channels
{
  pixel original_pixel;
  while (true)
  {
    input  (processor.out [original_channel],
            original_pixel);
    output (processor.in [processed_channel],
            original_pixel<threshold?
black_pixel:white_pixel);
  }
}

Fig. 4. Simple Cedar threshold program

for (y=0; y<height; y+=1)
{
  for (x=0; x<width; x+=1)
  {
    output (threshold_fpga.in  [ original_channel],
picture[y][x]);
    input  (threshold_fpga.out [processed_channel],
newpicture[y][x]);
  }
}

Fig. 5. Inner loop of software program



independent of the chosen implementation  technology [8];  these modules provide the
interface to the back-ends which target technology-specific libraries.

The  Cedar  compiler  currently  possesses  two back-ends:  one converts the  high-
level  modules  into  Xilinx  XBLOX  format,  while  the other translates  it into
VHDL  that  uses  the 6200 libraries.  The language provides a mechanism  to include
designs written in other languages into the output  of these  back-ends.  Such designs
are treated  by Cedar as external  functions  that can be called  in the same  way as true
Cedar functions.  These  functions  can be bound,  at the user’s  request,  to built-in
operators  such as addition  and multiplication.  This external function  facility is
especially flexible, since it supports polymorphic arguments and return values,  multi-
cycle  functions and,  if necessary, allows  the function  to be managed  by a dedicated
Cedar process.  For example,  the language can describe interfaces  to multiplier
libraries that are pipelined or combinational,  that operate on signed or unsigned
numbers,  that are parametrised  or of fixed size,  and that require the two inputs to be
the same size or allow different bit widths.

The  other  components   of  the  high-level  modules  are  mapped  onto standard
6200 libraries  when applicable,  and onto Cedar-specific  VHDL entities  otherwise.
In particular,  control  logic  is mapped  using a combination  of gates  and custom
libraries  such as the IOPRIM  block, which  implements  the (symmetrical)  input and
output  message  passing primitives.  Similarly,  parallel statements are implemented
by the PAR block,  which collects  tokens from parallel  processes  and releases  a
token when they have all finished.

Fig. 6. Pictorial representation of VHDL circuit description produced from Figure 4.



The VHDL  code  for the threshold  example  is illustrated  in schematic form in
Figure  6.  The riley6216  channel  interface  uses a wrapper that  consists  mainly  of
buffers  and  a small  amount  of bus control logic,  and has the input  and output
ports  shown  on the left  of the diagram.  The control  logic that was generated  for the
design is shown in the top half.  The START  block  is used  to generate  a token  after
reset, while the two instances of IOPRIM are responsible for controlling the transfer
of data,  and the OR gate  implements  the loop.  The  data path is shown  below the
control  logic;  the PREG and leftmost  NMUX2_1 together  form the ‘original_pixel’
variable,  while  the other  NMUX2_1 implements  the  condition
`original_pixel<threshold  ?  black_pixel  : white_pixel’.  GTN_UC  (Greater  ThaN
Unsigned  Combinational)  is  the library that was chosen to implement the
comparison operator.

Other applications, mainly for image and video processing, are currently being
developed using the design tools described above.  The Cedar compiler has also been
used in producing designs for other FPGA systems, such as the EVC-1 board from
Virtual Computer Corporation.

6.  Applications

Support for Windows 95 has been developed in the form of a plug-and-play device
driver and a simple monitor program. Using these, a demo program was written which
performs some image processing form a video source. The application setup is shown
in Figure 7. The design continuously grabs frames from the QuickCam, processes
them on the Riley-2 and displays the result  in a window.

The application can display either a normal picture (Steps 2 and 3 in Figure 7 are not
performed),  an inverted picture, a Gaussian filter or various edge detection pictures.

This is achieved by configuring three of the 6216s with these designs, a simple
inverter, a filter/edge detector, a filter/edge detector followed by a thresholding
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Fig. 2. Image processing application setup



function. The latter two are based on a design outlined in a previous paper [2]. All
four designs could have been fitted in a single 6216, but for test purposes three chips
were used. Currently the frame size is only 320x240, 64 gray levels and the
application achieves a very low frame rate. This is mostly due to the limitations of the
QuickCam, since there is no visible difference in frame rate when the application is
displaying a normal or a processed picture.

7. Conclusions

Many experimental platforms have been designed to support research in
reconfigurable computing in the past.  Riley-2 is perhaps unique in providing the
necessary architecture to experiment with practical issues concerning dynamic partial
reconfiguration and hardware/software codesign. For example, accessing the static
memory on each 6216 from the PCI or local bus provides a number of interesting
alternatives. One could configure each 6216 such that the SRAM device appears
permanently on the memory map of the local bus. Alternatively, one could use the
demand-driven model where the 6216 are dynamically configured to provide accesses
to the SRAM when necessary.  These two alteratives represent a possible trade-off
between hardware resource and reconfiguration time. A number of demanding real-
time image processing applications are currently being implemented on the Riley-2 in
order to evaluate the strength and weakness of such a computing model, the efficiency
of the cosimulation software, and the effectiveness of our design tools.
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