NH,
i3
%

ELSEVIER

Journal of Systems Architecture 47 (2001) 315-337

JOURNAL OF
SYSTEMS
ARCHITECTURE

www.elsevier.com/locate/sysarc

An integrated system for developing regular array designs

Shaori Guo **, Wayne Luk °

& Philips Semiconductors, Sunnyvale, California, CA 94086, USA
® Department of Computing, Imperial College of Science, Technology and Medicine, 180 Queen’s Gate, London SW7 2BZ, UK

Abstract

This paper describes an integrated system for developing regular array designs based on the block description
language Ruby. Ruby supports concise design description and formal verification. A parametrised Ruby description
can be used in simulating, refining and visualising designs, and in compiling hardware implementations such as field
programmable gate arrays. Our system enables rapid design production, while good design quality is achieved by (a) the
efficient instantiation of device-specific libraries, (b) the size optimisation of bit-level components using the design
refiner, and (c) the exploitation of regularity information at source level in the library composition process. The de-
velopment and implementation of several median filters are used to illustrate the system. © 2001 Elsevier Science B.V.

All rights reserved.

Keywords: Regular array designs; Ruby; CAD tools; Median filters; FPGAs

1. Introduction

A regular array design is a circuit consisting of
processing elements connected to their neighbours
in a regular manner. Regular array designs have
been widely used in signal and image processing,
multimedia and communication systems [17,28].
Many designers recognise the importance of de-
veloping high performance regular array designs
rapidly and cheaply, particularly for systems-on-a-
chip applications or embedded systems where de-
manding computations have to be implemented
efficiently.

We believe that the key to effective development
of regular array designs is to use descriptions and
support tools that can fully exploit their charac-
teristics, such as regularity and spatial and tem-

* Corresponding author.
E-mail address: scott_guo@yahoo.com (S. Guo).

poral locality, for their specification, validation
and implementation. Most VLSI CAD tools based
on standard hardware description languages such
as VHDL and Verilog, however, do not make the
best use of these characteristics. A VHDL de-
scription of a regular array design, for example, is
usually larger than it needs to be, and takes a long
time to code, debug and modify. Besides, VHDL
does not provide an efficient mechanism for cap-
turing the regular layout of a regular array design,
and final implementations often rely on an auto-
matic placement and routing tool to generate
physical layouts which may not preserve the in-
herent regularity in the original description. Con-
sequently the placement and routing process is
often time-consuming, and does not always result
in area and time efficient designs. Furthermore
VHDL is a complex language, and formal verifi-
cation of VHDL designs is often difficult.

The objective of the work described in this pa-
per is to build a system in which regular array

1383-7621/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S1383-7621(00)00052-7

316 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

designs can be efficiently captured, refined, vali-

dated and implemented. The system should sig-

nificantly reduce design efforts and design cycles.

To meet this objective, we have developed an in-

tegrated system which has the following main

features:

1. The system is based on a simple and powerful
notation for representing regular array designs.
Both architecture and behaviour can be cap-
tured in a single parametrised description, and
both high-level (such as word-level) and low-
level (such as gate-level) aspects of a design
can be described in a uniform framework.

2. The system facilitates graphical representations
which can be generated automatically from
high-level descriptions. It provides useful visual
feedback which enables designers to rapidly ob-
tain an overview of a design, to locate specific
parts on which they can focus, and to obtain in-
tuitions for design optimisation and verifica-
tion.

3. The system supports a hierarchical design para-
digm: there is a refiner that automatically pro-
duces, from high-level descriptions, efficient
low-level designs that satisfy user-given con-
straints. This enables designers to focus on the
high-level architectural aspects without being
overwhelmed by low-level details.

4. There are also high-level synthesis tools such as
hardware compilers to reduce design time and
complexity. As a result, designers can spend
more time on exploring alternative designs
and on evaluating the effects of different data
representations.

5. Our system provides a variety of ways for de-
sign validation, depending on the level of detail,
generality and confidence in design correctness.
It supports design visualisation, mixed bit-level,
numerical and symbolic simulation as well as
algebraic transformation.

6. Finally, the system is based on a declarative
language which supports design optimisation
by correctness-preserving transformations. This
framework offers users confidence in the cor-
rectness of its optimisations, since their validity
can be checked by calculation and proof.

The declarative language, Ruby, that we use
was invented by Sheeran [38] and further devel-

oped by Jones [13-15], Luk [20-23] and others

[36,37,39]. The main reasons that we have chosen

Ruby rather than other hardware description

languages such as VHDL [6,31] are as follows:

e Ruby supports succinct design capture. A cir-
cuit, especially one with a regular structure,
can be described more concisely in Ruby than
in other hardware description languages such
as VHDL. The regularity information can be ex-
ploited in the synthesis and validation processes.

e Ruby can capture both the behaviour and the
architecture of a design within a single notation
and in an elegant manner; this is seldom the case
with other languages.

e Ruby has a well-understood semantics. Conse-
quently it is easy to document design decision,
to refine a design, to compare alternative de-
signs, and to demonstrate the correctness of an
implementation.

Various median filters will be used to illustrate

these points.

While several theories for regular array design
[28] have been under development for over ten
years, the contribution described in this paper
appears unique in providing an integrated system
for producing such designs, particularly in dealing
with practical bit-level implementation aspects.
The following reviews some other tools for auto-
matic synthesis of regular array designs from high-
level descriptions.

ALPHA is a system with a functional language
based on the formalism of affine recurrence equa-
tions [7,40,41]. Regular array designs are derived
through formal, correctness-preserving transfor-
mations applied to programs in ALPHA. The re-
sulting design is specified as a variant form of
ALPHA known as ALPHAO, which can be used
for generating netlist, and the netlist can then be
implemented using a commercial CAD tool. AL-
PHA has shown its strength in automatic synthesis
of regular array designs, especially for applications
related to affine problems. Our work is comple-
mentary to ALPHA in that Ruby is best for de-
signs conveniently captured using binary relations,
while ALPHA is best for designs conveniently
captured using affine recurrence equations.

Another tool based on a functional language
for hardware development is Lava [4]. Lava ex-

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 317

ploits polymorphism and higher order functions in
the functional language Haskell [3] to capture de-
sign regularity which results in abstract and gen-
eral descriptions. Functional language features
such as type classes and monads have been ex-
ploited to implement standard circuit analyses
such as simulation, formal verification and the
generation of VHDL and EDIF for producing real
circuits. So far, Lava does not include automatic
refinement facilities or visual aids as our system
does.

Singh prototyped a hardware compiler, known
as the Glasgow Ruby Compiler, which compiles a
dialect of Ruby into FPGA devices [39]. The ver-
sion of Ruby which Singh has adopted is specia-
lised for describing FPGAs, and uses a different
convention from the one used in this paper. Lay-
out information is explicitly specified in his Ruby
expressions which are similar to those in the OAL
language [26] that our descriptions are compiled to
(see Section 3.5 for further details of our hardware
compiler). A design sketcher [5] has also been de-
signed as part of the Glasgow Ruby Compiler. The
sketcher differs from ours in that it is based on an
interface conversion scheme, and diagrams pro-
duced seem to contain more jogs.

Sharp and Rasmussen have been working on
the T-Ruby design system for VLSI circuits start-
ing from a high-level, mathematical specification
of their behaviour [37]. The T-Ruby system pro-
vides facilities to perform design transformation
and simulation, to prove the correctness of a de-
sign and to translate the Ruby descriptions into
VHDL for synthesis by a commercial tool. T-Ru-
by, at present, does not include facilities such as
automatic refiner, design sketcher or visualiser.

Li and Leeser [18] have developed the HML
system based on the functional language SML [30].
HML supports advanced type checking and type
inference techniques to verify hardware design
rules, and designs can be translated into a syn-
thesisable subset of VHDL. Unlike our approach,
HML does not exploit regularity in design imple-
mentation, and no visualisation facilities have been
reported so far.

The above overview is intended to provide an
outline of related work, and is not meant to be
exhaustive. For instance, many useful theoretical

and practical results have been reported in the
series of Conferences on Application-specific Ar-
ray Processors (in which [7] appears). However, it
is not always clear whether the tools described in
related publications have been used in developing
actual hardware implementations for working
systems. We have used the tools presented in this
paper for two FPGA-based systems: CHS2x4 [1]
and Riley [16]. Further details can be found in
Sections 3.5 and 4.7.

The paper is structured as follows. Section 2
presents a brief introduction to Ruby. An over-
view of the integrated system is described in Sec-
tion 3. Section 4 presents the development of
several regular median filter designs as a case
study. Conclusions are drawn in Section 5.

The short introduction to Ruby in Section 2 is
written mainly for readers who have a background
in declarative languages, particularly those sup-
porting higher order functions such as Haskell [3]
and ML [30]. We have, however, separated the
details involving the Ruby language from the es-
sential ideas. Readers should be able to appreciate
the main features of our system in Section 3 and
the block descriptions in Section 4 (using Tables 1-
5 in Sections 4.3-4.6 to understand the function
and connectivity of the blocks), without following
the intimate details of the Ruby expressions.

2. Introduction to Ruby

In this section, we provide a brief introduction
to Ruby, the language used in our system for
parametrised description of block diagrams. Our
major focus will be put on the definitions and
concepts relevant to this paper; further details
about the background and the theoretical aspects
of Ruby can be found elsewhere [13,21,37].

In Ruby a design is captured by a binary rela-
tion R, which relates the interface signals x and y
in the form of x Ry. For instance the max operator,
which produces the maximum of two numbers,
can be described by

(x,y) maxz,

where z = (maximum(x,y)). So (3,4)max4 and
(10, 6) max 10.

318 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

The min operator for finding the minimum of
two numbers can be described in a similar way.

2.1. Combinational primitives

There are two kinds of combinational primi-
tives in Ruby: wiring primitives and computation
primitives.

Wiring primitives select or regroup components
of composite data. The simplest wiring primitive is
id, defined by:

xidy<=x=y. (1)

Other common wiring primitives are defined as
follows:

x fork (y,2) <= x=y =1 (2)
(X,)Mz <= x =z, (3)
(x,y)mz=y=z, 4)
(x,y) swap (u,v) <= (x =v) A (y = u), (5)

(x, (v,2)) 1sh ((u,0),w) <= (x=u) A (y = v)
A(z=w), (6)

A(z=w). (7)

Computation primitives include operations on in-
tegers, such as:

(x,y)add z <= z=x+y, (8)
(x,y) mult z <=z =x x y, 9)
(s, (x,)) muxr z <= z — {; ! ﬂjejw(z’se’ (10)
and operations on bits, such as:

(x,y)and z <=z =x Ay, (11)
(x,y) or z <= z=xVy, (12)
(x,y) x0r z <=z = (—x V. =) A (x—p), (13)
X not y <=y = . (14)

2.2. Series and parallel composition

The central idea in Ruby is that complex de-
signs can be formed by composing simpler designs,
using combinators which are higher order func-
tions describing common patterns of computation.
For instance, two components R and S with a
compatible interface can be put together by (;) to
form a composite design R ; S (Fig. 1(a)):

XR; Syy<=H:(xROAN(tSYy), (15)

where x is the domain and y is the range of (R ; S).
Clearly, the domain of (R ; S) is that of R, its
range is that of S and the range of R is connected
to the domain of S. The 3 symbol means that,
unlike x and y, ¢ is not an interface signal of the
composite and cannot be observed.

In general, we can describe the composition of n
identical copies of a circuit R by repeated series
composition R" (Fig. 2(a)), where

R’ =id, (16)
R[+l — R : R[
id, the identity relation, has been defined in Sec-
tion 2.1.

If there are no connections between R and S,
the composite is represented by parallel composi-
tion [R, S] (see Fig. 1(b)), where

x1 4 S I—yl

(@) (b)XO — R — y0

Fig. 1. (@) R ; S. (b) [,).

sos it

(a) (b) (c)
Fig. 2. (a) R®, (b) map, R and (c) A3 R.

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 319

(xo,x1)[R, S](vo, 1) <= (x0 R y0) A (x1 S).
(17)

Given id is the identity relation defined in Section
2.1, we have the definitions of the following op-
erators:

fst R = [R,id], (18)
snd R = [id, R]. (19)

Repeated parallel compositions of n copies of R
are described by map, R (Fig. 2(b))

map, R =[R,...,R]. (20)

n

A triangular-shaped array is described by A, R
(Fig. 2(c)),

A, R=1[id,R,R* ... ,R"". (21)

2.3. Other combinators

Inverse is defined by
xR 'y yRux (22)

It can be treated as a reflected version of R.

Two rectangular components with connections
on every side can be assembled together by the
beside («») and the below () operators such that:

(a,(b,c))(R < S){(p,q),7)
= 3t: ({a,b) R (p,0)) A ((t,¢) S (q,r)),
(23)

{{a,0),c)(RT S)(p, (g:7))
= 3t: ((b,c) S {t,r)) A ({a,1) R (p,q))-
(24)

Note that we adopt the convention that signals in
the western and the northern sides are mapped
onto the domain, and signals in the southern and
the eastern sides are mapped onto the range [10].

Block diagram for beside and below are shown
in Fig. 3(a) and (b), respectively. row, is the gen-
eralisation of beside, which is defined as follows
(Fig. 4(a)): given that x= (xp,...,X,_1), V=

|b |C b— S — I
a— R t SH—r t
| | a— Ri—q
P q i
(a) (b) p

Fig. 3. () R~ 5. (b) R | 5.

ik dh 8

(C) (b) ()

Fig. 4. (a) row; S, (b) rdl; S and (c) loop R.

(0, - - -y ¥u_1) are two n-tuples of signals and R is a
relation, row, is defined by

(@,x)(row, R)(y,b)
= Is:(so=a)A(s,=b)A(Vi: 0<i
< n'<Si7xi> R (.yiasi+1>)' (25)
Similarly, given x = (xq,...,x,_1) is an n-tuple of
signals and R is a relation, rdl, (Fig. 4(b)) is de-
fined by
(a,x)(rdl, R)b <= Ts: (s = a) A (s,
=b)A(Vi: 0<i
< n.{si, x;) R siy1). (26)

2.4. Sequential circuits

So far we have been using relations to model
combinational circuits. There are primitives that
do not possess a static interpretation. For exam-
ple, a delay relation D is defined by

xDy<=Vt:x_ =y,

where x and y are time sequences containing data
at successive clock cycles — this describes the be-
haviour of a latch. It has been shown that the
Ruby laws for the static interpretation, such as
those in Section 4.5, are also valid in the time se-
quence interpretation [13].

320

We use the symbols &— to represent delays.
For example,

N N, N N N
I e

is a picture of D°.

Latches are also used in serial circuits to pre-
vent unbuffered loops in the feedback path. A
design R containing an internal feedback path s
can be modelled by the loop operator loop (see

Fig. 4(c))

x(loop R) y <= Fs: (x,s) R (s,y). (27)

3. The integrated system
3.1. Overview

Fig. 5 shows an overview of the integrated
system that we have implemented. The system
consists of two parts. The first part includes an
optimising transformer, a numeric/symbolic sim-
ulator and a performance analyser. The second
part includes a Ruby refiner, diagram sketcher,
design visualiser and a Ruby hardware compiler

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

(labelled * in Fig. 5). Detailed descriptions on the
first part can be found in [19,27], and this paper
will focus on the second part, although the entire
system will be outlined as follows:

e The optimising transformer provides assistance
to optimise a high- or low-level specification ac-
cording to user requirements on area and per-
formance.

e The numeric/symbolic simulator performs nu-
merical, gate-level and symbolic simulation.

e The performance analyser assesses the charac-
teristics of a design; such as the number of a spe-
cific component, the critical path delay and the
latency.

e The refiner produces a bit-level design from a
high-level design, given the constraints on the
input and/or output of a design.

e The Ruby sketcher produces design diagrams
from the specification (high-level or low-level).

e The visualiser supports visualisation of both the
behaviour and structure of a design by combining
the facilities of the simulator and the sketcher.

e The hardware compiler compiles a Ruby pro-
gram into hardware such as FPGAs.

There are three ways to check the correctness of a
design with our integrated system: (1) formal veri-
fication, (2) numerical/symbolic simulation, and (3)
design visualisation. We shall not describe formal

—{

Simulation output J

Optimising
Transformer . Numeric/Symbolic
'f 7 Simulat
High-level

Specification
(e.g. Word-level)

—ﬂ Performance analyser H Performance reports]

_){

* Sketcher

I~

Design diagrams J

* Refiner I

]

* Visualiser

'»—)[Visual frames

Low-level
Specification

(e.g. Bit-level)

* Hardware compiler

Hardware implementation
e.g. FPGA configuration

Optimising

Transformer

code

Fig. 5. Block diagram of the implemented design system. The components labelled * are the subject of this paper.

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 321

verification tools [37] or numerical/symbolic simu-
lation tools [19] in this paper, since they have been
covered elsewhere. We shall focus on using the de-
sign visualiser to validate our designs; relevant
material will be presented in Sections 3.3 and 4.4.

Let us now look at the intended design flow
supported by our integrated system. A design is
started with its high-level specification. It is then
validated using the numeric/symbolic simulator, or
the visualiser. Next, the performance of the design
can be analysed using the performance analyser,
and the layout of the design can be obtained using
the sketcher. If the design is not satisfactory, the
optimising transformer may be employed to opti-
mise the design. This process can be iterated sev-
eral times until a satisfactory design is obtained.
Once a satisfactory high-level design is obtained, a
low-level design can be produced using the refiner.
Like the high-level design, the low-level design can
be further improved using the tools in the system.
Finally, an optimal hardware design can be di-
rectly implemented using the hardware compiler.

The following sections describe the features of
the sketcher, the visualiser, the refiner and the
hardware compiler.

3.2. The sketcher

The sketcher produces design diagrams from
Ruby programs. Since regular patterns are cap-
tured using combinators and computation pat-
terns are explicitly represented in Ruby, the
sketching procedure is largely syntax-directed and
hence efficient. Furthermore, a simple sketching
scheme has been developed which allows the
component sizes to vary, so that connection posi-
tions can be adapted to align the inter-connecting
wires either to the horizontal or to the vertical.
Consequently, the sketcher can produce design
diagrams with a minimum number of jogs, which
minimises the effort for routing and improves the
comprehensibilities of the produced diagrams. The
sketcher also includes facilities for drawing par-
ticular parts of a circuit and for producing layouts
to a specified level of detail.

Since the diagram generation process is syntax-
directed, the quality of the diagram depends

largely on the Ruby source program. To optimise
the quality of the diagram, there is a module in the
sketcher which performs source-level transforma-
tion. An example of the source-level transforma-
tion is shown in Fig. 6. Fig. 6(a) is the diagram of
Ruby expression row, ([4, B]; O; [C, D]) produced
without source-level transformation, while Fig.
6(b) is the diagram of the same Ruby expression
generated after source-level transformation. For
this example, given the relation [—] such that x [—]
(x), the following Ruby law can be used to opti-
mise the design to become the one in Fig. 6(b):

row, ([4,B]; O; [C,D])
= row, ([4,B]; (snd[—]; row,0; fst[—]7"); [C,D]).
(28)

More Ruby laws have been identified for layout

optimisation and the details can be found in Ref. [8].
Like most tools in our system, the design

sketcher is written in the language SML [30]. There

is a parser for converting expressions in concrete

syntax to the corresponding internal representa-

tions in abstract syntax. Other main modules in-

clude:

e a preprocessor for source level transformation;

e a type checker based on the unification algo-
rithm [32] to ensure that interconnected blocks
have a compatible interface;

¢ a mode manager that decides the level of detail
at which the layout should be drawn, according
to the source Ruby expression;

e a placer which produces a hierarchical place-
ment of the layout;

Q
(@)

S

(D]

Fig. 6. Comparison of schematics from two equivalent Ruby
expressions.

322 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

e a sizer which adds dimensions and connection
points to the description of primitive cells;

e a router which ensures that the connections be-
tween adjacent cells are joined together properly;

e an output generator, which takes the result from
the router and generates diagrams in formats
such as Latex and Tcl [29].

3.3. The visualisation system

The visualisation system is a graphics-based
tool that integrates the visualisation of design be-
haviour and structure by combining the sketcher
and simulation facilities.

The main modules in our system are shown in
Fig. 7. There is a graphical user interface for
convenient interaction between the user and the
system, which does not appear in the figure for the
sake of clarity. The Ruby program to be visualised
and simulation data are first supplied to the visu-
alisation system as input. The sketcher produces a
circuit schematic and a netlist which specifies the
connectivity of components. The numerical/sym-
bolic simulator takes the netlist and simulation
data to produce a state table which records circuit
states in terms of time sequences. The visualiser
displays the schematic superimposed with numer-
ical or symbolic data values indicating circuit
states at each clock cycle. The circuit states change
as simulation progresses and the visualisation se-
quences are accordingly produced showing the
circuit state changes. We shall illustrate the oper-
ation of the system in Section 4.4.

Fig. 8 shows a snapshot of the graphical user
interface of our visualisation system. The centre of

Ruby design simulation data
netlist - l
circuit diagram state table

visualiser

animation snapshots

Fig. 7. An overview of the visualisation system.

the frame displays the block diagram of a con-
volver design. The operation of the design is ani-
mated by projecting a dataflow model on the block
diagram. One can select to view data values on
specific input and output ports and internal paths.
Numerical, symbolic and bit-level simulation and
their combination are supported and the anima-
tion speed can be adjusted.

There are two simulation modes: one simulates
the design cycle by cycle and the other supports
sub-cycle simulation, showing how signals propa-
gate through combinational components one after
another. Fig. 8 shows the visualiser running sym-
bolic simulation cycle by cycle. The button at the
top left-hand corner allows the selection of simu-
lation modes and input options. Simulation data
can be provided from a file or from the command
line input at the bottom. Various controls can be
used to magnify designs, to choose step-by-step,
continuous or cyclic simulation, and to adjust the
simulation speed.

Our visualiser has been used in developing
hardware libraries and designs involving run-time
reconfiguration [25].

3.4. The refiner

In our system, both high-level, such as word-
level, and low-level, such as bit-level designs can be
described in Ruby. A high-level design operates on
abstract data types such as integer or real. At low-
level, abstract data such as integers are replaced by
concrete data, such as bits; the associated opera-
tions on abstract data are also replaced by con-
crete ones. The data refinement from a high-level
design to a low-level design is automatically per-
formed using the refiner.

The bit-level implementation differs principally
from the word-level one in that some constraints
such as the size of components have to be con-
sidered, since in reality we cannot build circuits
which are arbitrarily large. Also, there may be
many possible bit-level implementations which
meet the requirements of a given word-level de-
sign. One of the features of the refiner is that it can
produce the most efficient bit-level design which
satisfies the constraints given by the designer.

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

323

CycleMode InputMode
=
w0 wl we w3
(0 w0)
(7 ws)
(0 + (20 * wi))
a ({0 + (0% sl + (7 wi))
d 47 Al (000 (%)) + (P) + (7 ¥ w2l
a / 4 a
000 + (0¥ sy + (7 wl)) + (P wi2)) + (7 wd))
I
| I=_¢
Speed
ol ol o]l] =
18
Simulation Data: | <0 wi w1 w w3 Exit.
Data File: convolver.dat

Fig. 8. A snapshot of our visualiser carrying out symbolic simulation. The block diagram is generated automatically from a Ruby

program. D represents a register.

The current version of the refiner takes con-
straints specifying the maximum and minimum
values of external inputs to a circuit, and option-
ally the size of any internal connections. A con-
straint-propagation algorithm has been developed
to calculate the size of a particular component.
The idea is that the maximum and minimum val-
ues of inputs are propagated across the circuit.
Once all constraints on a given component’s inputs
are known, the constraints on its internal connec-
tions and its outputs can be derived. Resolving the
constraints fixes the size of the components and
the width of the output data path. Given a library
of parametrised bit-level operators and their sizes,
our constraint-propagation procedure can be used
to determine the widths of all data paths. A bit-
level Ruby design can be constructed that is
guaranteed to be the most efficient design pro-
duced by the constraint-propagation algorithm.

Another important feature of the refiner is that
it can refine a word-level design into a number of
efficient bit-level implementations, depending on

the bit-level data representations such as unsigned
and two’s complement representations. As a result,
the refiner facilitates exploring architectures and
evaluating the effects of different bit-level data
representations.

3.5. The hardware compiler

The hardware compiler compiles into hardware
a bit-level Ruby program generated by the refiner,
and the target code can be produced in various
formats so that the same design can target different
devices and different technologies. Some of the
formats are device-independent such as structural
VHDL and EDIF netlist for both ASIC develop-
ment process and FPGA implementation, and
some are device-dependent such as XNF and CFG
which can only be implemented using the specific
FPGAs. We have used the VHDL compiler in
implementing designs on the Riley system [16].

An important feature of our hardware compiler
is that there is a floorplanning module which

324 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

provides rapid placement and routing of compo-
nents. The floorplanning module generates layout
by exploring the structure of the source description
and it is therefore fast. This is important because a
major bottleneck in automatic hardware synthesis
is the time to place and route the netlist produced
by a hardware compiler. Besides, such source
language-guided placement and routing can pre-
serve the inherent regularity of a bit-level regular
array design. It is hence possible to produce area
and time efficient designs.

The floorplanning module is divided into two
parts: the global placement and routing part and
the detailed placement and routing part. The for-
mer is device-independent while the Ilatter is
device-dependent. The separation between the de-
vice-independent and device-dependent parts is
desirable because (a) such arrangement facilitates
re-targeting: it is comparatively easy for us to build
a new floorplanning module for a different device
as we only need to add the device-dependent part;
(b) floorplanning a complex design can be ex-
tremely difficult, and a ““divide and conquer” ap-
proach should reduce the complexity of the
problem; (c) some algorithms used for the Ruby
sketcher (Section 3.2) can be applied to the first
part of the floorplanning module; (d) such ar-
rangement makes it possible to separately explore
various device-independent and device-dependent
optimisation techniques.

The viability of our floorplanning scheme has
been demonstrated by a proof-of-concept com-
piler backend [8] customised for CAL1024 FPGAs
[1], a precursor of Xilinx 6200 FPGAs. The sim-
plicity of CAL1024 FPGAs enables us to focus on
the essential tasks of mapping the high-level Ruby
block descriptions into low-level device-specific
FPGA cells, described using the OAL language
[26]. Fig. 9 shows the overall architecture of our
Ruby to CAL1024 compiler. The intermediate
representation IR1 contains information about
relative placement of each component, while the
intermediate representation IR2 describes the di-
mension and connection position of each compo-
nent.

The next section illustrates the system using a
case study. The objective is to show how step-by-
step design development can be achieved using our

framework. We show the design flow of several
median filter designs which includes word-level
architecture development and optimisation, data
refinement, bit-level optimisation and hardware
compilation.

4. Case study: Median filter designs
4.1. Introduction

Median filtering is a special, but popular, case
of ranked order filtering. It has been widely used in
the area of digital image processing (see, for in-
stance, [33]). One of its common applications is in
edge detection algorithms for image feature ex-
tractions. Many such algorithms use the significant
changes of the grey levels of pixels in an image to
indicate where edges exist. Since noise causes false
edges to be detected, the smoothing of images is
indispensable. If a linear filter is used, it will not
only remove noise, but blur the potential edges as
well, and hence will result in mis-locating edges or
missing them altogether. A median filter, however,
does not have this problem, since it can reduce
noise spikes without extensively blurring or dam-
aging edges. Some other fields in which median
filters have been successfully applied include
speech signal processing [34] and data compression
[2].

There are a number of reasons for choosing
median filter designs to illustrate our framework.
First, the implementations described in this sec-
tion are complex enough to illustrate the capa-
bility of our integrated system but still simple
enough to be understood. Second, median filters
are a popular topic in signal processing in general
and in non-linear filtering for feature detection in
particular. Due to the non-linear nature of the
median filter, it is highly desirable in many appli-
cations to implement median filters in the form of
regular arrays for high performance and small
area. Some of our designs are similar to those in
[35], which have been implemented in 2 pum CMOS
technology. Finally, we show that our median
filter designs can be very efficiently implemented in
FPGA:s.

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 325

placement

Device-independent

iDevice-independent mapping

Intermediate
representation IR1

— | romnaion

Dimension and

connection

position calculation

\

!

CAL1024 Intermediate
Layout library

representation IR2

;Device—dependent mapping

\ Detailed placement| -

and routing

l

CFG format output

4.2. Specification

We shall restrict our discussion here to one di-
mensional median filtering, although a two-
dimensional separated median filter can be directly
performed using two one-dimensional median fil-
ters. More general descriptions on median filtering
can be found, for example, in [12,33].

To specify the median filtering operation, let us
assume that a filter window is slid along the input
sequence to be filtered. Fig. 10 shows the case
when the filter size is 5. At each filter window
position, the elements inside the window are sorted
and the median element is extracted as output. In
each cycle when the filter window progresses, one
new element enters the filter window and one ele-
ment that has been kept in five successive windows
is deleted. Since there is only one element which is
different between two successive window positions,

X1 X2[X3 X4 X5 X6 X7/ X8 X9 X10

e ¢

w2 W3

Fig. 10. Two successive filter windows (filter size = 5).

the sorting result of the current window can be
exploited to simplify the sorting process of the next
window. For instance, in Fig. 10, given that ele-
ments in window W2 have already been sorted, the
next window, W3, can be obtained from W2 sim-
ply by deleting element X2 and inserting element
X7 so that the resulting sequence is still ordered.
Based on the above observation, we now de-
scribe a median filter as a finite state machine which
involves an ordered state s = (so,s1,52,53). Given
an input i where s, <i<s3;, an ordered array
u = (so,S1,582,1,53) 18 produced by inserting / into

326 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

the state s. From the ordered array, the median filter
outputs the median s, and generates a new state
s = (sp,5),8,,55) by deleting the element which has
been kept in the filter for five successive states.

4.3. Parametrised description

We need three blocks to implement the archi-
tecture Mstl that we adopt for the state transition
logic described above: InstSortB, LocatorB and
DeleterB, which are stacked on top of one another
(Fig. 11). In addition, there are some interface and
rewiring circuits Intfi and Intfo at the input and
output, respectively.

Before we get into the detailed Ruby expres-
sions, let us give a brief explanation about the
architecture of Mstl so that readers can get a feel
for our design without following the Ruby de-
scriptions. The components in Mstl and their input
and output signals are described in Tables 1 and 2.
Intfi takes a new input i at each clock cycle and
passes it to InstSortB; similarly, it connects the

_— E— Sto

i o i
| InstSortB E
e 5

\a E

—{Intfi— - LocatorB \-—yntfo—~°

—

' . DeleterB |4

_________ i_s_’________“

Fig. 11. Block diagram of the state transition logic Mstl.

signal v from LocatorB to DeleterB. It also out-
puts a, the element to be deleted, and b, a boolean
signal. b is defined as follows: given that v is the
minimum element of u, b = 0 if v = a; otherwise
b = 1. Intfo outputs the median o from InstSortB
and discards signals a, t and d, which are outputs
from blocks LocatorB and DeleterB. Block Inst-
SortB performs insertion sorting and generates the
median. It takes 7, the new input element, and s,
the current state which is sorted in ascending or-
der, and then generates a sorted array u and the
median o. LocatorB locates the element to be de-
leted within the current state. It takes as input u,
the current state containing a sorted array of data,
and a, the element to be deleted, and the boolean
b. In addition to outputting v, @, and ¢, a boolean
indicating whether « is the maximum value in u,
LocatorB generates r, an array of boolean and
element pairs, such that the boolean value true
indicates that the element to be deleted has not
been found. Otherwise, the element to be deleted
has been found. DeleterB deletes the element lo-
cated by LocatorB. It takes r, the array of boolean
and element pairs, and v, the minimum element of
array u, and generates the new state s’ and d, the
element to be deleted.

Let us now derive a parametrised description
for the median filter. The block Mstl can be cap-
tured in Ruby as

Mstl = fst Intfi; Stl0; snd Intfo, (29)

where

Stl0 = (DeleterB | LocatorB) | InstSortB.

The definition of ;”, fst, snd, | etc can be found in
Section 2. The input interface Intfi obtains a new
input i, records the element @ which will be deleted,
and rearranges wires. It is defined by

Table 1
The components in the block Mstl in Fig. 11
Block Parameter Function
Mstl n: the size of filter window Median filtering
Intfi n: number of shift register Input interface
InstSortB n: number of repeating cell Sorting and median extraction
LocatorB n: number of repeating cells Location of the element to be deleted
DeleterB n: number of repeating cells Deletion of the element located
Intfo Output interface

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 327

Table 2
Input/output signals of each block in Mstl in Fig. 11

Block Signal Type from/to Signal function
Mstl i in external External input of the filter
o out external External output of the filter
Intfi i in external External input of the filter
v in LocatorB Minimum element
i out InstSortB Filter input
a out LocatorB Element to be deleted
b out LocatorB Boolean indicating if a equals v
v out DeleterB Minimum element
InstSortB i in Intfi External input of the filter
s in external Current state
u out LocatorB Sorted element array
o out Intfo Median element
LocatorB u in InstSortB Sorted element array
a in Intfi Element to be deleted
b in Intfi Boolean indicating if a equals v
v out Intfi Minimum element of array u
r out DeleterB Array of boolean-element pairs
a out Intfo Element to be deleted
t out Intfo Boolean indicating if the maximum
element equals a
DeleterB r in LocatorB Array of boolean-element pairs
v in Intfi Minimum element of array u
s out external New state (the next state)
d out Intfo The element to be deleted
Intfo o in InstSortB Median element
a in LocatorB Element to be deleted
t in LocatorB Boolean indicating if the maximum
element equals a
d in DeleterB Deleted element
i Intfi ((v, ((b,a),v)),i). (30) Block Stl0 is the core part of the state transition

Given that n + 1 is the filter size, and i(¢) and a(¢)
are both time sequences, we have a(t) =i(t — n)
and b = a xor v.

A parametrised implementation of Intfi is given
by

Intfi = fork ; fst (D"); Istcomp, (31)

where (x,y) Istcomp ((z, {{s,x,)),y) and s = x xor
Z.

The output interface Intfo outputs the median
o and discards a, ¢t and d which are outputs from
blocks LocatorB and DeleterB. Intfo is defined
as

((d, {t,a}), 0) Intfo o. (32)

logic which is made up of three sub-blocks: Inst-
SortB, LocatorB and DeleterB.

InstSortB takes as input the current state s,
which is sorted in ascending order and the input
element i. It produces an array u sorted in ascending
order from s and 7 and the median o. For instance,
given that s = (sg,s1,52,53) and s, < b<s3, Inst-
SortB will insert b in s such that s is still sorted:

<b, <S(), 81,82, S3>> InsertSortB <<S0, 81,82, b, S3>,52>.
(33)
A parametrised version of InstSortB is

InsertSortB = InsertSort ; apr, ; map,fork ;

(Zip(,,H))_1 : snd MedianExtract, (34)

328 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

where zip and apr are Ruby functions for re-
grouping wires. For instance, ({x;,x2,x3), (1,2,
y3>> ZipS <<x1,yl>,<x2,y2>, <X3,y3>>, and <<)C],x2,
X3),y) apry (x,xy,x3,y). InsertSort is an insertion
sorter which is given by

InsertSort = row, scell, (35)

where (¢, u)scell{min(¢,), max(z, u)).
MedianExtract extracts the median from a
sorted array, which is described for n = 4 by

<S0, 851,82, S3,S4> MedianExtract S7. (36)

A parametrised version implementing MedianEx-
tract is

MedianExtract = (ﬂatr(m))_1 ; ng("“)/ 2) ;T
(37)

where flatr is a Ruby function for flattening a
wiring structure. For instance, (xi, (xs, (x3, (x4,
(xs, O)))) flatrs (x1,x2,x3, x4, xs).

The block LocatorB takes as inputs the sorted
array u, the element to be deleted a, and a boolean
b indicating if @ = v, where v is the minimum ele-
ment of u, and generates v, r, @, and ¢ shown in
Table 2. Let us look at an example. Assume
u=(3,56,7,10),a =5. Then b="T", t="F, and
the array of boolean and element pairs
r={(T,5),(F,6),(F,7),(F,10)).

A parametrised version implementing LocatorB
is shown below

1

LocatorB = snd (apr,)” ; (Locator

< ({{((x,),2), z)Swire(x, y)) ; Ish),
(38)
where Locator (Fig. 13) contains a row of Ictcell,

Locator = row, Ictcell, (39)
and Ictcell is defined by
(((a,b),¢),d) leteell ((e, f), ((g,h), i) <= (c
=d)ANh=b)AN(e=a)N([f=i)N(g
= (a and (b xor i))).
The block DeleterB takes as inputs r, the array of

boolean and element pairs, and v, the minimum el-
ement of array u. It generates the next state s’ and d,

the element to be deleted. The new state s’ differs
from array u only in that s’ does not contain the
element which has been kept in five previous states.

DeleterB can be realised as a row of cell dltcell

DeleterB = row, dltcell, (40)
where
{x, (s,y)) dltcell{m,n)
(m=x)A(n=y) ifs=1,
= { (m=y)A(n=x) otherwise.

Composing the above blocks together, the com-
plete median filter can now be expressed by the
following state machine

My = loop(Mstl ; fst(map,D))
= Intfi ; loop(Stl0; fst(map,D)) ; Intfo
= Intfi ; Mcore0 ; Intfo,

where

Mcore0 = loop(Stl0 ; fst(map,D)). (41)
Stl0 = (DeleterB | LocatorB) | InstSortB. (42)

Note that the correct operation of M, requires the
feedback latches to be initialised with oo.

At this stage of the design development, the
sketcher described in Section 3.2 proves to be useful
for inspecting the architecture of the design, and the
behaviour of the design is readily validated using
our simulation and visualisation facilities. Design
validation is described in the following section.

4.4. Design validation

To study the behaviour of the median filter M,
one can use the visualiser to examine Intfi, Intfo,
InstSortB, LocatorB and DeleterB separately and
then their composition. For brevity, we shall only
present the visualisation of the integral design M,
here.

To visualise M,, we supply simulation data for
the input 7 at each clock cycle, and the visualiser
can display the architecture of M, and the values
of user-selected wires. Fig. 12 shows a frame from
an animation sequence when a number 8 is in-
serted into the median filter. The animation se-

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 329

1.5 7.9
InstSortB
7
L5 7.8 9
1 1 LocatorB 1
1 1
n n
F F
8 ¢ t 7
f f
i E 5 F 7 B8 E9 o
d d d d
1 1 1 1
t t t t
c c c c
e e e e
11 11 11 1!
/> (1 [2>|1 |1 1
5 7 8 9
—_— —_— -_ -—
D D D D

Fig. 12. A frame extracted from a design animation sequence.
8 is input. As shown is the frame, current state s = (1,5,7,9).
After inserting the current input 8, InstSortB generates a sorted
array u = (1,5,7,8,9) and outputs median 7. Before this clock
cycle, 1, 9, 5 and 7 have already been input in order, hence 1 is
the element to be deleted at the current clock cycle. Therefore,
the new state 5" equals (5,7,8,9).

quence shows that the design M, behaves as we
expected.

4.5. Word-level optimisation

In the preceding subsection, a parametrised
architecture M, of median filter is obtained and

validated using our system. The next task is to
optimise M, to increase regularity and to produce a
systolic implementation by pipelining. While the
algebraic laws of Ruby facilitate the systematic
transformation and proof of correctness, we shall
also make use of design diagrams for obtaining
insights into our optimisation. As described in
Section 4.3, the sketcher described in Section 3.2
can be employed in early stages of development to
rapidly generate diagrams of Ruby designs. The
behaviour of the transformed designs can be stud-
ied through design simulation using the simulator
or the visualisation system described in Section 3.3.

To simplify our transformation, we shall at first
ignore the input and output interfaces but focus
on the structure of Mcore0O depicted in Fig. 13.
The input and output signals of the repeating cells
are described in Table 3. Our basic idea of opti-
mising Mcore0 is to decompose the state transi-
tion logic containing three repeating structures,
InsertSort, Locator and Deleter (Fig. 13), into a
cascade of state machines forming a single re-
peating structure, Mcorecell (Fig. 14), and intro-
ducing pipelining to increase the performance of
the design.

Let us now examine the architecture of Mcore0.
Clearly, blocks Deleter, Locator and InsertSort
can be merged to form a repeating structure
Mcorel if the block MedExtract is ignored and the
maximum output of InsertSort is rewired through
the output port. From the algebraic law

(row, Q) | (row, R) = row, (O] R),
we obtain

Mcorel = loop(((row,, dltcell)
1 (row, lctcell))] (row, scell);

fst(map, D)) (43)
= loop(row, Stll), (44)

where
Stil = (dlteell | lctcell)] scell. (45)

Now let us apply the theorem for state machine
decomposition [21],

loop(row, R) = (loop R)", (46)

330

Locator —~ i
€ o -
botal Jetcell [lcteell [—| Ictcell Icteell
a—>| 18] .
e f] S AN) AN
LSy R
Deleter—

Fig. 13. Block diagram of Mcore0 (filter size =5).

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

T T i
scell =~ scell > scell scell
letcell [letcell 17 lcteell Ictcell
—! ditcell [—>{dltcell —~] ditcell ditcell
v vV IV \
Mcorecell

we obtain a regular state machine (Fig. 14)

Mcorel = (Mcorecell)”,

where

Mcorecell = loop((dltcell | Ictcell)

Table 3

] scell ; fst D).

Fig. 14. Block diagram of the state machine Mcorel (filter
size =5).

To generate the medians from the state machine,

47 we need to output the sorted array, from which the
median can be extracted. This can be achieved by
slightly modifying the architecture Mcorecell ob-
tained above while still retaining its regular feature

(48) (Fig. 15).

Input/output signals of the repeating cells in Mcore0 in Fig. 13

Block Signal Type from/to Signal function
scell (sorting cell) t in filter input interface External input of the filter
u in current state An element of current state
v out Icteell min(¢, u)
w out next scell cell max(z,u)
Ictcell (locating cell) a in scell Control signal for deleting cell
b in next Ictcell The element to be deleted
d in filter input interface An element from the sorted array
i in filter input interface An element from the sorted array
¢ out filter input interface Passthrough for signal d
e out next Ictcell Passthrough for signal a
f out next Ictcell Passthrough for signal i
g out dltcell g =a and (b xor i)
h out dltcell Passthrough for signal »
dltcell (deleting cell) y in Icteell An element of the sorted array
s in Icteell Control signal for deleting operation
X in filter input interface The minimum element of the sorted array
m out a register m = x if s = 1; m = y otherwise.
n out next dltcell n=yif s = I; n = x otherwise.

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

331

Stl2 Mcorecell2
______ ,L_____ wireb
—> scell L — scell : scell : scell
- L f f
<= Ictcell T sl Jetcell — Icteell > letcell
+>dltcell [T ditcell 1 dltcell ! dltcell
AV L \% Y AV

Fig. 15. Block diagram of the state machine Mcore?2 (filter size =5).

Considering the input and output interface, we get
the systolic median filter M,

The Ruby expression for capturing the archi-
tecture shown in Fig. 15 is given by

Mcore2 = rdl, Mcorecell2, (49) M, = [Inputb, Medb] ; Mcore2 ; Rightb, (51)

where h b and htb f: d Medb
Input Right int M

Mcorecell2 = fst StI2 ; wireb, (50) WHCTE TPUED and M are mrertaces, aid e

extracts medians from the sorted array. They are

and described in Ruby as follows:

St12 = (dlteell] leteell) | (scell ; fst fork ; Ish), Inputb = Intfi.

<<<x’ ((y,z),s)}, <u,v>>,t> wireb <<~x7 ((y,z>,s>>,v). Medb = ((ﬂatl‘,)il) 77.';/2 X TC]>71

i\
A i A
- — 1]
scell > scell > scell > scell =
Icteell Ictcell letcell Ictcell
B> diteell > diteell > dltcell B> ditcell

Fig. 16. Block diagram of a fully pipelined median filter (filter size =>5).

332 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

7 7 7 7
7
uf] —] 7
¢ scellb |w \7 scellb 7 scellb 7 scellb 7
7 7 7.7 77 7 7
V7 7 7 +7
d
c i| 7 7 7 7
b lctcellb 3 ; lcteelll i lctcellb, z letcellb Z
av777 777 777 777
e |f
L7 1y \7 IN 7 1Y V7
sy Yy
X _<_>dltcellb[n 7 dltcellb 7 dltcellb 7 discellb 7
7 7 7 7 7 7 77
m
/ \V4 \V4

Fig. 17. Block diagram of a bit-level median filter. The interfaces are ignored for brevity.

and
((x; ((n,2),5)),5) Rightb ().

Here Intfi has been defined in expression (31).

Further optimisation of M, can be achieved by
introducing various degrees of pipelining which
includes registers between adjacent Mcell [22]. For
instance, a fully pipelined version of implementa-
tion M, is shown in Fig. 16. On the top of the
diagram, there are 6 registers forming a triangular-
shaped array at the output; they ensure that all
data at the output will emerge in the same clock
cycle.

Other optimisations using transposition [20]
and serialisation [21] are also possible, but we shall
not go into the details here.

4.6. Data refinement and bit-level optimisation

Using the refinement system described in Sec-
tion 3.4, it is straightforward to obtain an opti-
mised bit-level version for the word-level median
filter described in Eq. (51) in the preceding section.
For instance, given the input elements in the range
0 to +127 (7-bit grey level image data, for exam-
ple), our refinement system generates the bit-level
implementation shown in Fig. 17, where the
widths of data paths have been indicated. scellby;
is the parametrised bit-level version of scell, with
two parameters, both of them are 7 for this ex-
ample, specifying the width of its first and second
input. Ictcellbs;; is the bit-level version of Ictcellb
with three parameters, respectively, specifying the
width of its second, third and fourth inputs

Table 4
The parametrised bit-level repeating cells in Fig. 17
Block Parameter Function
scellb J: the size of input 7. j =7 in Fig. 17. Sorting cell
k: the size of input u. k = 7 in Fig. 17.
Ictcellb J: the size of input b. b =7 in Fig. 17. Locating cell
k: the size of input d. k = 7 in Fig. 17.
I: the size of input i. / =7 in Fig. 17.
dltcellb J: the size of input x. x = 7 in Fig. 17. Deleting cell

k: the size of input k. k =7 in Fig. 17.

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 333
Table 5
Input/output signals of the bit-level repeating cells in Fig. 17

Block Signal Type size from/to Signal function

scellb t in 7 filter input interface External input of the filter
u in 7 current state An element of current state
v out 7 Icteellb min(z, u)
w out 7 neighbouring scellb cell max(z,u)

Icteellb a in 1 scellb Control signal for deleting cell
b in 7 neighbouring Ictcellb The element to be deleted
d in 7 filter input interface An element from the sorted array
i in 7 filter input interface An element from the sorted array
¢ out 7 filter input interface Passthrough for signal d
e out 1 neighbouring Ictcellb Passthrough for signal a
f out 7 neighbouring Ictcellb Passthrough for signal i
g out 1 dltcellb g =a and (b xor i)
h out 7 dltcellb Passthrough for signal b

dltcellb y in 7 Ictcellb An element of the sorted array
s in 1 Ictcellb Control signal for deleting operation
X in 7 filter input interface The minimum element of the sorted array
m out 7 a register m =x if s = 1; m = y otherwise.
n out 7 neighbouring dltcellb n =y if s = I; n = x otherwise.

(labeled as b, d and i, respectively, in Fig. 17).
Similarly, dltcellb;; is the parametrised bit-level
version of dltcell and its first parameter describes
the first input (labelled as x in Fig. 17) and the
second parameter specifies the third input (labelled
as y in Fig. 17). The parametrised bit-level re-
peating cells and their input and output signals are
described in Tables 4 and 5. These cells can be
implemented using hardware libraries in a specific
technology (see Section 4.7).

Although the hardware libraries used for im-
plementing scellb, Ictcellb and dltcellb can be
highly-optimised and technology-specific, the
overall implementation using FPGAs is usually
inefficient due to the wiring congestion between the
connected blocks. It is desirable to further opti-
mise the design at the bit-level. The objective of
such an optimisation is to develop bit-level cells
which can be replicated to form Mcore2.

Such cells are shown in Fig. 18. A column of
cell A4 implements Intfi (Fig. 11), which serves as
the input port of the filter. It is composed of a
bit-wise shift register array and some other logic
gates for comparison. Note that for the cell at
the most significant bit position, the input Kg
should be hardwired to logic zero for initialisa-
tion. The number of registers the shift register

contains depends on the window size of the fil-
ter. For instance, for a median filter with size 5,
there should be 4 registers. Block StI2 (Fig. 15)
is implemented using a column of cell B, which
is made up of a bit-wise comparator COMP and
two two-way multiplexers MUX1 and MUX2.
An init wire and an OR gate are introduced for
presenting the latch to a desired value. The
purpose is to initialise the latch to logic one so
that each latch is initialised to the maximum
number that the filter can input. Also, for the
cell at the most-significant bit position, the input
Iy should be hardwired to logic zero, while for
the cell at the least-significant bit position, C
should be wired to logic one. C and D are the
periphery cells for signal propagation.

The above bit-level cells can be used to imple-
ment a median filter with any filter size and any
number of input bits. As an example, a median
filter with filter size 5 and 7-bit input is shown in
Fig. 19.

Using the Ruby simulator and the visualiser, it
is very straightforward to validate the bit-level
design against the word-level design. One can also
use algebraic transformations to verify that the bit-
level design is a faithful implementation of the
word-level description.

334 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

Kitl
X —> = X _
<= BO
A
> Do
= E
Ki
e S 70
X :
li+] CHIC T Init ' |
Pt | mux] ‘
i = e
. 1
Al — > Aj ! ~ :
: — COMP
B < = Bl : |
b B o | 2 MUX :
>f 3—1 |
E —>i = E ‘, X3 >
EREE ‘ '
! i
i GicCl i ‘ '
| :
! | !
KO
N :
Init C = hic >
= K0 | !
0 COT it
R R ,
| '
Init. —>1 D = mit T -
. . 1 1
j - T
lecccsdeccccccccaccnacs 1
¢C0

Fig. 18. Designs of bit-level cells 4, B, C and D.

4.7. FPGA implementation

With our hardware compiler, we can directly
compile the bit-level Ruby description of the me-
dian filter into hardware such as FPGAs. For the
highest performance of a design, however, it is
desirable to exploit device-specific features. For a
particular implementing technology we may, for
instance, manually place and route the repeating
cells to achieve the optimal layout, because any
inefficiency in a repeating unit will be amplified
many times for the whole design.

Our compiler takes only a few seconds to gen-
erate the CAL-based implementation of a median
filter with a 5-element window and 8-bit input.
This design, with a compact implementation of the

repeating cell, is shown in Fig. 20. This example
illustrates that the regularity information from the
Ruby source code can be used to produce a com-
pact layout. A hardware implementation based on
this median filter design has been used to filter
noise and locate edges from range data generated
by range sensors [11].

5. Conclusion

In this paper, we have presented an overview of
an integrated system for developing regular array
designs. It has been demonstrated that the system
supports a simple and powerful notation for
representing regular array designs, and both the

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 335

=)

—
—°
—
<

o1

e
o
e ™
o
>
le—]
]

e
i os
s A B g B B g B "‘_—]
T T = o
A BB H P
T T os
13 A B g B B B
LT T 03
Y=
LT T 02
1 A g T

10

v Ll Ho g ol 2]

Fig. 19. A bit-level median filter with window size 5 and 7-bit
input. /0, ..., 6 are the inputs while OO0, .. ., 06 are the outputs,
and init is used for initialisation.

&

00

architecture and the behaviour of an array can be
captured in a single parametrised description.
Various facilities have been developed and inte-
grated for refining, sketching, simulating, opti-
mising, visualising and compiling regular array
designs. We have used several median filter designs
to illustrate our system. The following steps sum
up the procedure for implementing a specific
algorithm using our integrated system.

e Develop a hardware architecture for the given

algorithm.

Initially, the architecture may not be efficient
but should be obviously correct. More efficient
designs can be obtained from the initial design by
optimisation.

e Capture the architecture as a parametrised
expression in Ruby.

This step may require parametrising the de-
sign description, and wusing available library
blocks.

e Check the correctness of the design by formal
verification, numerical and symbolic simulation,
and design visualisation.

JZ/E A Ehm

=

Ry I (Rw o wy. W Ry Wm (Rw W |y g |y
e

f
£

L
f

k)
=

E [Ee
Sl

v

= %
/Ktqi/
o [BE L a BEL

@ﬁi?

0y

|5
%
|

;
o Rl [BE

Ltqj/ B
e
|

L7

%ﬁq

L7

I
%
|

EE em L

5
pNaha
Lt’ il N
= 5
g Ll
i Diof‘ i ri

p—

7

|5
%
|

REL Bt Blbty RALE RRL R D) B
i ey | =5 g congy | = < i songg | = < il g = < sl o] = <7 sl songg] = o7 sl -ongg |7 55 o
REL At Rp AL RRL GGh B

Lﬁ)

B K|

NIRFir ar ki a L B R e FRE

e o o
Fig. 20. CAL implementation of a median filter (input
width =8 bit and window size =5).

This step is to ensure that the design conforms
to the intended behaviour.

e Apply correctness-preserving transformations to
optimise the design to satisfy user constraints,
like employing pipelining [22] to increase paral-
lelism, or serialisation [21] to reduce size, or de-
composing state machines to increase regularity.
It is often helpful to use design diagrams as a

vehicle to gain insights into design transformations.

336 S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337

In such cases, the design sketcher should prove to be
a useful tool in rapidly generating design diagrams.
e Develop the most efficient implementation of
the repeating units before hardware compila-
tion, using device-specific descriptions like

OAL if necessary.

The system has been used in developing a num-
ber of regular array designs, including a systolic
convolver [11], a systolic priority queue [9], a sys-
tolic sorter [10], a sine calculator [8], and in devel-
oping reconfigurable libraries for FPGAs [24,25]. It
has also been used in producing implementations
partly in hardware and partly in software [23].

There are a number ways in which our system
can be refined and enhanced. The current version
of the refiner, for example, deals only with con-
strains of maximum and minimum values of inputs
for a word-level circuit. Future work to enhance it
includes extending our approaches to take into
consideration other kinds of constraints such as
critical path delay, latency or size.

The sketcher can automatically produce design
diagrams from Ruby programs. A tool capable of
producing Ruby programs from design diagrams
would be very useful, because schematic repre-
sentations of designs produced by other design
system, such as Viewlogic and Mentor Graphics,
can then be automatically incorporated in our
design framework for further development.

Both the refiner and the hardware compiler rely
on various kinds of parametrised bit-level libraries
to facilitate efficient design. These include both
device-dependent and device-independent li-
braries. It is desirable to develop a wide variety of
implementations such as digit-serial and pipelined
designs to facilitate selecting and reusing the most
appropriate ones.

Acknowledgements

We thank Penny Probert for her suggestions
and encouragement. The support of the Sino-
British Friendship Scholarships Foundation, Lady
Margaret Hall, Xilinx Inc., and the UK Engi-
neering and Physical Sciences Research Council
(Grant number GR/24366, GR/54356 and GR/
59658) is gratefully acknowledged.

References

[1] Algotronix Ltd, CHS2x4 Custom Computer, 1992.

[2] G.A. Arce, N.C. Gallagher, State description for the root
signal set of median filters, IEEE Transactions on Acous-
tics, Speech and Signal Processing ASSP-30, December,
1982, pp. 894-902.

[3] R. Bird, Introduction to Functional Programming using
Haskell, Second ed., Prentice-Hall, Europe, 1998.

[4] P. Bjesse, K. Claessen, M. Sheeran, S. Singh, Lava:
hardware design in Haskell, ACM international Confer-
ence on Functional Programming’98, ACM Press, New
York, 1998.

[5] CJ. Block, A model for representing Ruby circuits, in:
Proceedings of the Glasgow Workshop on Functional
Programming, 1996, http://www.dcs.gla.ac.uk/research/
fpga/papers/ps/Model.ps.

[6] D.R. Coelho, The VHDL Handbook, Kluwer, Dordrecht,
1989.

[7] F. de Dinechin, Libraries of schedule-free operators in
Alpha, in: Proceedings of the International Conference on
Application Specific Array Processors, IEEE Computer
Society Press, Silver Spring, MD, July 1997.

[8] S. Guo, Techniques and tools for developing Ruby design,
D.Phil. thesis, Computing laboratory, University of Ox-
ford, 1997.

[91 S. Guo, W. Luk, Compiling Ruby into FPGAs, in: W.
Moore, W. Luk (Eds.), Field Programmable Logic and
Applications, Lecture Notes in Computer Science, vol. 975,
Springer, Berlin, 1995, pp. 188-197.

[10] S. Guo, W. Luk, Producing design diagrams from declar-
ative descriptions, in: S. Yang, J. Zhou, C. Li (Eds.),
Proceedings of the Fourth International Conference on
CAD/CG, SPIE, 1995, pp. 1084-1093.

[11] S. Guo, W. Luk, P. Probert, Developing parallel architec-
tures for range and image sensors, in: Proceedings of the
IEEE Internatinal Conference on Robotics and Automa-
tion, IEEE Computer Society Press, Silver Spring, MD,
1994, pp. 2205-2210.

[12] T.S. Huang, G.T. Yang, G.Y. Tang, A fast two-dimen-
sional median filtering algorithm, IEEE Transactions on
Acoustics, Speech and Signal Processing ASSP-27, Febru-
ary 1979, pp. 13-38.

[13] G. Jones, M. Sheeran, Circuit design in ruby, in: J.
Staunstrup (Ed.), Formal Methods for VLSI Design,
North-Holland, Amsterdam, 1990, pp. 13-70.

[14] G. Jones, M. Sheeran, Relations and refinement in circuit
design, in: C. Morgan, J. Woodcock (Eds.), 3rd Refine-
ment Workshop, Springer Workshops in Computing, 1991.

[15] G. Jones, M. Sheeran, A certain loss of identity, in: J.
Launchbury, P. Sansom (Eds.), Glasgow Functional Pro-
gramming Workshop, Springer, Berlin, 1992.

[16] I. Kostarnov, S. Morley, J. Osmany, C. Soloman, A
reconfigurable approach to low cost media processing, in:
W. Luk, P.Y.K. Cheung, M. Glesner (Eds.), Field-Program-
mable Logic and Applications, Lecture Notes in Computer
Science, vol. 1304, Springer, Berlin, 1997, pp. 79-90.

S. Guo, W. Luk | Journal of Systems Architecture 47 (2001) 315-337 337

[17] S.Y. Kung, VLSI Array Processors, Prentice-Hall, Engle-
wood Cliffs, NJ, 1988.

[18] Y. Li, M. Leeser, HML: an innovative hardware descrip-
tion language and its translation to VHDL, in: Proceedings
of the CHDL’95, 1995.

[19] W. Luk, Analysing parametrised designs by non-standard
interpretation, in: S.Y. Kung, E. Swartzlander, J.A.B.
Fortes, K.W. Przytula (Eds.), Proceedings of the Interna-
tional Conference on Application-Specific Array proces-
sors, IEEE Computer Society Press, Silver Spring, MD,
1990, pp. 133-144.

[20] W. Luk, Optimising designs by transposition, in: G. Jones,
M. Sheeran (Eds.), Design Correct Circuits, Springer,
Berlin, 1991, pp. 332-354.

[21] W. Luk, Systematic serialisation of array-based architec-
tures, Integration (the VLSI Journal) 14 (3) (1993) 333-360.

[22] W. Luk, Systematic pipelining of processor arrays, in:
G.M. Megson (Ed.), Transformational Approaches to
Systolic Design, Chapman and Hall Parallel and Distrib-
uted Computing Series, 1994, pp. 77-98.

[23] W. Luk, T. Wu, Towards a declarative framework for
hardware-software codesign, in: Proceedings of the Third
International Workshop on Hardware/Software Codesign,
IEEE Computer Society Press, Silver Spring, MD, 1994,
pp. 181-188.

[24] W. Luk, S. Guo, N. Shirazi, N. Zhuang, A framework for
developing parametrised FPGA libraries, in: R.W. Har-
tenstein, M. Glesner (Eds.), Field-Programmable Logic,
Smart Applications, New Paradigms and Compilers, Lec-
ture Notes in Computer Science, vol. 1142, Springer,
Berlin, 1996, pp. 24-33.

[25] W. Luk, S. Guo, Visualising reconfigurable libraries for
FPGA:s, in: Proceedings of the 31 Asilomar Conference on
Signals, Systems, and Computers, IEEE Computer Society,
Silver Spring, MD, 1998, pp. 389-393.

[26] W. Luk, I. Page, Parametrising designs for FPGAs, in:
W. Moore, W. Luk (Eds.) , FPGAs, Abingdon EE&CS
Books, 1991, pp. 284-295.

[27] W. Luk, G. Jones, M. Sheeran, Computer-based tools for
regular array designs, in: J. McCanny, J. McWhirter, E.
Swartzlander (Eds.), Systolic Array Processors, Prentice-
Hall, Englewood Cliffs, NJ, 1989, pp. 589-598.

[28] G.M. Megson (Ed.), Transformational Approaches to
Systolic Design, Parallel and Distributed Computing
Series, Chapman & Hall, 1994.

[29] J.K. Ousterhout, Tcl and Tk toolkit, Addison-Wesley
professional computing series, 1996.

[30] L.C. Paulson, ML for the Working Programmer, Cam-
bridge University Press, Cambridge, 1991.

[31] D.L. Perry, VHDL, McGraw-Hill, New York, 1991.

[32] S.L. Peyton Jones, The Implementation of Functional
Programming Languages, Prentice-Hall, Englewood Cliffs,
NJ, 1987.

[33] I. Pitas, Digital Image Processing Algorithms, Prentice-
Hall, Englewood Cliffs, NJ, 1993.

[34] L.R. Rabiner, M.R. Sambur, C.E. Schmidt, Applications
of nonlinear smoothing algorithm to speech processing,

IEEE Transactions on Acoustics, Speech and Signal
Processing, 1975.

[35] R. Rocella, R. Saletti, 70 MHz 2 ym CMOS bit-level
systolic array median filter, IEEE Journal of Solid-State
Circuits 28 (5) (1993) 530-535.

[36] R. Sharp, O. Rasmussen, Transformational rewriting with
Ruby, in: Computer Hardware Description Languages and
Their Applications (CHDL’93), Elsevier, Amsterdam,
1993, pp. 243-360.

[37] R. Sharp, O. Rasmussen, The T-Ruby design system,
Formal Methods in System Design 11 (3) (1997) 239-
264.

[38] M. Sheeran, Ruby-a language of relations and high-order
functions, in: G. Birtwistle (Ed.), Proceedings of the Third
Banff workshop on hardware verification, Springer, Berlin,
1990.

[39] S. Singh, Architectural descriptions for FPGA circuits, in:
Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines, IEEE Computer Society
Press, Silver Spring, MD, 1995.

[40] H. Verge, C. Mauras, P. Quinton, The ALPHA language
and its use for the design of systolic arrays, Journal of
VLSI Signal Processing 3 (1991) 173-182.

[41] D. Wilde, O. Sie, Regular array synthesis using Alpha, in:
Proceedings of the International Conference on Applica-
tion-specific Array Processors, IEEE Computer Society
Press, Silver Spring, MD, 1994, pp. 200-211.

Shaori Guo received his B.Eng. and
M.Eng. degrees in Electronic Engi-
neering from the University of Elec-
tronic Science and Technology of
China in 1985 and 1988, respectively,
and his D.Phil. in Computer Science in
1997 from Oxford University, En-
gland. From 1996 to 1998, he worked
as a research associate in Department
of Computing, Imperial College, Uni-
versity of London. He joined Philips
Semiconductors in Southampton in
1998 as a senior IC development en-
gineer, and has been working for Philips Semiconductors in
Sunnyvale, California since May, 1999. His current research
involves methodologies and techniques for efficient architecture
modelling, and specification and design of high performance
video and telecommunications IC’s.

Wayne Luk is a member of academic
staff in Department of Computing,
Imperial College, University of Lon-
don. His research interests include
theory and practice of customising
hardware and software for specific
application domains, such as graphics
and image processing, multimedia, and
communication. His current work in-
volves high-level compilation tech-
niques and tools for parallel computers
and embedded systems, particularly

. those containing reconfigurable devic-
es such as ﬁeld programmable gate arrays. He received his
M.A., M.Sc., and D.Phil. in engineering and computing science
from University of Oxford.

