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Abstract

This paper describes the use of Ruby, a language of functions and relations, to develop serialised
implementations of array-based architectures. Our Ruby expressions contain parameters which
can be varied to produce a wide range of designs with different space-time trade-offs. Such ex-
pressions can be obtained by applying correctness-preserving transformations to an initial simple
description. This approach provides a unified treatment of serialisation schemes similar to LPGS
(Locally Parallel Globally Sequential) and LSGP (Locally Sequential Globally Parallel) partition-
ing methods, and will be illustrated by the development of a variety of circuits for convolution.
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1 Introduction

An attraction of array-based architectures, such as systolic networks, is the opportunity for cus-
tomising them to cater for a specific application. One way of achieving customisation is to start
from a clear but perhaps inefficient algorithmic description, and apply successive correctness-
preserving transformations until the result meets some given constraints such as size or perfor-
mance requirements.

Serialisation, which is related to algorithm partitioning [6], is an important example of such
transformations; it enables the behaviour of a large array of processors to be emulated by fewer
processors supported by auxiliary components such as buffers and multiplexers. One may serialise
a design so that, for instance, the resulting device has a given size — usually at the expense of
computation time.

Recently various methods (see for example [2], [5], [14], [15], [16], [17], [18]) have been proposed
for developing serialised architectures. Most of these methods involve studying optimisation
techniques applicable to semantic models of different forms of recurrence equations. This paper,
on the other hand, adopts an algebraic framework based on the Ruby language [4], which supports
a style of development by pattern matching and equational reasoning; similar frameworks have
been advocated for software development [1].

As an example of our approach, consider transforming a one-dimensional systolic array of n
processors, R”, into its serialised version, S, K. We are interested in equations of the form

R = A;S,R; B, (1)

which can be used as rewrite rules to transform expressions that match one side of the equation.
The game is therefore to find appropriate definitions for the function &, which returns a seri-
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alised version of a given component, and for the relations A and B which capture the interface
constraints so that the expressions on the two sides of the above equation possess the same be-
havioural interpretation. We give an example in the form of Equation 1 in Section 3.3. A design
derived using the proposed method can be found in Figure 11, which contains a serialised version
of the convolver shown in Figure 10 (the block labelled ¢mz); in Figure 11 corresponds to a
multiplexer which selects either the external input signals or the feedback signals. The definition
of cma is given in Section 3.3).

Our work can be considered to be an extension of the study reported in Reference [5], where
Ruby is used in deriving a bit-serial adder. Besides suggesting additional transformations, such as
those embodied in Equation 1, we hope to achieve three more objectives. The first is to discover
abstractions which capture serialised circuits and the associated interface constraints so that the
resulting representations are sufficiently detailed while remaining tractable. It turns out that all
such abstractions can be defined using existing primitives in Ruby; in particular, we have been
able to express our serialisation facilities (such as ev and cmz defined in Section 3.3) in terms of
a single primitive known as bundle [5]. Having a minimum number of basic primitives allows us
to keep our mathematical framework simple.

Our second objective is to develop descriptions containing parameters which can be varied
to produce a wide range of designs with different space-time trade-offs. It is sometimes believed
that rigorous derivations in the style of this paper, while undoubtedly increasing confidence in the
correctness of the resulting designs, will always remain a time-consuming business; the benefits
of re-using such intellectual efforts are clear. A specific strength of our approach is the capability
of deriving a parametrised expression which corresponds to an entire family of architectures.
The quantitative aspects of such generic representations can be summarised in a fealure table,
an example of which can be found in Table 1 in Section 4.5. Notice that there is no need to
understand our language in order to use the result of our derivation: given the performance
characteristics of the available computational elements such as adders and multipliers, a designer
can simply substitute the appropriate data in the feature table to work out the smallest circuit
of a particular speed, or the fastest circuit of a particular size. Indeed, to encourage re-use of
previous design experience, feature tables can be captured in a computer-based tool to facilitate
exploring designs.

The third and final objective of our work is to formulate procedures to guide the development
of such parametrised design descriptions. In addition to generating designs which are correct
by construction, such procedures offer a means of documenting design decisions by recording
the steps in the development of appropriate implementations. Possible evolution routes can be
summarised in a design tree which provides a simple method of structuring the design space,
indicating how different designs are related. The root of a design tree corresponds to a clear
but perhaps abstract or inefficient design, and the leaves correspond to complex designs with
acceptable efficiency and in suflicient detail for manufacturing; the branches are labelled with
the transformations used in deriving one or more designs from another. An example of such
a tree can be found in Figure 18 in Section 4.5. We expect our language, together with the
associated transformations, feature tables and design trees, to become a useful complement to
other methodologies for synthesising serialised representations of array-based architectures.

The rest of the paper is structured as follows. Section 2 reviews the basic elements of our
design framework. Section 3 then introduces our approach for representing serialised designs
and the associated strategies for their development; in particular a key equation for serialisation,
Equation 24, is derived in Section 3.3. It is followed by Section 4 which illustrates the techniques
using a variety of convolver circuits. Some concluding remarks are presented in Section 5.



2 Design representation

The formalism that we use is based on Ruby, a language for describing and reasoning about
circuit designs. The background and the details of this approach have been described elsewhere
(see [4], [5], [10], [11]), and only the definitions and concepts relevant to our discussion will be
introduced here.

A design will be represented by a binary relation of the form = R y where z, y represent the
interface signals and belong respectively to the domain and range of R. For instance, a squaring
operation can be described by

rsqry © zt=y

or, more succinctly, by
x sqr .

Transformed or composite circuits are described by functions which take one or more relations
representing circuits as arguments and return a relation as result. As an example, the converse

of R is defined by
tR'y & yRu.

It can be considered as a reflected version of R.

2.1 Binary compositions

Two components () and R can be connected together if they share a compatible interface s which
is hidden in the composite circuit @;R (Figure la),

2(QR)y & 3Js.(zQs)&(sRy). (2)

This is, of course, just the common definition of relational composition. It is simple to show that
relational composition is associative, and that (Q;R)™' = R™1; Q7.

As shown later, many theorems in this framework can be expressed in the form R = P~1;Q; P.
The pattern P=1; Q; P — in words ‘@) conjugated by P’ — will be abbreviated to @\ P.

If there are no connections between () and R, the composite is represented by parallel com-
position [@, R] (Figure 1b), where

(20, 21) [Q, R] (Yo, 1) & (20 Qo) & (21 Ryp). (3)

One can check quickly that [P, Q];[R,S] = [P;R, Q;5], and that [P,Q]™' = [P~1,Q7!]. A
collection of such theorems constitutes a calculus for reasoning about designs, which can usually
be used without the need to refer to the meaning of the symbols such as P and @Q.

There are several operations involving pairs of signals that we will require. First of all, given
that ¢ is the identity relation, we have the abbreviations

fstR = [R,],
sndR = [, R].

Next, the relation fork can be used to duplicate a signal, since z fork (z,z). Extracting an
element from a pair is achieved by the projection relations 7y and 73, defined by (z,y) 71 z



and (z,y) m2 y. Finally, we need to be able to swap the elements of a pair: (z,y) swap (y,z).
Examples of theorems involving these operations include

fst @ ;sndR = sndR;fstQ = [Q,R],
fork ; Ty = fork ; my
[Q. R]\swap = swap; [Q, R]; swap

R, Q).

It should also be clear that fork;[ry, 7] = [¢,¢], and that 7y 717y = ¢ # w37~ ! and similarly
for 5.

Tuples are ordered collections of elements, and they are appended by the operator < (bi-
nary append), such that (a, b, c)(d,e) = (a, b, c,d, e). The relations apl (append left) and apr
(append right) are given by (z,zs) apl (z)'zs and (zs,z) apr zs"(z). It is easy to show that
[Qv [R7 S]] \(lpl = [[Q7 R]? S] \apr = [Q7 R, S]

A rectangular component with connections on every side is modelled by a relation that relates
2-tuples, with the two components in the domain corresponding to signals for the west and north
side and those in the range corresponding to signals for the south and east side. Such components
can be assembled together by the beside (<) and below (]) operators (Figure 1c and Figure 1d):

(a,(b,c)) (Q=R){(p,q),r) & 35.(a,b)Q(p,s)& (s.c)R(q,r),
((a,b),c) (QIR) (p,{q.7)) & 3Fs.{(a,s) Q(p,q) & (b,c) R (s, ).

Since (Q]R)™' = Q71— R™!, theorems that have been proved for beside can readily be adapted
for below.
It is also useful to have a conjugate operator for pairs:

Q\\[R7 S] = [5_17 R_1]§ Q; [R7 S]

Given that the conjugate operators have a lower precedence than all other operators except rela-
tional composition, one can show that Q\R = R~ \swap ; Q ; R, and that sndQ~!; R;fstQ =

R\(fstQ).
2.2 Repeated compositions

Let us now look at the ways that we describe one- and two-dimensional arrays of components.
Repeated relational composition of a given relation R forms a chain (Figure 2a) which contains
cascaded copies of R; it is defined inductively by

R' = R, (4)
R**' = R";R. (5)

Given that ;R = R; (@, one can use induction on n to prove that ¢; R* = R"™; (@), and, from
that, a distributive theorem for chains:

(Q; R)" = Q"; R". (6)

Simple examples of such ¢ and R are components which calculate the power of numbers, like
sqr;cube = cube;sqr. This theorem will also be useful for pipelining circuits as we shall see later.

Repeated parallel composition, map R (Figure 2b), relates two equal-length tuples given that
the corresponding elements of the tuples are related by R:

if #z =#y=N then z (mapR)y & Vi:0<i< N.z Ry;.
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For clarity, sometimes we shall make explicit the number of R’s in a map and write it as mapy R.
This expression can be considered to be an abbreviation of map R\ N where N is the identity
relation on N-tuples.

We shall also need the relation AR (Figure 2¢) which relates two equal-length tuples such
that their i-th elements relate to each other according to R':

if #2=#y=N then z(AR)y & Vi:0<i<N.zR'y;.

The A function will be useful in formulating distributive theorems for a row of components
(Figure 2d). A row of components is built from repeated composition of beside, and can be

described by

if #x = #y =N then
(a,z) (rowR)(y,b) & 3Is.(sop=a) & (sn=0) & Vi:0< i< N.(s;,2z;) R (yi, Si+1)-
The properties of columns of components (Figure 2e) can be obtained by exploiting the fact that
col R = (row R™1)~1
There is a distributive law for a row of components which is similar to the law given by

Equation 6 for a chain of components: on the assumption that snd A; R;[B, B] = fst B; R, one
can show that

row(R;sndB) = sndAA;rowR; AB\ apr—. (7)

On some occasions we shall need to interleave an array of components from two equal-length
tuples. This can be achieved by zip, defined by

if #r=Hy=#2z=N then (z,y)zipz & Vi:0<i<N.(2;,y) =z,

so that, for instance, ((1,2,3),(4,5,6)) zip ((1,4), (2,5),(3,6)). Some simple examples of zipping
arrays together include (Figure 3):

[mapQ, mapR] = map[Q,R]\ zip~",
[row @, row R]\ zip™' = row([Q, R]\zip~!) \ fst zip™?.

These transformations, sometimes described as transposition, are studied in greater detail in
Reference [9].

3 A framework for serialisation

3.1 Streams and delays

So far we have been using relations to model a static situation — the steady state behaviour
of a circuit at a particular instant of time. To deal with sequential circuits, an expression is
interpreted as a relation that relates a stream in its domain to a stream in its range. For our
purpose, a stream can be considered to be a doubly-infinite tuple containing data at successive
clock ‘ticks’. Notice that the clock is an abstract means for specifying data synchronisation, and
it may be realised either by a global synchronous clock or by some hand-shaking mechanism.

We shall use z; to denote the {-th element from some reference point — such as the time when
the circuit is initialised — in the stream z; given that z; is a tuple, z;; is its i-th element. An
adder can then be described in the stream model as

rvaddy < Vizo+ w1 = yi.
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For simplicity combinational circuits will be described in the static form. Such expressions should
be interpreted as relations on streams in composite expressions involving sequential elements. In
most cases, such as in the absence of conditionals, the same algebraic theorems can be applied
to expressions representing either combinational or sequential systems; so, where appropriate,
designs can be developed in the simpler static framework and then promoted to the sequential
language. Readers interested in the formal aspects of the language — such as the description of
an appropriate type discipline — may wish to consult References [3] and [4].

There are only two primitives that do not possess a static interpretation. The first primitive
is delay, D, which is defined by 2 Dy < Vt. 2,1 = y;. An anti-delay D~! is such that D;D~! =
D~1:D = 1. A latch is modelled by a delay with data flowing from domain to range, or by an
anti-delay with data flowing from range to domain. We shall use the symbols — and VF' to
represent delays for horizontal and vertical dataflows respectively, so for instance

R

is a picture of D®. Similarly —<+ and Ztk represent anti-delays for horizontal and vertical
dataflows.

For a circuit C' which contains no primitives that possess a measure of absolute time, it is
the case that D;C' = C;D. This property, called timelessness [3], is precisely the condition
required for Equations 6 and 7 to be valid; and the motivation for applying these equations
as rewrite rules is to distribute latches among the array of components in order to reduce the
longest combinational path. This process is usually called retiming [7], and examples of deriving
pipelined circuits based on an algebraic treatment of retiming can be found elsewhere [4], [11].

3.2 Circuits with feedback

Latches are also used in serial circuits to prevent unbuffered loops in feedback paths. A design
R containing an internal feedback path s can be modelled by the loop construct o [10]:

z(oR)y & 3s.(z,s) R (s,y). (8)

The picture in Figure 4a gives a possible geometrical interpretation of the above equation: for
instance, we could have drawn the feedback wire to the left of R.

Given that rsh = i< (right shift) and ish = ¢]¢ (left shift) such that rsh™' = Ish [4], we
can define

oR = m 1, (Rstap)\\(fstfork‘_l) ;T

Another feedback configuration (Figure 4b) may sometimes prove to be convenient for rectangular
components with six connections:

(z,u) (VR) (y,v) < 3s.((z,5),u) R (y,(v,5)), (9)
and this can be deduced from the definition
vR = o(sndswap\ rsh; R ; rsh; swap).
A simple law involving both ¢ and v is v (Q|R) = sndo (R\swap); Q).

These functions obey a number of laws; for instance one or more pieces of wires, represented
by ¢ or by [i,¢], can be bent in various ways to form a loop,

o] = ¢

vish = [L’,L]. (11)



Components not on the feedback path can be expressed outside the loop constructs,

o(fstQ;R;sndS) = Q;0R; 9, (12)
v([fst P, Q) R[S, fst T]) [P, Q) vR; [S, 1], (13)

while components on the feedback path can be moved from one end of the path to the other end,

o(snd@Q; R) = o(R;fstQ), (14)
v(fst(snd@); R) = v(R;snd(snd@)). (15)

Two feedback loops can be composed in series and in parallel,

0@Q;0R = o(Q<R),
[0Q, 0R] = o([Q,R]\zip™"),

or placed beside and below each other,

vQ—vR = v(v([Q,R]\zp ' \sndzip~!); snd swap),
vQlvR = v(Q]R\sndzip™').

From Equations 2 and 8, it is clear that

Q; R = U[QvR]v (16)

which suggests that @ < R = v ([Q, R]\zip~! ; snd swap). These equations lead to the following
ways of expressing a chain and a row using the loop functions,

R* = o(apl; map, R ; apr™!), (17)

row, R = v(fstapl; map, R\ zip~' ; snd (apr—';swap)). (18)
The expressions on the right-hand side of the above equations are shown in Figures 5 and 6. In
the forthcoming paragraphs, we shall show how the kernel expressions in these equations, map,, R
and map, R\ zip~!, can be replaced by expressions involving a single copy of R after serialisation.

3.3 Facilities for serialisation

There are four constructs in our framework to deal with serialisation: the relations bundle, ev,
and cmz, and the function slow. The basic construct, bundle [5], can be used to define the other
three constructs.

One can regard bundle as a component for converting between serial and parallel data,

zbundle, y < Vi,i:0 <0< n Ty = Yp,ie

Here each y; is an n-tuple consisting of successive elements of z, and hence z can be considered
to be proceeding n times as quickly as y. On the other hand, since a stream of n-tuples may
be decomposed into n streams, one may also consider z as a time-multiplexed version of the n
streams in y. Hence bundle can be used to reduce the number of physical channels for a circuit
by time-domain multiplexing.

It is clear that bundle,;bundle;' = 1 and bundle;';bundle, = map, t. Note that bundle is
not timeless, since D"; bundle, = bundle,;D. It is the other primitive, besides D, that does not

possess a static interpretation.



An interesting observation is that [Q, R]\ bundleQ_1 can be interpreted to be a dynamically
reconfigurable circuit that behaves like () and like R on alternate clock cycles. A similar repre-
sentation [4] has been used to describe slowdown [7], a method for characterising systems that
may accommodate data for several independent computations. An n-slow version of a circuit,
say R, can be obtained by replacing every delay in R by n delays in series, and similarly for
anti-delays. It can be defined by

slow, R = (mapR) \ bundle;’.

One can show that if R represents a combinational circuit, then slow, B = R, and that slow, D =
D". Furthermore, slow,, distributes through operators such as row, so slow,, (row R) = row (slow,, R).
Another useful component is one that relates a signal and its sampled version. It is denoted
by ev, and pronounced ‘every n-th’, and it involves a range stream consisting of every n-th

element of its domain stream:

<' cry Lo, X1, X2, T3, XTg, 0 > €V3 < try XQ, X3, e, L9, 12, >
We can define it using bundle,
ev, = bundle, ; apl™'; 7w,
so that
rev,y < Viz,=uy.

The relation ev, shares with D the property that it can be applied to streams of any structure.
For example, ev,;[Q, R] = [ev,,ev,];[@, R]. However, while ev, ';ev, = ¢, it is the case that
z (ev,;ev, )y < Vi yu = z,4. That is, only every n-th element of z and of y are required to be
equal.

Assuming that R satisfies map R;apl~' ;7 = apl™';71; R, one can show that

ev, ; R = slow, R; ev,.

That is, the effect of sampling the domain signal of R is identical to that of sampling the range
signal of slow, R. Note also that D";ev,, = ev,;D, and that

bundle, = fork ; [ev,, ev,\D71]. (19)

Finally, we need a cycling multiplexer cma,, which repeatedly identifies its range signal with the
first of its two domain signals for one cycle and then with the other domain signal for n—1 cycles;
that is, it satisfies

remz,y & Vi (ZTuo=Yu) & (Vi:1<i<n Zpgin = Yniti)

This component can be defined by

cmz, = map(bundle, ; apl™"); [r1, 7] ; apl ; bundle,*.
For n = 2, one can use D~ ';bundle,;m; = bundley;my and 7171 ; D\bundle, ; 713 = ¢ to show
that
cmzy, = [evy, D7'ievy]; bundle™! (20)
= snd(D7Yievy;evy D) 5 ema,. (21)
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For n > 1, we can prove that D*;emz, = cmz, ;D" and that

fork ; emz, = (22)

fst(ev,;ev,'); cmz, = cma,. (23)

Given the above definitions, we can now proceed to develop serialisation theorems for our opera-
tors. The intuitive idea is to circulate data through a processor n times to emulate the effect of
n cascaded processors, using cmz,, to control when to accept feedback data and ev,' and ev,
to inject and to reject dummy data when the processor is in feedback mode. Let us first derive a
serialisation theorem for binary composition (in the following derivation, curly brackets are used
to enclose hints explaining why the expressions above and below them are equal):

Q; R
{Equation 16 and bundle;*; bundle, = [t,]}
o (bundley;' ; bundle, ; [Q, R])
= {Equations 20 and 12}
ev;'; o (snd(ev; ;D) ; emay ; bundle, ; [Q, R))
= {bundle;*;bundle, = [1,:], Equation 19, P~1;Q; P = Q\P and D;D~! = (}
evyt; o (snd(evy ;D) cmay ; [Q, R]\ bundley" ; fork ; [D;D™";evy, Dievy; DY)
= {fork;[D,D] = D;fork and Equation 14}
evy' ;o (snd(D7 i evysevy s D) emay 5 [Q, R\ bundley™ ; D s fork ; snd(evy; D7)
= {Equations 12 and 21}
evy'; o (cmay; [Q, R\ bundle;" ; D ; fork) ; evy ; DL, (24)

Note that from the implementation point of view, in the right-hand side expression of Equation 24,
the presence of D in the loop body constrains [@Q, R]\bundlegl to be a function: inputs in its
domain and outputs in its range.

Equation 24 suggests a similar theorem for serialising a chain of components (Figure 7):

R* = ev;'; o(cmz, ; map R\ bundle;' ; D ; fork); ev, ; D™*
= o(cmz, ;slow, R; D ; fork)\ ev, ; D71, (25)
which corresponds to Equation 1 with S, R = o (cmz, ; slow, R ; D ; fork), A = ev;!, and
B = ev,; DL

A similar theorem for a row of components is

; slow,, R ; snd(D;fork)) \ [bundle,,, ev

w ]; snd p1 (26)

row, R = v (fstcmz "

(Figure 8). One can develop a simpler version of this equation as follows. Define uR =
o (R\swap). Given that R = R\snd[.,], it can be shown that p(vR) = pR. This result,
together with Equation 22, can then be used to show that

p(fstD ; slow, R)\ bundle, = p(fstD ; row, R).

This equation has been used in deriving a bit-serial adder [5].
The corresponding theorems for a column of components can be obtained by appealing to
the fact that row R = (col R71)~1. A rectangular array of processors R can be captured by



row (col R). It can be serialised both vertically and horizontally by serialising first in one direction,
then in the other.

It is also possible to extend the serialisation theorems to cover a network of heterogeneous
components [9]; for instance Equation 24 is easily generalised to deal with a chain of dissimilar
processors.

3.4 Strategies for serialisation

There are two common strategies for serialisation [6]. The first strategy is known as cut-and-pile
[16] or LPGS (Locally Parallel Globally Sequential) strategy. In this scheme, a design is divided
into blocks of processors which will then be serialised to become a single block of processors.

The first step for systematic serialisation corresponding to the LPGS scheme is to divide an
array of components into smaller subarrays. This transformation, also called clustering, involves
expressing a chain as a chain of chains,

Rmn — (Rm)n‘

For rows, we need the relation group, which relates the elements of an (m x n)-tuple and those
of an n-tuple of m-tuples:

if #z =mn then (z;|0<i<mn) group, ((Tmis;|0<j<m)|0< i< n).
So (1,2,3,4,5,6) groups ((1,2),(3,4), (5,6)). One can then show that
row,., R = row, (row,, R)\ fst group,". (27)

Substituting these results in Equations 25 and 26, we obtain a serialised circuit which is itself a
chain or a row of components,

R™ = o(cma, ;slow, R™; D ; fork)\ ev, ; D!, (28)
row,, B = v(fstcmz, ; row, slow, R ; snd(D;fork))
\ [bundle,,; group,*, ev,]; snd D™t (29)

Notice that this transformation may result in a long feedback path whose length is proportional
to the number of components in the array. This path can be eliminated by reflecting half of
the components in a vertical axis and transposing the resulting configuration. Sometimes such
operations improve the wiring within an array of components at the expense of complicating the
array interface; they are covered in greater detail elsewhere [9]. Figure 9 contains an example of
a circuit before and after reflections and transposition. For a concrete example, the reader will
need to jump ahead to Figure 19, which contains a transposed version of the circuit shown in
Figure 13.

The coalescing [16] or LSGP (Locally Sequential Globally Parallel) serialisation scheme, on
the other hand, involves dividing a design into blocks, each of which will then be serialised to
reduce the number of processors used. This method may preserve locality — without further
transposition — at the expense of introducing additional latches and multiplexers.

Our serialisation theorems (Equations 25 and 26, for instance) tell us that after serialising the
individual blocks, there will be anti-delays and ev’s and ev~'’s left between the serialised blocks
which may need to be removed. We can achieve this elimination using distributive theorems,
such as Equation 6.
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As an example, we now show in a few steps how the internal ev’s and ev™"’s can be removed

from a chain. First of all, a simple induction will show that given ;5 = ¢ # 5;Q,
(Q;R;9)" = Q;(5;Q;R)";S. (30)

Second, it is also simple to show that, for any A,

ev, s ev, ' s o(cme, ; A)
= {Q;0R=0c(fstQ; R)}
o(fst(ev, ; evy,'); cmaz, ; A)
= {Equation 23}
o(cmz, ; A). (31)

Armed with the two preceding equations, we can deduce that, given that B = o (cmz,,;A),

(B\ ev,)™
{Equation 30, since ev;;ev, = ¢ # ev,;ev;'}
2 BT\ v,

{Equation 31}
B™\ ev,. (32)

(ev, ; ev

This final result can be used in the LSGP scheme for a chain of components:
(R*)™

=  {serialise R" using Equation 25}

; slow, R ; D fork) \ ev

" i DT
. slow, R; D fork) \ ev, is timeless}

i slow, R; D fork)\ ev,)™ ; D™

n
—1»

(o (cmz
= {retime using Equation 6 since o (cmz
(o (cmz
=  {eliminate internal ev’s and ev™'’s using Equation 32}

(o (cma, ; slow, R; D; fork))™ \ ev, ; D™™.
Similarly, given that R’ = fst cmz, ; slow, R ; snd(D;fork), it can be shown that
row,, (row, R) = row, (vR')\ [AD™";bundle,, ev,]; snd D~ ™.

Notice that since the LPGS scheme can be considered as a systematic application of serialisation
techniques, we can apply it to each block obtained after the initial clustering step of the LSGP
method.

3.5 Procedures for systematic serialisation

In this section we shall summarise the steps for obtaining a serialised design based on the LPGS
scheme and the LSGP scheme. Let us deal with the LPGS scheme first:

1. Express the computation using operators such as row.

2. Determine the degree of serialisation based on the number of input/output pins and the
input/output bandwidth. The degree of serialisation may be controlled by grouping the
processors into clusters before serialising.
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3. Decide whether pipelining is required from the desired performance of the system and from
the delay characteristics of the components used. If so, one may have to go back to the
original architecture before serialisation and apply retiming to that architecture, and then
serialise the result again. The clustering technique can also be used to control the degree
of pipelining.

4. Investigate whether it is possible and worthwhile to eliminate long feedback wires by trans-
posing the circuit.

Of course, the above procedure is intended only for guidance and it needs to be applied judiciously.
The main point to note is that it is easier to retime a circuit before serialising it, since serialisation
introduces additional data dependencies which may render retiming difficult.

Next, we shall summarise the steps for obtaining a serialised design based on the LSGP
scheme.

1. After expressing the computation in Ruby, divide the circuit into clusters of processors
depending on the availability of input/output pins and on the input/output bandwidth.

2. Apply the LPGS scheme to each cluster.

3. Eliminate, by conditional distributive theorems, samplers and non-implementable delays
between the array components.

A detailed example will be considered in the next section.

4 Convolver designs

In this section, we shall develop a number of convolver designs to demonstrate the techniques
presented in the preceding sections. A circuit for one-dimensional convolution with time-varying
coeflicients can be specified as follows: given the data stream z, and the coefficient stream w
such that for all ¢, #w; = N, compute the result stream y given by

Yt = Z Wy X Ty—j. (33)
0<i<N
It is clear from the specification that multipliers and adders will be required. These components
will be denoted respectively by mult and add: (a,b) mult a x b, and (a, b) add a+ b. For simplicity
our discussions will be confined to designs with a global synchronous clock.
We shall start with the well-known design in Figure 10. This circuit, Cv1, can be captured
in Ruby simply as a row of Cvlcells. The projection relation m9;7; is used to select the first of
the second range signal — corresponding to the result of the calculation — for output.

Cvl = rowy Cvlcell ; my ; 7wy,
Cvlcell = Ccell ; sndsndD,
Cocell = (sndmult ; add ; m2~*) | (fork ; sndmy).

These expressions can themselves be obtained from ones which are closer to the behavioural
specification in Equation 33; the method is well-documented in the literature (see [4] and [11])
and we shall not spend any time on this step.

Various implementations can be derived for Cvl. We shall first look at a simple LPGS scheme;
then we shall address the problem of introducing pipelining in various ways. Next, designs are
obtained by applying the LSGP method. Finally we summarise the process and compare the
trade-offs of the designs.
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4.1 LPGS design

First of all, our aim is to obtain a systematically-serialised version of C'v1 using the LPGS method.
Given that M is a factor of N such that MK = N, we shall derive Cv2 — which contains K copies
of Cwcell — from Cvl which has MK copies of Cucell:
Cvl
= {Equation 29 and fst (bundle,,;group, ') ; 7y = s}
[evys > groupyy;bundley'] s Cv2 s vy ; D
where
Cv2 = v(fstemay ; Co2eell; snd (D ; fork)) ; 2 ; w1,
Cv2cell = rowg (slowyr Cvlcell)
rowg (Cocell ; sndsnd DM).

An instance of Cv2 is shown in Figure 11. Note that in the diagrams we tried to avoid bending
wires rather than to draw the components to scale, with the unfortunate effect that a multiplexer
appears to be larger than a multiplier-adder.

4.2 LPGS design with pipelining

To introduce pipelining in the design, the array will first be retimed using Equation 7 which can
be written as

row, R = row, (R ;sndD)\fstAD™!;sndD™" (34)
on the assumption that R is timeless.

Cwvl
= {Equation 27}

snd group y; ; rowy (rowg Cvleell); mg 5 ™
= {Equation 34}

snd (group y; ; AD) ; Cv3; DM

where
Cv3 = rowy Cv3cell ; mqy; 1,

Cv3cell = rowg Cvlcell ; sndD.

An example of Cv3 is shown in Figure 12.
Let PQ) = M. We shall now cluster the array and serialise the resulting design to get Cv4
(Figure 13),

Cv3
= {Equation 29}
[evp', group p;bundlep']; Cvd; evp ; D!

where

Cvd = v(fstemap; Cvdcell ; snd(D ; fork)); g ; T,
Cvdcell = rowg (slowp Cv3cell)
= rowg (rowg (Cucell ; sndsnd DF') ; snd DP).
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4.3 Pipelining the multiply-adders

One can pipeline the multiply-adders instead, by reversing the coeflicients using the relation
rev, defined by z rev (zp,_,_1|0 < i < #=z). Given that wiring = fork;sndm; and madd =
snd mult; add; ™5, the relevant properties are

row, (wiring ; sndD) \\ fst rev = fst D" ; row, (fst D~! ; wiring) ; snd D", (35)

rowmadd = sndrev ; row madd (36)

since addition is commutative and associative.
We shall also need a reflected version of Equation 34 that says that given timeless R,

row, B = fstD™" ; row, (fstD ; R)\\ fst (AD\rev), (37)
and two results concerning alternative bracketing of composite expressions,

[P, QL R]; (snd X 5 A) [ B [T,[U, V]] = (st P; 4T, U [ ([Q, B B; [X, V]), (38)
row(QIR) = row@Q | rowR. (39)

We can then transform Cwvl,

Cvl
= {definition of Cvl}
rowy (madd | wiring ; sndsnd D) ; 73 ; ™1
= {Equations 38 and 39}
rowy madd | rowy (wiring;snd D) ; 73 ; ™
= {Equations 36 and 38}
rowy madd | (rowy (wiring;snd D) ; fst rev) ; ma ; ™
= {rev = rev™! and Equation 35}
rowy madd | ([DN, rev] ; rowy (fst D™1; wiring) ; snd DN) O
=  {Equations 38, 39 and definition of Cuvcell}
[snd DY, rev] ; rowy (fstsnd D=1 ; Cucell) ; sndsnd DN wy M
= {Equation 37 and sndsnd D";7my;my = mo;m1}
[fst D™V, AD 1 rev] ; rowy (fstfst D ; Cuocell); Ty ;5 m
= {define Cv5 = rowy Cvbcell ; m9; ™1}
[fst DN, AD 1 rev] ; Cvb

where Cvbcell = fstfst D ; Cucell (Figure 14).

How should we choose between Cv1 and Cwb? Given that T, and T, are respectively the
combinational delay of cells mult and add, and T, is the propagation delay of z across the
cell wiring and that 7, + T, > T,, Cv5 should run faster than Cv1l because its clock speed is
restricted by (N — 1)1, + T, + T, rather than by 7, + NT,. However, Cv5 has twice the latency
of Cvl, and it requires an extra triangular array of latches for skewing. Another possibility is
that, although not shown in the diagram or in the calculation, additional latches may be required
in Cv5 since the row of multiply-adders need to handle larger numbers than the broadcast circuit
row wiring. More wires may be needed when the circuit is refined to bit-level which in turn
require more latches for them to be pipelined.
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Next, let us proceed to serialise Cv5:

Cvh
= { Equation 27}

snd group y; ; rowys (rowg Cv5ceell) ; w3 5 ™
= {Equation 29}

[evy), group,s;bundleyt]; Cv6 ; evy s D71

where

Cvb6 = v(fstemay ; Cobeell; snd (D ; fork)) ; 2 ; w1,
Cvbeell = rowg (fstfst DM ; Cocell).

An instance of Cv6 is shown in Figure 15.

4.4 LSGP design

In this section we explore two ways of serialising C'vl by the LSGP method.

Let us first group the elements of Cvlinto a row of M clusters, each containing K components.
These clusters will then be individually serialised. Finally the non-implementable delays will be
eliminated by pipelining.

To eliminate the internal ev’s and ev™!

’s, we shall need the result
row,, (R'\sndev,) = (row, R')\ sndev, (40)

where R' = v (fstcma, ; R). A similar result for chains, given by Equation 32, has been derived
in Section 3.4. Cv1 can now be transformed,

Cvl
= { Equation 27}
snd group s ; rowys (rowg Cvlceell); g m
= {Equation 26 and let Cv7cell = v (fst cma g ; slowg Cvlcell ; snd(D ; fork))}
snd group ; ; rowyy ([evy', bundley'] ; CvTcell ; snd (D_K ;evg)); T2 M
= {Equation 40}
[ﬂ}l, groupM;mapM}I] ; rowyy (CvTceell ; snd D_K) ssndevy ; mo ) Ty
= {Equation 34}
[evy", group y;map bundle s ADE] s CoT 5 evye s DM

where

Cv7T = rowy CvTcell ; my 5 7,
CvTcell = v(fstemag ; slowg Cvlceell ; snd(D ; fork))
= v(fstemzy ; Cocell ; sndsnd DE : snd (D ; fork)).

An example of Cv7 is shown in Figure 16.
A more flexible approach is to have an additional level of clustering in Cvl, so that each
serialised component may contain several copies of Cvlcell. Let M = P@Q and

Cvl" = rowy Cvl'cell ; my 5 mq,
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where Cvl'cell = rowg Cvlcell, so that
Cvl = sndgroup, ; Cvl’.
We now cluster Cv1’ and apply serialisation to each of the resulting clusters,

Cvl’
= {Equation 27}
snd group g ; rowg (rowp Cvl'cell); my 5 ™
{Equation 26
and let Cv8cell = v (fstcmzp ; slowp Cvl'cell ; snd (D ; fork))}
snd group g ; rowg ([ﬂ;l, bundle}l] : CvScell ; snd (D1 5 evp)) s mp; m
{Equation 40 and Equation 34}
[ﬂ;l, group g;map bundle p; ADY]; Cv8; evp ; D¢

where

Cv8 = rowg Cv8cell ; my ; 1,
Cv8cell = v(fstcmap ; rowg (slowp Cvlcell); snd (D ; fork))
= v(fstemzp ; rowg (Cocell ; sndsnd DY) ; snd (D ; fork)).

Figure 17 shows an example of Cv8. Notice that circuits with identical structure to Cv7 can be
obtained by substituting K by 1 and P by K in Cv8.

We can, of course, continue our design exploration, but let us now turn to examining the
trade-offs of the designs that we have already obtained.

4.5 Design trade-offs

Figure 18 contains a design tree summarising the relationships between the various convolvers,
whose features are shown in Table 1. Each entry in the table consists of an expression involving N,
the number of coeflicients in the convolution, K, a parameter controlling the degree of serialisation
and pipelining, and P, a parameter controlling the degree of serialisation. One way to derive the
formulae in Table 1 is to adopt the technique of non-standard interpretation [8].

For designs which have not been serialised such as Cvl, Cv3 and Cv5, a smaller K will give
a faster circuit at the expense of a larger latency and a larger number of latches, which in turn
may lead to a larger circuit consuming more power. For LPGS designs such as Cv2, Cv4 and
Cv6, a smaller K (and a larger P in case of Cv4) will produce a more compact circuit capable of
running at a higher clock frequency, but it will take more cycles between successive valid outputs
as indicated by the larger slowdown factor. For LSGP designs such as Cv7 and Cv8, a large K
and a large P correspond to designs with a small number of cells but a large slowdown factor.

To choose between the alternatives, a designer with the task of developing a convolver for a
given size and performance can first check, from the available size of multiply-adders, whether the
convolver can be constructed without serialisation. If so, the next step is to determine whether the
performance requirements can be met by designs such as Cvl, Cv3 and Cvb with the appropriate
degree of pipelining. Otherwise serialisation will be necessary, and in that case the LPGS scheme
may be tried first since it corresponds to the LSGP scheme with a single cluster. If localised
connections are essential, then one may have to apply the LSGP scheme with multiple clusters
which usually results in more latches and multiplexers.
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Earlier (and also in Section 3.4) we have briefly mentioned that transposition [9] may be able
to localise long wires in a LPGS design, hence reducing the 7 term in expressions for minimum
cycle time in Table 1. The result of transposing the design in Figure 13 can be found in Figure 19.
Notice that the coeflicients have to be re-arranged so that they match the sample of z delayed
by the designated number of clock cycles; this re-arrangement is captured by the relation revzip
shown in the figure.

As for LSGP designs, it is usually desirable to control the cycling multiplexers by a single
control signal derived from a counter. This control signal will be pipelined when we retime the
circuit to remove non-implementable anti-delays — step 3 of the proposed LSGP design procedure
outlined in Section 3.5.

5 Summary

Techniques for systematically serialising array-based architectures have been presented in this
paper. The main innovations include the adoption of expressions which can be instantiated to
describe a variety of circuits with different degrees of serialisation; the use of abstractions, like
ev and cmz, to establish theorems for serialising designs; and the formulation of procedures to
guide the development of serial architectures.

An advantage of our approach is the explicit representation of interface constraints; this
facilitates the construction of composite circuits from simpler components. Moreover, the concise
and uniform representation of circuits and their interface, coupled with an equational style of
transformation, leads to a simple development framework. Although it may not be possible
to automate our techniques as fully as other methods [18], the range of designs with which
we can deal — such as an architecture serialised by an arbitrary mixture of LSGP and LPGS
transformations — appears to be wider. Furthermore, the techniques presented in this paper have
already been used in developing implementations based on Field-Programmable Gate Arrays [12].

Our plan for future work includes the following. First, it may be possible to provide a more
formal, and perhaps more general, definition of serialisation which can then be used to justify
Equations 24, 25 and 26. Second, the scope of our method should be extended to cover other
common architectural idioms such as triangular- or tree-shaped networks. Third, it may prove
fruitful to study the connection between our method and other formalisms for serialising designs
(see for example [2], [6], [14], [15], [16], [17], [18]). Finally, it is our intention to incorporate
techniques for implementing serialisation in our prototype design system (see [12], [13]), and to
make it compatible with other circuit design tools and cell libraries.
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Figure 3 An instance of a theorem involving zip.




z R y T R v
Y
a. z (0 R)y & 3Is.(z,s) R (s, y) b. (z,u) (vR) (y,v) & Is.{((z,s),u) R (y,(v,s))

Figure 4 Functions that describe feedback configurations.



Figure 5 An instance of o (apl ; map, R ; apr™'), n = 4.
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Figure 6 An instance of v (fst apl ; map, R\ zip™" ; snd (apr™";swap)), n = 4.
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Figure 7 An instance of o (¢cmz,, ; slow, R ; D ; fork).
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Figure 8 An instance of v (fst cmz,, ; slow, R ; snd (D; fork)) \\ [bundle,,ev,], n = 4.



Figure 9 Transforming a row of components with a feedback wire. RY corresponds to reflecting
R in a vertical axis.
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Figure 18 A design tree summarising how the convolver designs are related to one another.



(group yr; AD; group p; bundle;1 jrevzip) w

e I g | A A A A
mult mult
(DML evpt) y << add add”
L
1 CINT p ‘ B ‘ i e s =
evp &
=P
mult mult
0 CINT p add add B
—_—

Figure 19 Transposed version of Design Cv4 (N =8, M =4, K = P = @ = 2, and
(z+y,z) add” y).



Table 1 A feature table comparing convolver designs.

Design  Minimum Latency Slow-  Number of Number of Number of
cycle (cycles) down Cucell latches cmz’s
time factor in array in array in array

Cvl Twm +NT, N -1 1 N N 0

Cv2 Tn+ KT, N2 N K N 4+ 2 1
+T¢(K) K K

Cv3 Tw + KT, NEK+1)-K 1 N N(K +2) 0

K K

Cv4d Tn+ KT, NP(K +1) P N N(K +2)+2K 1
+T¢(N/P) K P K

Cvb (N-1T,+ Ty, 2(N -1) 1 N N 0
+1,

Cvb (K-1)T, + Ty, N(@2N -1) N K N 4+ 2 1
+T.+ T¢(K) K K

Cv7 Tm + T4 KE(N-1)+N K N N(K +2) N
+T%(1) K K K

Cu8 Twm + KT, KP(N-1)+N P N N(KP+2) N
+T¢(K) K P KP KP

N: the number of stages of convolution (the width of the coefficient stream),
T, Tq: the combinational delay of cell mult, add,
Tp: the propagation delay of z across the wiring cell fork;snd 7y,
T¢(n): the propagation delay associated with the feedback path (depending on n)

and the cycling multiplexer.



