
FIELD PROGRAMMABLE LOGIC AND APPLICATIONS

Application-specific customisation of multi-threaded
soft processors

R. Dimond, O. Mencer and W. Luk

Abstract: A multi-threaded microprocessor with a customisable instruction set, CUStomisable
Threaded ARchitecture (CUSTARD), is proposed. CUSTARD features include design space
exploration and a compiler for automatic selection of custom instructions. Custom instructions,
optimised for a specific application, accelerate frequently performed computations by implement-
ing them as dedicated hardware. Field programmable gate array implementations of CUSTARD
are evaluated using media and cryptography benchmarks, and commercial MicroBlaze processor
is compared. As low as 28% area overhead for four interleaved threads and up to 355% speedup
over a processor without custom instructions are demonstrated.

1 Introduction

This paper introduces the Customisable Threaded
ARchitecture: CUSTARD. It is a parameterisable processor
that combines support for multiple hardware threads and
automatic instruction set customisation. We propose the
customisable threaded architecture as a soft processor – a
processor implemented on the reconfigurable fabric of a
field programmable gate array (FPGA) – for
System-on-a-Chip applications with high performance
requirements. Processor implementations are supported by
our optimising C compiler that automatically generates
custom instructions from C applications. We generate
custom instructions by finding frequently occurring seg-
ments of computation that can be evaluated using the
same hardware datapath.

Soft processors are frequently employed for control and
data processing functions in a reconfigurable system. Soft
processors provide three key advantages over a fully
application-specific datapath/state machine: First, the capa-
bility to handle large applications. Second, a software
design flow for rapid implementation and testing. Third,
soft processors allow a designer to build complete
systems on inexpensive FPGAs that do not provide a hard-
core processor such as ARM or PowerPC.

Customisable processors are emerging as a technique for
optimising performance in embedded applications.
Customising the processor instruction set to directly
implement frequently performed operations can provide a
performance gain for a small additional area required to
support these instructions [1]. XTensa [2] and ARC [3]
are examples of commercial customisable processors tar-
geted at performance critical System-on-Chip applications.
XTensa and ARCtangent processors can be extended with
custom instructions specified by the designer.

Our multi-threaded processor supports multiple contexts
within the same processor hardware. A context is the state
of a thread of execution, specifically the state of the regis-
ters, stack and program counter. Supporting threads at the
hardware level bring two significant benefits. First, a
context switch – changing the active thread – can be
accomplished within a single cycle, enabling a uniprocessor
to interleave execution of independent threads with little or
no overhead. Second, a context switch can be used to hide
latency where a single thread would otherwise busy-wait.
A comprehensive survey of multi-threaded processors,
their various configurations and advantages is available in
Ungerer et al. [4]. The major cost of supporting multiple
threads stems from the additional register files required
for each context. Fortunately, current FPGAs are rich in
block static random access memory (SRAM) that could
be used to implement large register files. Additional logic
complexity must also be added to the control of the pro-
cessor and the current thread must be recorded at each pipe-
line stage. However, the bulk of the pipeline and the
functional units are effectively shared between multiple
threads, so we should expect a significant area-saving
over a multi-processor configuration.

This paper presents five main achievements:

1. CUSTARD, a customisable multi-threaded processor
with parameterisations including number of threads, thread-
ing type, datapath bitwidths and custom instructions.
2. An optimising C compiler, based on the CoSy
framework [5], that targets CUSTARD and automatically
generates custom instructions using our novel ‘Similar
Sub-Instructions’ technique.
3. A cycle-accurate simulator, built using the SimpleScalar
toolset, for evaluation of processor customisations.
4. A methodology to customise a multi-threaded processor
for an application.
5. FPGA implementations of customised processors,
running in hardware, with area and performance results
for five media and cryptography benchmarks. We
compare execution time with the commercial MicroBlaze
soft-processor.

This paper is an extended version of one that appeared in
Field Programmable Logic and Applications 2005 [6].

The Institution of Engineering and Technology 2006

IEE Proceedings online no. 20050177

doi:10.1049/ip-cdt:20050177

Paper first received 1st November 2005 and in revised form 4th February 2006

The authors are with the Department of Computing, Imperial College, 180
Queens Gate, London SW7 2RH, UK

E-mail: rgd@doc.ic.ac.uk

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006 173

2 Related work

MicroBlaze [7] and Nios [8] are examples of existing soft
processors provided by FPGA vendors. Neither has any
multi-threading ability although embedded multi-threaded
processors are emerging in the application specific inte-
grated circuit (ASIC) world, for example, Tricore [9] and
META [10]. The Java multi-threaded processor [11] is a
research example that provides hardware support for the
Java threads model. As such, CUSTARD is the first custo-
misable multi-threaded processor for FPGAs. Current
CUSTARD processors are automatically generated and
not hand-optimised, allowing us to rapidly characterise
the design space at the expense of some optimality. By com-
paring performance with the MicroBlaze processor, we
demonstrate that the performance benefits of customisation
can more than compensate for lack of manual optimisation.

The SPREE [12] system provides exploration of soft-
processor design space. Processors are constructed from a
library of register transfer level (RTL) components using
a specialised structural description. In comparison with
SPREE, CUSTARD provides a significantly larger design
space, most importantly the potential for custom
instructions, whereas SPREE provides efficient synthesis
and fine-grained optimisation of the architecture once an
instruction set has been fixed.

Atasu et al. [13], Brisk et al. [14] and Sun et al. [15] have
demonstrated strategies for automatically partitioning appli-
cations into segments implemented using basic instructions
(add, subtract, shift, etc.) and segments implemented
directly in hardware as custom instructions.

Atasu et al. [13], formulate custom instruction selection
as an integer linear programming problem that minimises
the schedule length of a basic block subject to microarchi-
tectural constraints. Identical instructions are identified
and reused by a subgraph isomorphism test. This algorithm
finds the optimum combination of custom instructions for a
basic block, although reuse of instructions is considered
only after their selection is complete and no access to
memory can occur within a custom instruction. Sun et al.
[15] propose a template-extraction technique that is driven
by synthesis and simulation results to select a combination
of instructions that achieve maximum speedup. This
approach ensures high-quality results at the expense of a
long compile time that is acceptable for an ASIC flow but
would dominate the FPGA design cycle. Brisk et al. [14]
demonstrate a heuristic clustering method that generates
custom instructions to implement frequently occurring
structures in the code.

Any of the above methods could be used to find instruc-
tion set extensions for the CUSTARD processor. However,
we use a novel method that is specialised for a soft-
processor implementation by supporting two enhancements
over the previous work. First, to take advantage of the abun-
dance of block random access memory (RAM) on modern
FPGAs, we permit a limited form of memory access
within custom instructions. Our compiler identifies read-
only segments – often used as look-up-tables in software
– that are placed in dedicated block RAM tightly coupled
to the custom instruction. This is similar to the approach
adopted in [16] except that we automate the process entirely
with no need for manual verification. Secondly, our tech-
nique is able to reuse custom instructions across non-
identical pieces of code. While conceptually similar to clus-
tering techniques such as [14], our approach is based on
methods from computer algebra that take into account com-
mutative relationships to maximise reuse. For FPGA
implementations, routing overheads exacerbate the clock

rate penalties of adding each custom instruction, and so
maximising reuse enables a large portion of the application
to be accelerated while maintaining clock rate.

3 Methodology and tool flow

Our methodology is to customise a multi-threaded pro-
cessor to an application, using a combination of designer-
specified parameters and automatic design performed by a
compiler. Fig. 1 shows the overall tool flow from appli-
cation to customised processor.

The inputs to the system are:

1. The application, specified in a high-level language such
as C.
2. A parameterisable processor that serves as a template.
3. A set of user-specified processor parameters.

Our compiler performs standard optimisations and static
analyses on the application C code. The compiler then gen-
erates a set of custom instructions to accelerate the appli-
cation. We combine generated custom instructions with
designer-specified parameters to instantiate a synthesisable
netlist for the processor.

The user parameters specify high-level architectural fea-
tures, most importantly the number of hardware threads
supported by the architecture. Optimal values for these
can be found by simulation or from the intrinsic require-
ments of the application.

Our compiler identifies custom instructions automatically
to accelerate frequently performed computations. We
implement custom instructions as dedicated datapaths that
can be single, multi-cycle or pipelined. Replacing a
sequence of instructions by a single custom instruction
reduces the overhead of instruction fetch and the total
number of cycles required for the computation.

4 Multi-threaded architecture

We generate instances of customisable multi-threaded pro-
cessors using a parameterisable model. The parameterisable
model (Fig. 2) instantiates a synthesisable hardware
description and configures our cycle-accurate simulator.

The CUSTARD base architecture is typical for a soft-
processor, with a fully bypassed and interlocked 4-stage
pipeline. CUSTARD is in fact a load/store RISC

Fig. 1 Toolflow for our processor customised for a particular
application

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006174

architecture supporting the full MIPS integer instruction set.
CUSTARD supports augmentation of the pipeline with
custom instructions using spare portions of the MIPS
opcode-space.

The detailed parameters are:

1. Multi-threading support:
† number of threads: a power of 2;
† threading type: block (BMT)/interleaved (IMT).

2. Custom instructions: single/multi-cycle and pipelined:
† custom datapaths at the execution stage of the pipeline;
† custom memory blocks.

3. Forwarding and interlock architecture:
† branch delay slot: with or without;
† load delay slot: with or without;
† forwarding: enable/disable each forwarding path.

4. Register file:
† number of registers: a power of 2;
† number of register file ports: larger than or equal to 2;
† Bitwidth: 8, 16, 32.

We support two types of multi-threading, block (BMT)
and interleaved (IMT) multi-threading. Both types simul-
taneously maintain the context – the state of registers,
program counter and so on – of multiple independent
threads. The types of threading differ in the circumstances
that context switches are triggered, illustrated for two
threads in Figure 8.

BMT, as shown in Fig. 3a, triggers a context switch as a
result of some run-time event in the currently active thread,
for example, a cache miss, an explicit ‘yield’ of control or
the start of some long latency operation such as a custom

instruction. When only a single thread is available, the
BMT processor behaves exactly as a conventional single
threaded processor. When multiple threads are available,
any latency in the active thread is hidden by a context
switch. The context switch is triggered at the execution
stage of the pipeline, meaning that the last instruction
fetched must be flushed and refilled from the new active
thread. This results in the stall shown in Fig. 3a.

IMT, as shown in Fig. 3b, performs a mandatory context
switch every single cycle. This causes interleaved execution
of the available threads. IMT permits simplification of the
processor pipeline as, given sufficient threads, certain pipe-
line stages are guaranteed to contain independent instruc-
tions. IMT thus removes pipeline hazards and permits
simplification of the forwarding and interlock network
designed to mitigate these hazards. Our processor can
exploit this by selectively removing forwarding paths to
optimise the processor for a particular threading
configuration.

We do not discuss in detail the possible utilisation of the
multi-threading features provided by CUSTARD. Our focus
is on the hardware implementation and optimisation, com-
piler support and combination with custom instructions.

Table 1 summarises customisation of the forwarding and
interlock architecture for each multi-threading configur-
ation. The forwarding paths, BRANCH, ALU and MEM,
are as illustrated in the pipeline diagram of Fig. 2. The
IMT columns show how elements of the forwarding and
interlock network can be removed depending upon the
number of available threads. For example, in the case of
two threads, the ALU forwarding logic can be removed.
When two IMT threads are available, any instruction

Table 1: Summary of forwarding paths (as shown in Fig. 2) and interlocks that
can be ‘optimised away’ for single-threaded, BMT and IMT parameterisations

Disable Configuration

No. of threads

BMT

� 1

IMT

� 2

IMT

� 1

FORWARDING_BRANCH 3 3

FORWARDING_ALU 3 3

FORWARDING_MEM 3

BRANCH DELAY 3
�

3 3

LOAD INTERLOCK 3
�

3 3

�Optimising away this element in this configuration changes the compiler scheduler
behaviour to prevent hazards

Fig. 2 CUSTARD micro-architecture showing threading, register file and forwarding network parameterisations

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006 175

entering the ALU stage of the pipeline is independent of the
instruction leaving the ALU stage. Removing interlocks in
certain situations (highlighted by �) constrains the ordering
of the input instructions and so these parameters are made
available to the compiler. Our compiler is able to adapt
the scheduling of instructions based on these parameters.

Multiple contexts are supported by multiple register files
which are implemented as dual-port RAM on the FPGA.
Each register file access is indexed by the register number
and also the id of the thread that generated the access.
Each register file is also parameterisable in terms of the
number of ports and the number of registers per thread.
Increasing the number of register file ports allows custom
instructions to be selected by the compiler that take a
greater number of operands.

We currently use the Handel-C [17] hardware description
language to implement our parameterisable processor. Our
Handel-C implementation of CUSTARD provides a frame-
work for parameterisation of the processor together with a
route to hardware. Although high-level synthesis incurs
some overheads, we compare to the optimised MicroBlaze
processor and demonstrate that our designs are competitive.

5 Optimising compiler

Our compiler outputs MIPS integer instructions and custom
instructions to optimise CUSTARD for the application. We
generate custom instructions within the compiler using our
novel Similar Sub-Instructions technique. Fig. 4 shows the
flow through our compiler with the custom instruction
finding stage highlighted. Prior to finding custom instruc-
tions, a pre-optimisation stage performs standard source-
level optimisations together with loop unrolling to expose
loop parallelism. After custom instructions have been
selected, custom and base instructions are scheduled to
minimise pipeline stalls. This scheduling stage is parame-
terisable to support the microarchitectural changes afforded
by the CUSTARD multi-threading modes.

The result of compilation comprises hardware datapaths
to implement custom instructions and software to execute
on the customised processor. We add the custom instruction
datapaths to the CUSTARD processor and then update the
decoding logic to map the new instructions to unused por-
tions of the opcode space. We assemble and link the software
portion using modified versions of the GNU binary tools.

5.1 Similar Sub-Instructions

The object of Similar Sub-Instructions is to find instruction
datapaths that can be reused across similar pieces of code.
Essentially, we cluster operators from the directed acyclic
graph (dag) of each basic block in the compiler intermediate
representation. The clustering is guided by a figure-of-merit

(FoM) heuristic that attempts to maximise the proportion of
code accelerated by custom instructions within an area con-
straint. The algorithm, inspired by techniques from compu-
ter algebra, allows commutativity to be taken into account
to maximise reuse of instructions.

We do not give a full description here (interested readers
should refer to Dimond et al. [18]) but hope to give an
insight into the four main steps of the algorithm:

1. Program statements are re-written as a set of incidence
matrices. An incidence matrix is created for each binary
commutative operator that appears at least once in the
program (e.g. add, multiply, XOR). At this stage, read-only
arrays in memory are also identified.
2. A heuristic is used to merge incidence matrix columns.
Each column represents an input to the matrix: merging
of columns occurs when the input can be computed using
the same datapath.
3. A Breuer [19] factorisation process is used to select
columns from each incidence matrix to maximise a heuristic
‘figure of merit’. Custom instructions are generated to
implement a ‘sum’ of the selected columns using the appro-
priate operator.
4. A final ‘worthwhile check’ is used to reject instructions
that do not meet criteria for amount of computation per-
formed within the instruction.

An incidence matrix is a representation for expressions of
binary commutative operators. Each row of the matrix rep-
resents a ‘sum’ under a binary operator such as XOR or
addition. The incidence matrix allows us to exploit the com-
mutativity property when finding multiple opportunities to
use an instruction. The merging (2) and factoring (3) steps
actually select the regions of the program to be implemented
as custom instructions. The ‘worthwhile check’ (4) stage pre-
vents the compiler generating custom instructions that
already exist in the processor basic instruction set.

a b

Fig. 3 IMT and BMT multi-threading modes supported by
CUSTARD

These examples show interleaving of two hardware threads A and B

Fig. 4 Complete compiler flow with the Similar Sub-Instructions
(find reusable instructions) stage shaded

Pre-optimisations run before custom instruction finding to expose
regularity and simplify the code
Post-optimisations tidy up the output before code generation
Base instruction selection is a standard technique that selects base
instructions for code not implemented within a custom instruction
The final scheduling pass orders base and custom instructions to maxi-
mise performance

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006176

Fig. 5 shows an example incidence matrix for a system of
expressions. Each binary commutative operator is rep-
resented by a matrix, while unary expressions, constants
and variable inputs form ‘chains’ at the inputs to the
matrix. Building a set of incidence matrices from a directed
acyclic graph of an expression is straightforward, where one
matrix is required for each type of binary operator. We build
a matrix set for each function, so that custom instructions
can be reused across any expression within the same
function.

We merge columns of incidence matrices in order to
reuse custom instruction datapaths. Columns are merged
subject to two constraints. First, overlapping of non-zero
elements is avoided as this corresponds to reuse of hardware
within the same custom instruction. Second, the chains (or
inputs) to each column must be ‘similar’ so that they can
be implemented using the same datapath resources. For
our implementation, the similarity constraint is that the
arithmetic operators must be of the same type, but constant
inputs are permitted to be different. These constants corre-
spond to immediate values in the final custom instruction.

We use a factoring process to select columns of the final
matrix to implement as custom instructions. Adding an
additional column moves more computation into hardware
but can reduce the number of matrix rows that can be accel-
erated by the custom instruction. Our intention is to maxi-
mise the amount of computation performed in hardware
while minimising the number of instructions required, so
a small custom instruction that is reused many times has
the same value as a large instruction used only once. We
capture this behaviour using an FoM shown in (1). The fac-
tored rows parameter captures the reuse of the instruction,
whereas weight gives an estimate for the amount of compu-
tation performed on each instruction input. We greedily
maximise this heuristic, adding the best column at each
stage (calculated by (2)).

FoMðfactorÞ ¼
X

column[factor

FoMðcolumnÞ ð1Þ

FoMðcolumn cÞ ¼WeightðchainÞ � factored rows ð2Þ

Our compiler generates hardware datapaths for the factored
columns in a matrix, and then inserts special nodes for
custom instruction inputs and outputs into the intermediate
representation. At the code-generation stage, these nodes
are simply matched by the automatically designed custom
instructions, whereas conventional instructions are selected
for the rest of the graph.

5.2 Implementation

Fig. 6 provides an overview of our infrastructure, in particu-
lar, the source of results that we use to evaluate processor
configurations.

We implement the compiler using the CoSy [5] system
from ACE Associated Compiler Experts. The CoSy frame-
work provides an extensive suite of standard compiler
optimisations together with a robust framework for con-
structing compilers for novel architectures. We enable a
full suite of optimisations to ensure that any speedup
achieved from customisation could not also be achieved
by standard optimisation. For example, a custom instruction
that chains two instructions into a single instruction has no
value if one or both instructions could be eliminated by con-
ventional peephole optimisation.

CoSy provides an automated back-end generator that we
use to generate the instruction selection, register allocation
and scheduling components. We support custom instruc-
tions by inserting pure function calls – which have identical
semantics to a custom instruction use – into the internal
representation prior to selection of base MIPS instructions.
We provide a separate instruction scheduler for each multi-
threading configuration of the processor that re-orders
instructions to maximise performance. Our scheduler
accommodates custom instructions by mapping each one
to a template instruction that has identical latency.

Instruction set customisation incurs a negligible increase
in compile time, of ,0.1 s (or ,20% of compile time) for
all benchmarks except DCT. DCT causes a 2.2 s increase in
compile time.

6 Cycle-accurate simulator

Our cycle-accurate simulator is based upon the
SimpleScalar [20] framework. The simulator is configured
directly from the processor hardware description and simu-
lates a parameterisable memory system.

SimpleScalar provides a default simulation model
sim-outorder that is highly parameterisable to capture a
wide spectrum of traditional processor designs. In particu-
lar, dynamically scheduled (superscalar) processors can be
simulated with various microarchitectural and memory
system configurations. SimpleScalar uses the C preproces-
sor to decouple the instruction set being simulated from
the microarchitecture model, allowing portability across a
number of targets such as Alpha and PISA (a superset of
MIPS). Despite this flexibility, it is necessary to make
significant changes to SimpleScalar in order to model the
combination of custom instructions and multi-threading.

To support CUSTARD processors, we replace the simu-
lation kernel of SimpleScalar with a CUSTARD specific

Fig. 5 Incidence matrix with input chains example

The � symbol denotes any binary commutative operator

Fig. 6 Implementation of our complete system, showing the
source of each metric used to evaluate our processor designs

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006 177

version. This kernel is generated automatically from the
Handel-C description of the processor, including custom
instructions and the multi-threading configuration.
SimpleScalar tools provide functions such as memory
system simulation, binary loading and the general
infrastructure.

To generate the simulation kernel, we leverage the ability
of the Handel-C compiler to output a high-level Cþþ
model of the processor that can be compiled and linked to
a custom SimpleScalar kernel. We provide the libraries to
link the processor model with the software simulation at
bus transaction level. Directly compiling the processor
model from Handel-C allows us to generate simulator and
hardware from the same description, ensuring 100% fidelity
with the actual hardware. In addition, we are able to achieve
an acceptable simulation speed (compared to RTL simu-
lation) that is around 30 times slower than sim-outorder
from SimpleScalar. Although higher performance could
be achieved by writing a new version of sim-outorder
specific to CUSTARD, our approach enables fast verifica-
tion and development of the processor model.

7 Results

Our compilation and simulation framework is sufficiently
complete to allow application-level benchmarks to be exe-
cuted. To obtain indicative results from a compiler and pro-
cessor very early in their development cycles, we select
benchmarks from the MiBench [21] suite that are suffi-
ciently self-contained. We use six benchmarks in total
that cover two important application domains. From
image/video processing: colourspace conversion, laplace
edge detection, SUSAN edge detection and discrete
cosine transform (DCT). From cryptography: the advanced
encryption standard (AES) and Blowfish. All benchmarks
are compiled ‘out of the box’, i.e. without hand optimisation
or tailoring for the architecture or compiler.

For multi-threaded processors, we do not demonstrate the
performance advantage of zero overhead hardware context
switching above a conventional single-threaded processor.
This benefit is covered in existing literature [4] and is
dependent upon the frequency that context switches are per-
formed rather than the benchmark itself. Instead, we run as
many instances of the benchmark as there are hardware

contexts on each processor to demonstrate the effect of
our architectural optimisations and the benefit of latency
hiding.

Table 2 provides a summary of the exact custom instruc-
tions generated by the compiler for each benchmark and the
cycle latency of their ASAP scheduled implementations. In
addition, the number of uses of each instruction is shown to
demonstrate the extent that instructions are reused. Each use
corresponds to a distinct instruction in the assembly code,
not the dynamic reuse caused by looping behaviour.
Fig. 7 shows by example how the pseudocode description
of the AES custom instruction corresponds to the hardware
implementation.

Fig. 8 shows the execution cycle counts for the five
benchmarks (Blowfish, Colourspace, AES, DCT and
SUSAN) running on a CUSTARD processor implemented
on a Xilinx XC2V2000. Fig. 9 shows the FPGA area utilis-
ation in Xilinx slices and Fig. 10 shows the maximum clock
rate, as reported by the timing analyser. Each bar in the
graph corresponds to a particular processor customisation.
For each benchmark, we present results for three threading
configurations: 1. Single-threaded. 2. Block multi-threaded
with four threads (BMT4); (3) interleaved multi-threaded
with four threads (IMT4). We show results with and
without automatically generated custom instructions for
that benchmark.

We examine the timing analysis reports to confirm that
clock rate variations are not due to randomisation in the
place and route tools. For BMT and single-threaded pro-
cessors, the critical path includes the forwarding network:
necessary for single-cycle latency of basic instructions
(FORWARDING_ALU in Fig. 1). The critical path in the
IMT processors is the ALU pipeline stage.

We make the following four observations from the
results:

1. The IMT4 and BMT4 configurations add only 28 and
40% area, respectively, to the single-threaded processor
but allow interleaved execution of four threads with no soft-
ware overhead.
2. Custom instructions give a significant performance
increase, an average of 72% with a small area overhead
above the same configuration without custom instructions,
an average of only 3%. CUSTARD accelerates AES by
355%.

Table 2: Summary of the custom instructions automatically generated for each benchmark

Benchmark Custom instruction(s) (input

registers r02r3, immediate value

imm0)

No. uses Latency

(cycles)

BRAM

(bytes)

Blowfish LUT (r0� 24)þ LUT (r1� 16) 2 1 1024

LUT ((r0� 8)&255) 2 1

Colourspace ((r0� 8)&0xFF)j(r1 & 0xFF00)j

((r2� 8)&0xFF0000)

1 1 32

DCT LUT (r1)þ r2 � (r0 � 8) 65 2 64

LUT (r1)þ r2 � ((r0&255) 2 128) 65 2

Edge Detect LUT (r0þ 1þ imm0) 3 1 64

SUSAN LUT (r0) 31 1 516

AES LUT (r0) ^ LUT (r1� 8) ^

LUT (r2� 16) ^ LUT (r3� 24)

64 1 1024

Inputs r0–r3 are allocated to registers from the general purpose file. LUT(a) ¼ table lookup from dedicated
block RAM address a. ‘No. uses’ demonstrates the extent of reuse by showing the number of times the instruc-
tion is used in the benchmark assembly code. ‘Latency’ is the number of execution cycles required before the
output is available to the forwarding network or in the register file

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006178

3. The IMT processors without custom instructions provide
a higher maximum clock rate than both BMT (41% higher)
and single-threaded (5% higher) processors. The number of
cycles is also reduced by an average of 10%.
4. The IMT processors hide pipeline latencies by tightly
interleaving independent threads. We anticipate that the
relatively low (10%) latency improvement is caused by
the short latency of the custom instructions generated
(Table 2), at most two cycles in every case. It was not poss-
ible to build longer latency instructions within the register
file port constraints, so we expect that deeply pipelined pro-
cessors or floating point custom instructions are needed to
create latencies long enough for significant benefit in this
area. However, the IMT processors do allow a higher
maximum clock rate by removing the forwarding logic
around the ALU.

Table 3 gives comparative ‘wall clock’ execution time
results for single-threaded CUSTARD processors and the
MicroBlaze soft-processor. The MicroBlaze results are for
a processor running at 100 MHz, with (Divþ Shifter) and
without (Baseline) the optional hardware divider and
barrel shifter options. The CUSTARD results are for a
single-threaded processor, running at the maximum fre-
quency reported by the tools, with and without custom

instructions. The fairest comparison is with the second
MicroBlaze processor that has the optional divide unit and
barrel shifter enabled (Divþ Shifter), because all
CUSTARD processors presented include these features.

It is difficult to directly compare such different processors
with different memory systems, although we do configure
the same cache size for both processors (8k data and 2k
instruction). Our intent is to show that CUSTARD processor
performance is realistic and competitive with a highly opti-
mised processor such as MicroBlaze.

Without custom instructions, the CUSTARD processor is
slower than the MicroBlaze, with execution time increases
of 61% (Colourspace) to 6% (AES). However, the single-
threaded CUSTARD processors with custom instructions
are significantly faster for the three benchmarks, with
speedups as high as 3.93 (AES) with an average of 2.41
times across all benchmarks. Of course, MicroBlaze con-
sumes only half the FPGA area of CUSTARD and provides
a number of significant additional features for operating
systems and I/O that we do not support. However, we
assert that in terms of pure data processing CUSTARD pro-
cessors are competitive across the benchmark set. This is a
significant result for our automatically customised pro-
cessor to beat the highly optimised MicroBlaze on perform-
ance, even at half of the clock rate.

Fig. 7 Implementation of the AES custom instruction from
Table 2

LUT(r0) ^ LUT(r1� 8) ^ LUT(r2� 16) ^ LUT(r3� 24)

Fig. 8 Normalised number of execution cycles required for six
CUSTARD configurations running five benchmarks

IMT and BMT processor results show overall throughput for four inde-
pendent computations

Fig. 9 Required area in terms of XC2V2000 slices from a total of
21 504 for CUSTARD configurations

Fig. 10 Maximum clock frequency for CUSTARD configurations
as reported by Xilinx timing analyser

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006 179

8 Conclusion and future work

We have presented CUSTARD, a customisable
multi-threaded FPGA soft processor. We present a method-
ology for customising CUSTARD processors to an
application and an implementation of the software
infrastructure required to support our methodology. To
evaluate CUSTARD, we present performance and area
results for FPGA implementations of processors running
important benchmarks from media and cryptographic
domains.

In our future work, we intend to investigate additional
strategies for building custom instructions, in particular,
instructions that allow pipelined execution of loops. In
addition, we would like to explore multi-processor configur-
ations of CUSTARD.

9 Acknowledgments

We gratefully acknowledge the support of ACE Associated
Compiler Experts, Celoxica, the EPSRC and Xilinx. The
comments of both FPL and IEE CDT reviewers were
helpful in preparing the final manuscript.

10 References

1 Seng, S.P., Luk, W., and Cheung, P.Y.K.: ‘Runtime adaptive flexible
instruction processors’. Proc. Field-Programmable Logic and
Applications, 2002

2 Xtensa extensible processor. http://www.tensilica.com
3 ARCtangent extensible processor. http://www.arccores.com
4 Ungerer, T., Robic, B., and Silc, J.: ‘A survey of processors with

explicit multithreading’, ACM Comput. Surv., 2003, 35, (1),
pp. 29–63

5 ACE Associated Computer Experts bv. CoSy compiler development
system. http://www.ace.nl

6 Dimond, R., Mencer, O., and Luk, W.: ‘CUSTARD–a customisable
threaded FPGA soft processor and tools’. Proc. Field Programmable
Logic and Applications (FPL), August 2005, pp. 1–6

7 Xilinx. MicroBlaze Hardware Reference Guide, March 2002. http://
www.xilinx.com

8 Altera. ‘Custom instructions for the Nios embedded processor’,
September 2002. Application Note 118

9 Norden, E.: ‘A multithreading extension for low-power, low-cost
applications (tricore processor)’. Embedded Processor Forum
Presentation, 2003

10 META – RISC/DSP core with hardware multi-threading. http://
www.metagence.com

11 Watcharawitch, P., and Moore, S.: ‘JMA: the java-multithreading
architecture for embedded processors’. Int. Conf. on Computer
Design (ICCD), (The IEEE Computer Society), September 2002

12 Yiannacouras, P., Rose, J., and Steffan, J.G.: ‘The microarchitecture
of FPGA-based soft processors’. Proc. Compilers, Architecture and
Synthesis for Embedded Systems (CASES), September 2005

13 Atasu, K., Dündar, G., and Özturan, C.: ‘An integer linear
programming approach for identifying instruction-set extensions’.
Proc. Hardware/Software Codesign and System Synthesis
(CODESþ ISSS), September 2005, pp. 172–177

14 Brisk, P., Kaplan, A., Kastner, R., and Sarrafzadeh, M.: ‘Instruction
generation and regularity extraction for reconfigurable processors’.
Proc. Compilers, Architecture and Synthesis for Embedded Systems
(CASES), October 2002, pp. 262–269

15 Sun, F., Ravi, S., Raghunathan, A., and Jha, N.K.: ‘Custom-instruction
synthesis for extensible-processor platforms’, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., 2004, 23, (2), pp. 216–228

16 Biswas, P., Choudhary, V., Atasu, K., Pozzi, L., Ienne, P., and
Dutt, N.: ‘Introduction of local memory elements in instruction set
extensions’. Proc. DAC, June 2004, pp. 729–734

17 Handel-C language reference manual. http://www.celoxica.com
18 Dimond, R., Mencer, O., and Luk, W.: ‘Automating processor

customisation: Optimized memory access and resource sharing’.
Proc. Design, Automation and Test in Europe (DATE), 2006

19 Breuer, M.A.: ‘Generation of optimal code for expressions via
factorisation’, Commun. ACM, 1969, 12, (6), pp. 333–340

20 Austin, T., Larson, E., and Ernst, D.: ‘Simple Scaler: an infrastructure
for computer system modeling’, Computer, 2002, 35, (2), pp. 59–67

21 Guthaus, M.R., et al.: ‘MiBench: a free, commercially representative
embedded benchmark suite’. Proc. IEEE 4th Annual Workshop on
Workload Characterisation, Austin, TX, December 2001

Table 3: Comparison between CUSTARD and Xilinx MicroBlaze 4.00a wall clock execution time

Benchmark MicroBlaze time, ms CUSTARD time, ms CUSTARD

MHz with CI

Speedup CUSTARD/MB

Divþ ShifterBaseline Divþ Shifter No CI With CI

Blowfish 204 127 34 194 37 523 23 512 39.55 1.45

Colourspace 1828 448 720 424 43.21 1.06

AES 936 135 143 34 37.98 3.93

DCT 18 862 11 939 16 197 4952 46.39 2.41

SUSAN 671 642 694 201 47.10 3.19

CUSTARD processor running at maximum clock frequency on XC2V2000 (shown for processors with custom instructions) and
MicroBlaze at 100 MHz. MicroBlaze results shown with and without the optional barrel shifter and divide unit. Both processors con-
figured with 2k instruction and 8k data cache

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 3, May 2006180

