
��������������������	��
�
����
�

� ��������

A Domain Specific Language for Reconfigurable Path-based Monte Carlo

Simulations∗

David B. Thomas and Wayne Luk

Imperial College London

United Kingdom

{dt10,wl}@doc.ic.ac.uk

Abstract

FPGAs have been successfully used to accelerate

many computationally bound applications, such as high-

performance Monte-Carlo simulations, but the amount of

programmer effort required in development, testing, and

tuning is also very high, requiring a new custom design

for each application. This paper presents Contessa, a

pure-functional continuation-based language for describ-

ing path-based Monte-Carlo simulations, and a completely

automated method for turning platform-independent Con-

tessa programs into high-performance hardware imple-

mentations. Our approach exploits the large degree of

thread-based parallelism available in Monte-Carlo sim-

ulations, allowing data-dependent control-flow and loop-

carried dependencies to be expressed, while retaining high-

performance. The Contessa toolchain is evaluated using

five different simulation kernels, in comparison to both soft-

ware and manually described hardware. When compared

to an existing FPGA implementation, Contessa requires a

quarter of the Handel-C source-code length, and doubles

the clock rate to over 300MHz while requiring a similar

number of resources, and also provides a 35 times speedup

over a C++ implementation using an Opteron 2.2GHz.

1 Introduction

FPGAs have been demonstrated to be an effective plat-

form for computationally intensive applications, such as

Monte-Carlo simulations for financial applications. How-

ever, although FPGA accelerators can provide a significant

speedup over software, they also take much longer to de-

velop: a hardware engineer must analyse each application,

develop an efficient hardware architecture, then test the re-

∗The support of UK Engineering and Physical Sciences Research

Council (Grant reference EP/D062322/1 and EP/C549481/1), Celoxica

and Xilinx is gratefully acknowledged.

sulting combination of hardware and management software.

It is also unlikely that the solution is directly portable to al-

ternate hardware platforms or newer FPGA architectures,

so it is difficult to automatically scale across heterogeneous

clusters, or achieve forwards compatibility.

This paper presents Contessa, a Domain Specific Lan-

guage (DSL) for describing simulations architectures,

which attempts to address these problems. Applications are

described using a platform-independent language, using a

pure-functional continuation-passing style, which can then

be automatically turned into efficient pipelined hardware for

multiple platforms and architectures. The language and im-

plementation strategy exploit the huge amount of thread-

based parallelism available in a Monte-Carlo simulation,

allowing simulations to contain complex data-dependent

branching and iteration without degrading performance.

Our main contributions are:

• The Contessa language, a pure-functional, continua-

tion based language for describing path-based simu-

lations. Each Contessa program describes a complete

simulation application, that can be automatically com-

piled, loaded, and executed.

• An automatic mapping technique for converting Con-

tessa descriptions into high-performance pipelined de-

signs, requiring no manual annotations or platform-

specific hints.

• A performance evaluation of the language and map-

ping strategy, using five simulations written in Con-

tessa, Handel-C, and C++.

In Chapter 2 the Contessa language is presented, by first

introducing the core language structure, then the features

designed specifically for simulations. Chapter 4 then ex-

plains the automatic process for converting Contessa pro-

grams into pipelined hardware, followed by an evaluation

of the system in Chapter 5.

2 Overview of the Contessa Language

The Contessa language is a pure-functional language,

having only a few basic types of declarations and state-

ments. It is a pure-functional language (i.e. variables cannot

be re-assigned), and like many pure-functional languages it

uses tail-recursion to express iteration without side-effects.

However, unlike most functional languages, Contessa does

not allow recursive functions to return values: a function

can either return a value, or it can use recursion, but it

cannot do both. While somewhat unconventional, this ap-

proach allows the automatic mapping strategy described in

Section 4, providing a high-performance reconfigurable ar-

chitecture from a implementation independent description;

There are actually two semantically equivalent syntaxes

of Contessa: a minimal lisp-like syntax and prefix expres-

sions, making the functional nature of the language appar-

ent; and a C-based notation, using infix expressions and

curly brackets. In this paper we use the C syntax, and only

provide an informal overview of the language features, fo-

cusing on an overview of the language and route to hard-

ware. A more formal description of the language and its

semantics will appear in a future paper.

Contessa programs use a pure-functional proper subset

of C, with the main consequence being that there are no as-

signment statements and loop statements are not allowed.

Data type support is also limited to statically-sized types,

such as scalars, structs, and fixed-length arrays; there are

no pointers, or dynamic memory allocation. However, this

subset still includes features such as procedures, conditional

statements, and expressions: using a set of simple class li-

braries and some pre-processor macros, it is actually pos-

sible to directly compile and execute a Contessa program

using a standard C compiler.

Procedures within a Contessa program are divided into

two types: functions, which are procedures that return val-

ues; and blocks, which are procedures that do not return

values (i.e. they have a void return type). A function can

contain conditional statements and function calls, but it can-

not contain any recursive calls either directly, or indirectly

through another function. Functions are essentially a macro

facility, and these conditions are to ensure that a function

can be statically expanded at compile-time.

Blocks are quite different to functions, as they cannot re-

turn values, but instead they can contain an arbitrary amount

of recursion, both directly and indirectly. However, this is

recursion without returning a value: when a block makes a

call to another block, that call will never return. This means

that once a call is made, there is no reason to retain the dy-

namic environment (such as local variables) of the calling

function, so no stack is needed.

A consequence of throwing away the environment is that

the parameters passed from one block to another must con-

 1: parameter(float,VOLATILE_ENTER);
 2: parameter(int, MAX_D); // Remaining parameters elided.
 3:
 4: accumulator(float,price); // Price at end of simulations.
 5:
 6: // This is a function, and is expanded in place.
 7: float lognrnd(float mu, float sigma)
 8: { return exp(normrnd()*sigma+mu); }
 9:
10: // This block is the arity-0 entry point for all threads.
11: void init()
12: { (0, S_INIT); } // Start threads in stable block.
13:
14: // Stable market: step price forward for each day in simulation.
15: void stable(int d, float s)
16: {
17: if(d==MAX_D){
18: price += s; // Accumulate final price of simulation.
19: ; // Exit thread with nullary return.
20: }
21: if(unifrnd()>VOLATILE_ENTER){
22: (d+1,0,VOL_INIT,s); // Simulate volatile day.
23: }else{
24: float ns=s*lognrnd(STABLE_MU, STABLE_SIGMA);
25: (d+1, ns); // Simulate stable day in one step
26: }}
27:
28: // Volatile market: step price in small increments through day.
29: void volatile(int dinc, float t, float v, float s)
30: {
31: if(t>MAX_T){ // End of day, so ...
32: (dinc, s); // ... return to stable phase.
33: }else{
34: float nt=t+exprnd(); // Advance intra-daily time.
35: float nv=sqrt(v+unifrnd()); // New volatility.
36: float ns=s*lognrnd(VOL_MU, VOL_SIGMA*nv);
37: (dinc, nt, nv, ns); // Next volatile step.
38: }}

Figure 1. Example of a Contessa simula-

tion, using three blocks, and five continua-
tion points (shown underlined).

tain the entire thread state: the environment of the calling

block is discarded, so any information needed later in the

thread’s lifetime must be passed as a parameter to the called

block. This is known as continuation-passing style, where

the combination of the target block and block parameters

represents the thread continuation, and completely captures

all information about the thread 1.

3 Contessa Program Example

Figure 1 gives an example of a simple simulation writ-

ten in Contessa. The aim is to simulate some hypothetical

asset’s price path, taking into account two types of market

conditions: stable, where a whole day’s trading can be sim-

1This differs slightly from the Functional Programming (FP) definition,

although the central idea of forward computation without function returns

is the same. In FP a continuation passed to function X usually contains

both data and a reference to another function Y, and when X completes

execution it will use function Y to continue processing. We intend to add

the ability to pass dynamic continuations to the next iteration of Contessa.

ulated in a single simple step; and volatile, where multiple

smaller steps are required, using a more complex algorithm

for each step.

The code starts with a number of simulation parameters,

which are read-only variables visible throughout the pro-

gram. At run-time these parameters will be bound to values

estimated from the latest market data, so these parameters

are the high-level inputs to the program. The run-time sys-

tem guarantees that parameters will not change within the

lifetime of each thread, so from within the Contessa pro-

gram they are constant.

Below the parameters is an accumulator, “price”. Ac-

cumulators act as outputs from the program, collecting sta-

tistical properties derived from the aggregate behaviour of

many simulations. Accumulators are globally visible, but

unlike parameters they are write-only.

Incorporating write-only constructs into a supposedly

pure-functional language may appear contradictory, but

there is a sound theoretical justification: all the statistical

estimators supported in Contessa are associative and com-

mutative. A vector of numbers will always have the same

arithmetic mean, no matter how the elements in the vec-

tor are permuted, and similarly, an accumulator in Contessa

will always produce the same statistical estimate, indepen-

dent of thread execution order. Programs are also still side-

effect free, as threads cannot read from accumulators, so

the interaction of any other thread with an accumulator is

undetectable.

Below the accumulator is a function lognrnd, which es-

tablishes a helper for generating the log-normal distribution,

using the normrnd and exp functions. At compile-time it

will be expanded within any expression where it is used.

Finally come the three blocks in the program, init, sta-

ble, and volatile. init simply provides a nullary thread-entry

block, and it immediately transfers control to stable. Note

that when init calls stable, the entire state of the thread is

captured by the continuation (stable,0,S INIT).

The stable block is the main loop in the simulation, with

each iteration advancing the simulation by one day, until the

loop exit test on line 17 indicates that the final day (specified

as a program input using the parameter MAX D) is reached.

If the loop has finished the final price of the simulation is

added to the accumulator price on line 18, which acts as the

output from the thread. The thread is then ended using a

return statement with no parameters.

If the loop exit has not been met, the code then contin-

ues to the conditional at line 21, which randomly decides

whether the current day is stable or volatile. If the condi-

tion is true, control is transferred to the volatile block, which

performs a detailed simulation of the day. Otherwise the en-

tire day’s price movement is simulated in line 25, using the

function lognrnd which will be expanded inline, followed

by a recursive call to stable, advancing to the next day.

The volatile block implements another loop, which is

nested within the stable block; this nesting is most appar-

ent in the parameter dinc, which is never modified or used

by volatile, but is passed forward unchanged until the loop

exits at line 32. The body of the volatile loop models as-

set price changes at exponentially distributed time offsets

during the day, so the number of iterations is not known in

advance, and varies for each thread.

Together the stable and volatile blocks advance a thread

through an entire simulation path, using the simulation in-

put parameters S INIT, MAX D, etc., and recording the re-

sult of the simulation thread in price. A Contessa program

requires many such threads to be executed, all storing their

results in price, until a sufficiently accurate aggregate mean

asset price has been determined. This process is handled by

a run-time environment, which is responsible for binding

the simulation parameters to program inputs, initiating and

managing threads, and monitoring the gradual convergence

of accumulators.

There are currently two implementation paths for Con-

tessa programs, using an FPGA (described in the next sec-

tion), or using software. We mentioned earlier that it was

possible to directly compile programs using C, but this is

not an efficient solution, due to the deep levels of recur-

sion involved. In simple cases the C compiler will convert

this to tail-recursion, but in more complex mutually recur-

sive cases the C program will use the stack, which is likely

to overflow. Instead, Contessa programs are first translated

to a constant-space C version, which can then be compiled

with a standard C compiler, and linked with the runtime en-

vironment.

4 FPGA Implementation Strategy

The aim of Contessa is to allow programs to be expressed

in a way that is high-level, efficient, and platform indepen-

dent. In particular, we are interested in targeting highly con-

current platforms, such as modern FPGAs, that have signifi-

cant computational power, but are difficult to program using

conventional high-level languages such as C. In this section

we describe the compilation strategy from a Contessa pro-

gram to a high performance FPGA-based implementation.

It is well-known that FPGAs can offer a huge amount of

computational power, even when using floating-point, but

the nature of the architecture imposes a number of impor-

tant constraints. First, one must aggressively pipeline all op-

erations if a high clock-rate is to be achieved. The latency

of Xilinx single-precision floating-point cores varies from

9 cycles for a multiply, up to 27 cycles for division. This

latency often causes problems when scheduling threads of

computation, particularly when there are loop-carried de-

pendencies.

The second problem is that of accessing global shared

state: although FPGAs are rich in fast local storage in the

form of block RAMs, global state must usually be stored

in slower off-chip RAMs. Mapping logical data-structures

to available physical RAMs in a way that allows efficient

access is a difficult task, and even with an optimal map-

ping there may still be significant contention when threads

attempt to access shared state.

Contessa was designed to have an implementation strat-

egy that eliminates these two problems. First, the problem

domain of Monte-Carlo simulations allows a huge amount

of thread-level concurrency: by using one logical thread per

simulation we immediately have anywhere from a thousand

to a billion threads to schedule for each program execution.

These threads are strictly independent, as there are abso-

lutely no side-effects, so threads (and the operations com-

prising each thread) can be scheduled in any possible or-

der. This allows us to adopt a C-Slow strategy when im-

plementing the thread processors: in the presence of highly

pipelined functional units, we simply start as many threads

as are needed to fill every stage of the functional unit.

The second problem, that of access to shared mutable

state, is solved by removing all read-write shared state. The

only mutable state accessible to threads is the current block

environment, which is both conceptually, and (as is detailed

below) physically, local to the functional units transforming

the state. The only kinds of shared global state are param-

eters, which are read-only and can hence be safely cached,

and accumulators, which are write-only and can be viewed

by each thread as their own personal black-hole.

4.1 Blocks

Blocks can be viewed as pure (albeit non-deterministic)

functions, with a domain defined by the block inputs, and

the program’s global parameters. The codomain of the func-

tion is more complicated, as it consists of zero or one con-

tinuations (comprising the name of the target block, and the

parameters to that block), plus zero or more accumulation

operations (comprising the name of the target accumulator

and the value to be accumulated). The function’s mapping

is defined both by the data-flow derived from expressions,

and the control-flow implied by statements.

The first step in the conversion process is to convert the

block’s statements and expressions into an abstract Directed

Acyclic Graph (DAG). This is shown in Figure 2, where the

source code for step is converted to the DAG in the middle

of the figure. The heavy lines between nodes show data-

flow within the block, derived from expressions, while the

thin lines in the DAG show the control-flow, extracted from

the statements.

Notice that all control-flow depends on an input called

“tok”. This is an implicit block parameter, not accessible in

the original source code, and automatically inserted while

Input: cInput: i

mul

Param: MU
normrnd

inc
=Param: T

Input: tok

Output(step): tok , i , c

and
not

Output(aC): tok, sample

and

in_cin_i

mul

parm_MU

normrnd

inc=

parm_Tin_tok

and
not

ac_tok

and

Cycle 1

Cycle 2

Cycle 3

Cycle 0
Cycle -1

ac_sample step_i step_cstep_tok

void step(int i, float c)
{

float nc=c+normrnd(MU,1);
if(i==T)

aC += nc; // accumulation
else

step(i+1, nc); // block transfer
}

0

Figure 2. Conversion process from block

specification to abstract data-flow graph,
then to scheduled pipeline.

building the DAG. The token identifies whether a set of

block input parameters represents a valid thread state, and

is used to identify “bubble” states. The “if” statement in the

source code is implemented by creating a chain of boolean

logic that depends on both the condition and the value of

“tok”: if the input token is invalid then neither output group

will be activated, otherwise exactly one of the groups will

be activated.

A block can have multiple output groups, each of which

is associated with accumulate and block transfer statements

in the block. Each accumulate statement results in a new

output group, even if the same accumulator is named as the

target, as a block may send two or more samples to the same

accumulator. However, the number of block transfer groups

is dependent only on the number of distinct blocks called.

Because exactly one or zero transfer statements may exe-

cute in a block, any block calls referring to the same target

block will be multiplexed to a shared output group.

The DAG represents a hardware independent descrip-

tion of the block, but to use it in hardware the abstract

nodes must be bound to concrete components, and sched-

uled within the pipeline. In the current compiler the binder

simply chooses the highest performance component avail-

able for each node, using a database of internal and external

IP cores. The scheduler then uses the latency information

in the component database to produce a pipeline schedule.

The scheduler uses a combination of ASAP (As Soon

As Possible) followed by ALAP (As Late As Possible)

scheduling. This two-stage strategy is needed because ran-

dom number generators have no inputs, and so have no well

defined scheduled position under ASAP. During the first

pass all nodes on the paths between inputs and outputs are

scheduled using ASAP, establishing the critical scheduling

paths through the DAG, then in the second pass all remain-

ing nodes are scheduled using ALAP. This often has the

effect of scheduling random number generators at negative

times (as seen in the bottom of Figure 2), and can signifi-

cantly reduce the buffering needed when compared with a

naive strategy of scheduling such blocks at time zero.

The scheduled and bound DAG is then rendered into

an HDL description (currently VHDL), providing a con-

crete implementation of the block’s entire transition func-

tion. Each concrete block is fully pipelined, and can accept

one new thread on each clock cycle.

4.2 Parameters

Parameters are simply values which remain constant for

the lifetime of a set of threads, but which may be changed

between threads, so parameters naturally map into registers.

New constants are loaded over a data-bus shared between

all parameter registers, with the clock-enable controlled by

a decoder to select the specific parameter. This data-bus is

mapped into the main bus described in Section 4.4, allowing

the controlling software to update parameters.

In principle the parameter registers could be a perfor-

mance problem, as a program could use the same parameter

in many different expressions, requiring the output of the

register to be propagated to many locations in the FPGA.

The current approach is to simply use a slave register, driven

by the master register, allowing the synthesis or place-and-

route tools to replicate the register if necessary. A sec-

ond approach (not yet tried), would be to simply declare

any signals using the parameter register as false-paths, as

many cycles will elapse between the parameter register be-

ing changed and any blocks using the value of the register.

4.3 Accumulators

Accumulators are treated as black-box components that

read samples from a channel, updating their internal state in

some unspecified way in response to each sample. When an

accumulator instance is required, the compiler searches it’s

database of accumulator IP cores for an accumulator using

the correct data-type.

In the current implementation one accumulator compo-

nent is instantiated for each accumulate statement that oc-

curs in a block. This means that for each named accumu-

lator in a program, there might exist multiple accumulator

instances in the actual design. The ability to freely repli-

cate accumulators is a consequence of the associativity and

commutativity of accumulation, and allows all accumulate

statements in the program to execute in every cycle without

losing samples.

The accumulator state is exposed through a bus con-

nected to each accumulator instance, allowing the current

state to be retrieved (even while simulations are running),

and to be reset. During compilation any replication of ac-

cumulator instances is recorded in the design’s meta-data,

allowing the run-time environment to present a unified view

of each accumulator’s aggregate state.

4.4 Program Assembly

After creating the concrete pipelines for all blocks, in-

stantiating parameter registers, and selecting the appropri-

ate accumulator components, we are left with a collection

of component instances, but no connections between them.

We now need to establish five different types of connec-

tions: Parameter to block; block to accumulator; bus to pa-

rameter; bus to accumulator; and block to block.

The first of these, connecting parameters to blocks, sim-

ply wires the output of the parameter registers to the ap-

propriate parameter inputs of block instances. The block

to accumulator connections are also just wires, as there is

an accumulator instance for each accumulator output port

on a block. The bus connections are also very simple, as

the shared bus is a relatively low-performance hierarchical

memory-mapped bus, requiring a small amount of arbitra-

tion logic to map the accumulators and parameters into the

bus hierarchy.

The final connections, from block to block, are more

complex, as a block may be the target of multiple block

calls, requiring arbitration. Figure 3 gives an abstract exam-

ple of a program that contains multiple transfer statements.

Block B2 contains just one transfer statement, which trans-

fers back to itself (i.e. it is a tail-recursive block). However,

block B1 also needs to transfer to block B2, so there are two

sources of threads at the input to B2.

We assume that all threads in the program will eventually

exit (there are no infinite loops in well-formed programs),

so it is more important to finish threads that are already ex-

ecuting in block B2, rather than incoming threads from B1.

This is enforced using a biased multiplexor at the input to

block B2: if the thread state from the recurrent connection

is valid (indicated by the token of the transfer output group)

B1

P2

P1

P0

B2

+

B0

A1

A0
Sh

ar
ed

 B
us

+-

parameter<real> P0, P1, P2;
accumulator<real> A0, A1;

void B0()
{

... P0 ...;
B1(...);

}
void B1(...)
{

... P1 ...;
if(...){ B1(...); }
... P2 ...;
A0 += ...;
if(...){ B2(...); }

}
void B2(...)
{

A1 += ...;
... P2 ...;
if(...){ B2(...); }
...;
if(...){ B1(...); }

)

Figure 3. Assembly of blocks, parameters

and accumulators to implement a program;

the multiplexor will always select that thread, only taking

the thread from B1 if the feedback thread is not valid.

The feedback connection is always accepted, so no

buffering is needed, but when a block call from statement

to B2 from B1 occurs, there is no guarantee that the thread

can be accepted in that cycle. The solution used is to simply

add a block-RAM based FIFO at the output of block B1, so

threads are buffered until B2 is able to accept them.

Block B2 is the target of three block calls, so we now

need a three-way select. As before, we bias the selection

towards the direct recursive call from within the block, but

there are then still two inputs to choose from. In such a

situation we bias against the channel that is the shortest dis-

tance from the thread initiator block. Here the thread ini-

tiator block is B0 (as it has no inputs), so we bias against

threads arriving from B0: only if the transfer groups from

both itself and B2 are invalid, will block B1 accept a new

thread from B0.

All connections between blocks are resolved in this way,

eventually resulting a network of fully-pipelined blocks. At

runtime the thread initiator block (B0) continually attempts

to spawn new simulations, by transferring new threads to

the downstream block B1. B0 will initially accept all new

threads, which enter through the pipeline, and some number

of cycles later may either attempt to transfer back to the

start of B1, or to B2. These threads within the system take

up capacity, either because they are in a block execution

pipeline, or because they are waiting in a FIFO for their

target block to become available. This clearly leads to the

possibility of data-loss, as the network has finite storage, so

a thread arriving at a full FIFO will have to be discarded.

To avoid data-loss we implement a simple back-pressure

system using the FIFOs. Each FIFO fed by a block has a

partially-full flag, which equals the depth of the FIFO mi-

nus the latency of the block pipeline feeding it. When the

partially-full flag is asserted, the block will stop accepting

all new threads, except those that arrive via feedback con-

nections. This ensures that the capacity of the block cannot

be overflowed. This blocking will eventually ripple back-

wards through the network, stopping new threads from en-

tering the system; however, all threads using feedback con-

nections continue to execute, so the system makes progress.

This scheme has worked well in our initial experiments, but

we have not yet examined properties such as freedom from

dead-lock and live-lock.

5 Results

We now present some initial performance results gained

from our compiler, using the five simulation kernels de-

scribed and benchmarked in [7] All five use single-precision

floating-point, for which we used the Xilinx CoreGen ver-

sion 2 floating-point cores. Xilinx ISE 8.1 was used for

all synthesis (via XST) and place-and-route tasks. Standard

synthesis effort levels were used, the “fast runtime” xflow

options were used for place-and-route, and no clock con-

straints were applied.

Table 1 shows results for a Virtex-4 implementation in

an xc4vlx100-12 part, in terms of performance, resource-

usage, and lines of code. In the five tested simulations, the

performance is directly proportional to the clock rate, as the

main body of computation is performed in a single iterative

block. Each iteration of this main block advances a simula-

tion (thread) one time step, so the clock-rate in MHz directly

determines the application performance in millions of sim-

ulations steps per second (MSteps/s). Clock rates in excess

of 300MHz are achieved for all simulations, even though we

applied no clock constraints and used fast-runtime settings

for the place-and-route process.

The resource usage of the simulations is shown in the

next set of columns, including the percentage of available

xc4vlx100 resources used in parenthesis. The maximum

resource utilisation of 25% of DSPs is seen in the GARCH

simulation, due to the large number of multipliers used in

the simulation’s transition function. However, this suggests

that the design can be replicated up to four times, potentially

quadrupling performance (replication will be explored in a

future paper).

One of the fixed resource overheads for all the simula-

tions is the need for an accumulator: all the simulations

have a single accumulate statement at the end, and so each

require a single accumulator instance. The accumulator

used is a high-performance floating-point component, and

tracks four different statistics (maximum, minimum, mean,

MHZ Slices (%) LUTs (%) FFs (%) RAMs (%) DSPs (%) LoC

Random-Walk 345 3443 (7.0) 4723 (4.8) 4265 (4.3) 3 (1.3) 4 (4.2) 19

Random-Jump 324 5105 (10.4) 6649 (6.8) 6345 (6.5) 4 (1.7) 4 (4.2) 23

Scaling-Walk 338 3777 (7.7) 5064 (5.2) 4716 (4.8) 3 (1.3) 12 (12.5) 23

Bivariate-Walk 346 7022 (14.3) 9083 (9.2) 8813 (9.0) 7 (2.9) 16 (16.7) 30

GARCH 301 6523 (13.3) 8534 (8.7) 8345 (8.5) 5 (2.1) 24 (25.0) 24

Accumulator 361 2199 (4.5) 3203 (3.3) 2042 (2.1) 0 (0.0) 4 (4.2) -

Table 1. Performance results of five different simulations described in Contessa and implemented in

the xc4vlx100, measured by performance, resource usage, and Lines of Code (LoC).

and standard-deviation), so it contributes a significant base

level of resource usage. The resource usage of the accu-

mulator component is shown in the bottom row of Table 1,

suggesting that, for the simpler simulations, over half the

resources are actually being used in the accumulator.

The final column of the table attempts to summarise the

brevity of Contessa, by including the Lines of Code (LoC)

required. Although LoC is an imperfect measure of code

expressiveness, it is worth observing that the Contessa pro-

gram is a complete executable specification: these programs

specify all inputs and outputs, and can be automatically

compiled to a bitfile, loaded into software, and used to run

the simulation, literally at the push of a button.

These performance figures mean little in isolation, so Ta-

ble 1 provides a comparison with two other implementa-

tions. The first comparison is to the previous manual imple-

mentation of the five simulations, presented in [7]. These

were created by manually scheduling the Xilinx floating

point cores using Handel-C, and are listed as HC in the

table. The second is to a software implementation of the

simulations in C++, executed on a 2.2GHz Opteron. Al-

though the code was not hand-optimised for maximum per-

formance, it was written in a style that allowed for com-

plete static analysis by the compiler, then compiled using

g++ with full architecture specific optimisations. All num-

bers in the table represent ratios between the performance of

the two implementations, with numbers exceeding one in-

dicating that the Contessa implementation is better (shown

in bold), and numbers less than one showing the other im-

plementation is better (shown in italic).

In terms of performance the Contessa implementation

easily beats that of the software, showing a maximum

speedup of 62 times, and a (geometric) average speedup

of 35 times. The speedup over the previous hardware im-

plementation is lower, but is on average almost two times

faster. In LoC the Contessa version also performs well in

comparison to Handel-C, even though this comparison ig-

nores the large amount of framework and support code used

in the Handel-C version, measuring only the simulation-

specific code.

One aspect where the Contessa implementation does not

perform well in the comparison is in resource usage, as

on average the Handel-C version uses approximately two-

thirds of the resources used by Contessa. However, this

can largely be explained by the much larger and more ca-

pable accumulation unit used by Contessa. The Handel-C

version only calculates the arithmetic mean, using a fixed-

point accumulator (with a scale that must be pre-determined

at compile-time), which does not provide enough statisti-

cal information for most real-world applications. If the re-

sources used by the accumulators are removed from both

hardware versions (shown in the last row of the table), then

the resource usage is much closer. The only significant dif-

ference is that the Contessa uses more RAMs to implement

the FIFOs between blocks.

6 Related Work

FPGAs have previously been used for Monte-Carlo

simulations [4, 5, 1, 8], but these were all developed

from scratch using application-specific HDL. An automated

method for compiling simulations into hardware was de-

scribed in [7], but the actual implementation steps were per-

formed by hand. The described method is also much more

restrictive than that presented here, allowing only a small

subset of possible simulations to be described.

There are a number of examples of other FPGA lan-

guages for stream-compilation [2, 6, 3] , but most have

avoided or restricted loops due to the problems introduced

by loop-carried-dependencies. By comparison Contessa of-

fers arbitrarily complex control-flow, but places restrictions

on the types and locality of data that can be used. The clos-

est to Contessa in design and implementation is the tagged-

token language presented in [6], which uses the same idea

of pipelined data-flow graphs with internal feedback arcs for

iteration. However, the language uses a traditional impera-

tive approach, extracting parallelism via loops over source

and sink memory arrays that must be explicitly identified,

rather than using an explicit threading model.

MSteps/s Lines of Code Resources Place & Route

HC C++ (to HC) Slices LUTs FFs RAMs DSPs Time

Random-Walk 1.84 16.58 4.74 0.51 0.52 0.47 0.67 0.00 1.62

Random-Jump 1.91 46.21 3.87 0.76 0.78 0.66 1.00 0.00 1.36

Scaling-Walk 1.72 24.50 4.87 0.59 0.55 0.56 0.67 0.67 0.86

Bivariate-Walk 2.25 45.74 3.87 0.67 0.68 0.60 0.57 0.75 0.67

GARCH 1.99 62.09 6.29 0.80 0.75 0.77 0.40 0.67 1.16

Geometric Mean 1.94 35.10 4.65 0.66 0.65 0.60 0.63 0.69 1.08

Mean (No Acc.) - - - 1.26 1.36 0.93 0.63 0.93 -

Table 2. Performance of Contessa implementations relative to a manual Handel-C implementation on

the same Virtex-4 part (shown as HC), and a C++ software implementation on a 2.2GHz Opteron. All
numbers are ratios, with values exceeding one (in bold) indicating that Contessa performs better.

7 Conclusion

This paper presents the Contessa language, a pure-

functional continuation based domain-specific language for

describing path-based Monte-Carlo simulations. By ex-

ploiting the huge amount of thread-level parallelism avail-

able in simulation applications, the language is able to

describe programs using complex control-flow and loop-

carried dependencies, without sacrificing performance. The

language also does not require architecture- or platform-

specific annotations, allowing a single source description to

target software and hardware, providing a true push-button

route from description to run-time execution.

We compare the performance of Contessa across five

simulations, against both a software and Handel-C hard-

ware implementation. In terms of raw performance the

Contessa implementations are on average twice as fast as

the Handel-C implementation, and 35 times faster than a

C++ implementation on a 2.2GHz Opteron. The Contessa

source code is concise, requiring a quarter of the lines of

code used in Handel-C. The Contessa versions require two

thirds more area than the Handel-C area, but this is due to

the more sophisticated accumulation logic it uses, collecting

more statistics with greater accuracy. After normalising for

area spent on accumulation logic the Contessa and Handel-

C implementations use very similar numbers of resources.

The Contessa language is intended to form a platform, on

which different strategies for Monte-Carlo and other finan-

cial applications can be tested. There is significant poten-

tial for automatic optimisations, such as storing loop vari-

ables in local RAMs (rather than propagating them through

the register-based feedback loop), splitting and merging

nodes to optimise communication, and applying constant-

propagation techniques to parameters. We also plan to adapt

the probabilistic ideas from [6], using both static analy-

sis and profiling to identify the probability of each block

call, allowing block resources to be tailored according to

the computational load of the block. The FIFO commu-

nications links provide significant flexibility in block im-

plementation, so the tradeoff between block resources and

performance could be implemented using multiple clock-

domains, partially sequential blocks, or even CPU blocks.

Blocks can also be transparently replicated, allowing the

most heavily loaded blocks to be partitioned. The intention

is to make these options completely automatic, requiring no

modifications or annotations to the Contessa source code.

References

[1] M. Gokhale, J. Frigo, C. Ahrens, J. L. Tripp, and R. Min-

nich. Monte Carlo radiative heat transfer simulation on a

reconfigurable computer. In Proc. Int. Conf. on Field Pro-

grammable Logic and Applications, pages 95–104. Springer-

Verlag, Berlin, 2004.
[2] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-

oriented FPGA computing in the Streams-C high level lan-

guage. In Proc. IEEE Symposium on FPGAs for Custom Com-

puting Machines, pages 49–56, 2000.
[3] O. Mencer. ASC: A stream compiler for computing with FP-

GAs. IEEE Transactions on CAD, 25(9):1603–1617, 2006.
[4] S. Monaghan. A gate-level reconfigurable monte carlo pro-

cessor. J. VLSI Signal Process. Syst., 6(2):139–153, 1993.
[5] A. Negoi and J. Zimmermann. Monte Carlo hardware simula-

tor for electron dynamics in semiconductors. In International

Annual Semiconductor Conference, pages 557–560, Sinaia,

Romania, 1996.
[6] H. Styles and W. Luk. Exploiting program branch probabil-

ities in hardware computation. IEEE Transactions on Com-

puters, 53(11):1408–1419, 2004.
[7] D. B. Thomas, J. A. Bower, and W. Luk. Automatic genera-

tion and optimisation of reconfigurable financial monte-carlo

simulations. In IEEE Int. Conf. on Application-specific Sys-

tems, Architectures and Processors, 2007.
[8] G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, D.-U.

Lee, R. C. C. Cheung, and W. Luk. Reconfigurable acceler-

ation for Monte Carlo based financial simulation. In Proc.

Int. Conf. on Field-Programmable Technology, pages 215–

224. IEEE Computer Society Press, 2005.

	Welcome Page
	Table of Contents
	Author Index

