A Reconfigurable Engine for Real-Time
Video Processing

W. Luk, P. Andreou, A. Derbyshire, F. Dupont-De-Dinechin, J. Rice,
N. Shirazi and D. Siganos

Department of Computing, Imperial College, 180 Queen’s Gate,
London SW7 2BZ, UK

Abstract. We describe the hardware and software extensions that trans-
form a PC-based low-cost FPGA system into a reconfigurable engine for
real-time video processing. The hardware extensions include a daugh-
ter board for the FPGA system which handles analog and digital colour
video conversion. The software extensions include reusable libraries, de-
velopment tools and a run-time environment. Applications include linear
and non-linear filtering, edge detection, image rotation, histogram equal-
isation, colour identification, motion tracking, and creation of video ef-
fects. Our system has been used for research involving video processing,
run-time reconfigurable circuits, and hardware/software co-design.

1 Introduction

Real-time video is becoming increasingly popular with the proliferation of low-
cost video cameras, camcorders and other facilities. Real-time video process-
ing, however, is among the most demanding computation tasks [1]. Application-
specific integrated circuits can deliver implementations optimal in speed and
size, but they are often inflexible, expensive and time-consuming to develop.
Digital signal processing chips and general-purpose microprocessors often in-
clude hardware support for processing video or multimedia data, but there may
be drawbacks. First, such hardware support may not cover a particular user-
specific task; second, the system architecture and low-level software, such as
interrupt control, can cause significant delay if not carefully optimised.

This paper describes the hardware and software extensions which transform
an FPGA-based board into a reconfigurable engine for real-time video process-
ing. The board we use has a user-reconfigurable Xilinx 6200 FPGA and two
megabytes of static memory, and is available from multiple vendors for around
1000 US dollars. The key aspects of our work include: (a) the development of
hardware and software components for a flexible, powerful and low-cost video
processing engine, and (b) the use of techniques such as run-time reconfigura-
tion and hardware/software codesign for optimising high-performance designs.
A variety of application examples will be used to illustrate our approach.

Our work is inspired particularly by the VTSplash project [1] at Virginia
Tech, which enhanced a multi-FPGA system hosted in a SPARC-workstation
with monochrome video facility. Other FPGA-based video processing environ-
ments are based on the VME system [3], the transputer framework [11], or

FPGAs without partial reconfigurability [4]. Our system is PC-based, supports
partial FPGA reconfiguration at run time, and can deal with colour video.

2 Framework

All of our designs for the video engine fit into the framework shown in Fig-
ure 1, which serves as a guide for structuring systems dealing with high-speed
data streams. There are hardware elements PRE and POST for pre-processing
and post-processing such streams. In the context of this paper, the PRE ele-
ment accepts a video stream as input, performs the required processing such as
subsampling or feature extraction, and passes the result to POST. The POST
element performs further processing, such as labelling the features identified by
PRE, before producing the output video stream. The mapping of hardware com-
ponents into PRE and POST may not be unique, and they are often arranged
in the form of a pipeline [1].

interface SOfL‘;‘are

si gnal S har dwar e

vi deo vi deo
in out

Fig.1. A framework for structuring video designs, where PRE and POST are hard-
ware elements for pre-processing and post-processing data. The hardware and the soft-
ware components can be situated on the same or different boards.

Both PRE and POST may communicate with the memory or other hardware
or software components. Reusable interface libraries have been developed to
facilitate implementations involving the interactions between these components.
A common situation is for PRE to extract features in the incoming video which
can be described efficiently, since the feature descriptions can then be passed to
a software procedure for further analysis using a low bandwidth link. Control
information, such as configuration data, may also be sent from the software
component to the hardware elements.

Run-time reconfiguration can be applied to this framework in several ways.
First, the PRE and POST elements may be connected to video interface chips,
and we will explain in Section 4 how reconfiguration techniques can be used to

move seamlessly between changing the settings of these chips and processing the
video data. Second, run-time reconfiguration can be used for optimising design
size and speed by supplying a customised implementation at the appropriate
time. In particular, there are techniques for effective reconfiguration of pipeline
structures [9].

The scheme in Figure 1 has been shown to be useful not only for experiments
involving video processing and run-time FPGA reconfiguration, but also for re-
search in hardware/software partitioning and co-design. Software components
are often better suited for some forms of processing than hardware components,
for instance when irregular, data-dependent or floating-point computations are
involved. The key to effective co-processing is to identify techniques and ap-
plications such that: (a) the hardware and software components perform tasks
which match their capabilities, and (b) the communications between them do
not overload the hardware/software interface.

As an example, we have developed a motion tracker which has a hardware
component extracting motion information from an image and sending it to a
software tracking procedure. The hardware component performs mainly regular
and parallel computations at high speed, while the software component performs
mainly irregular, sequential and floating-point operations less suitable for hard-
ware implementation. Since for each video frame only a small amount of data are
passed between the hardware and the software, the bus connecting them does
not become a bottleneck. Further details of this application, and several others,
will be discussed in Section 5.

3 Hardware

Our aim is to minimise efforts on system development, while the result should be
flexible, low-cost and sufficiently powerful for real-time video operations. Flexi-
bility and cost considerations motivate the use of a cheap but expandable FPGA-
based board, preferably one capable of run-time reconfiguration. Performance
consideration motivates specialised hardware support for video data transfer
and for common operations such as hue, saturation and brightness control.

The approach that we adopt involves a low-cost development system based on
the Xilinx 6200 FPGA, and a daughter board that we designed for interfacing
the FPGA to real-time video sources and sinks (Figure 2). The hardware for
the development system is a board which can contain either a Xilinx 6216 or a
Xilinx 6264 device, on which the PRE and POST elements in Figure 1 can be
implemented. The board has four 8-bit wide memories organised into two banks,
and each bank can be accessed from either of the two address busses [10].

The FPGA board is interfaced to the PC through the PCI bus, but the PCI
bus has often been found to be the bottleneck for real-time transfer of large image
data [12]. To overcome this problem, we built a daughter board for converting
between analog composite video and its digital version. The digitised video is
sent to the FPGA board through a mezzanine connector. After processing, the
result can be passed back to the daughter board for conversion into composite

Mezzanine Board Connectors Bank 2

| I
| |
| |
| |
I
} Mux | e SRAM
| ! West bata East Data
} } Xilinx 6216 *
ilinx or
! \ ! Bank 1
! } 6264
|
I Video Video }
|
|| Encoder Decoder !
| ! 7
I I
I |
| I
I
Analog Video Analog Video East Address
Sinks Sources

West Address

Xilinx 4013E
(PCl Interface)

PCI Bus

Fig. 2. Xilinx 6200 PCI system. The multiplexor Mux selects either the control ports
or the data ports to connect to the mezzanine connector.

video for display. The display speed is only limited by processing delay, since
we avoid using the PCI bus for transfer of uncompressed video. In essence, this
method achieves high performance by eliminating system bus saturation and by
shortcutting operating system delays.

The daughter board contains a video decoder and a video encoder, both
from Brooktree Corporation. The decoder converts analog video, such as PAL or
NTSC signals, to various digital formats, such as 24-bit or 16-bit RGB or YCrCb;
the encoder performs digital to analog conversion. These chips also support other
functions, including brightness and colour control. Since the number of lines on
the mezzanine connector is limited, a scheme has been devised to share the
control and data signals to the video decoder using a multiplexor (Figure 2).
This method supports 24-bit colour input and output at the expense of losing
video data whenever the settings of the decoder are adjusted.

4 Software

The software that has been developed for our reconfigurable engine include:
(a) support for controlling the video interface chips, (b) memory interfaces,

(c) arithmetic and other building blocks in the form of parametrised libraries,
(d) interface to software components, and (e) infrastructure for developing user
applications involving real-time video. There are also compilation tools sup-
porting run-time reconfigurable designs, and visualisation tools for debugging
implementations.

The video interface chips described in the preceding section are powerful but
require low-level programming. The programming involves specific data transfer
protocols (such as I2C and MPU) with complex timing constraints, which should
be hidden from the designer of a video processing application. We adopt an ap-
proach which splits a video operation into two distinct phases. The initialisation
phase involves setting up the FPGA to program the video interface chips through
FPGA registers, with the multiplexor in Figure 2 selecting the control ports of
the video decoder. A software library has been developed which transparently
loads in an FPGA programming file defining all the required registers and their
wiring to the relevant FPGA pins. There are high-level functions facilitating the
configuration of the video interface chips to select the picture format, the colour
depth and image intensity.

In the video processing phase, the registers linked to the programming of the
video interface chips are frozen. The user design can access the video stream
through standard interface components in various hardware description lan-
guages. The transition between the initialisation phase and the video processing
phase is achieved by partially reconfiguring the Xilinx 6200 FPGA; this improves
speed and minimises effects of transients on the video interface chips. The partial
reconfiguration step is part of our framework for developing run-time reconfig-
urable systems, and is supported by various tools such as ConfigDiff [8].

Other components dedicated to the video daughter board include a memory
interface capable of performing a read and a write cycle to the memory in each
pixel clock cycle, and an address generator which produces the coordinates of
the current pixel on the screen based on various clock and sync signals. Facilities
are also available to enable the memory to be used as a double buffer, by using
video synchronisation signals and a state machine generating the address and
read/write signals. In the case of a line buffer, the current pixels are written
to one memory bank while the pixels on the previous line are read from the
other. This is reversed after each line, so a read and a write can be performed
simultaneously. This method is less demanding on timing than attempting to
read and write to the same SRAM bank in one cycle. The memory interface
components have been demonstrated on various applications to be described in
the next section.

Tools for application development consist of a compile-time environment and
a run-time environment. The compile-time environment consists mainly of the
development tools [8] and reusable libraries [5] for FPGA design. Hardware de-
scriptions can either be expressed in VHDL or in the Pebble language [6], which
can be regarded as a simple variant of VHDL used particularly by those with-
out much background in electronics. Over 30 parametrised libraries have been
developed in Pebble and VHDL, including various kinds of adders, multipliers

and memory access circuits with different tradeoffs in processing speed and size.
These libraries are also compatible with our tools for automating the production
of run-time reconfigurable designs.

The run-time environment includes software libraries for monitoring and con-
trolling the FPGA and the daughter board from the PC host. A graphical user
interface has also been developed for design visualisation, debugging and demon-
stration. In all, the software extensions provide an infrastructure for rapid design
implementation and for design reuse.

5 Applications

A variety of applications have been developed using this reconfigurable engine,
including various forms of linear and non-linear filtering, edge detection, image
transformation, histogram equalisation, colour identification, motion tracking
and creation of video effects, all of which run at real-time rates.

One-dimensional operations. A variety of one-dimensional operators have
been developed for our video processing system. These operators include bino-
mial and median filters, and Sobel edge detectors. Often software is used in
changing various settings by writing to registers on the FPGA, or in control-
ling run-time reconfiguration where customised circuits are downloaded onto
the FPGA at the appropriate instants [7]. Memory can be used in transpos-
ing a video frame so that a two-dimensional operation can be obtained from
composing two one-dimensional operations [2].

Colour detection. This application is used to detect a user-specified colour
in the incoming video. The implementation filters out the other colours of the
spectrum and only allows the detected colour to pass through. The processing
is performed at a resolution of 640 by 480 pixels using 24-bit RGB colour.

Two different approaches were attempted. The first approach specifies the
target colour by a range of values for each colour component. The detection is
performed using six 8-bit comparators computing the maximum and minimum
values for each colour component. Their outputs are combined to produce a
signal representing the presence of the target colour. This design is sensitive to
lighting conditions, since the criteria for colour identification are absolute.

The second approach identifies the target colour by the differences between
the three colour components. For each pair of colours, the difference is calculated
and then a comparator checks whether the difference is greater or smaller than a
specified colour threshold. This method allows for more tolerance in brightness
fluctuation, although further improvements can be achieved using another colour
system such as HSV. The designs are reconfigurable at run time to enable the
detection of a new target colour.

Image rotation. This application takes a video image and rotates it by an
angle 4. This is accomplished by multiplying the co-ordinates of the incoming
image by the formulae ' = ax 2z +bxy and ¥ = ¢ x 2+ d x y, where

the coefficients a = d = cosf and b = —¢ = sin . Other transformations can
be obtained by different coefficient formulae. Qur design, which can complete
four multiplications in two cycles, consists of two multipliers (Figure 3). The
value of y is constant for the duration of each line; hence the products y x sin 6
and y X cosf can be performed at the blanking interval between lines, and
in the remaining time the multipliers calculate the products involving x. The
processing is performed on a 24-bit colour image at a resolution of 320 by 480
pixels; full resolution can be achieved by pipelining the multipliers. The encoder
and decoder circuits convert coordinates to memory addresses and vice versa.

wite

addr . —>» decode

Fig. 3.

video in

Fig. 4.

read

encode —» addr .

ut

—> video out

Matrix multplier for image rotation design.
data in
memory
write
addr.
read
addr. data o
(PRE) (POST)
—* frame matrix
grabber multiplier
System organisation for image rotation design.

The overall organisation is shown in Figure 4. The pre-processing step con-
sists of optionally subsampling the image using a frame grabber and storing the

result to memory. The matrix multiplier described above transforms the write
address signals to read address signals, which can be used to extract a rotated
image from memory and send it to the video output.

Histogram equalisation. Histogram equalisation has the effect of improving
image contrast. Our design for histogram equalisation is similar to that for image
rotation (Figure 4). The alterations include: (a) in addition to the frame grabber,
the pre-processing step also involves generating a lookup table in memory which
corresponds to a transformation function derived from the intensity histogram
of the grabbed image; (b) the post-processing step consists of using the lookup
table to transform the incoming video stream. Some calculations in the pre-
processing step can be performed in software. This method can also be used to
implement other computations involving lookup tables.

Edge detection. The edge detector described here is an example of a two-
dimensional operator capable of processing full-rate, greyscale video derived from
averaging the colour components. The gradient components of an image are com-
puted by difference operators in the x and y direction. The difference operators
are word-pipelined at every stage to keep the combinational delay within the
pixel clock period. An edge is marked if the z or y gradient is above a given
threshold; the thresholds are held in programmable registers and can be altered
by software.

Video effects. Several examples involving video effects have been developed.
We describe here an application to detect, in the video stream covering a sports
event, a sign indicating an advertisement which will be replaced by another
advertisement more appropriate for the local viewers. The task is complicated
by the motion and zooming of the camera, and also by objects, such as the
sportsmen, partly obscuring the sign.

The general solution to this problem requires processing power which is out
of reach of the hardware described in this paper. However, if we assume that the
camera rotates but does not translate, the position and size of the sign in the
picture can be deduced from the angles and zoom values of the camera. From
this information the software computes, for each video frame, the region holding
the sign and writes this information to the FPGA for post-processing.

The POST component compares, for each pixel of the region containing the
advertisement sign, its colour and the colour of the corresponding pixel in the
initial advertisement scaled appropriately. The two pixels will be the same if
nothing is obstructing the advertisement sign, in which case the pixel of the first
advertisement is replaced by the corresponding pixel in the second. Otherwise
there are objects in front of the sign which must be preserved in the image, so
the incoming pixel will be transferred to the output.

Other applications have shown that appropriate scaling and restriction of the
search space of the advertisement sign is straightforward. The main challenge is
to decide whether two pixels have the same colour. We found that simple checks,
such as comparing each colour in a pixel to within a certain range of the same
colour in the corresponding pixel, are often too sensitive to lighting conditions.

We are currently exploring various colour representations and local algorithms,
which may be able to produce a better result.

Motion tracking. Our motion tracker contains a hardware part and a software
part. The PRE component of the hardware part consists of a differencer and a
counter array; the POST component labels the detected moving objects in the
output video stream. The software part contains a Kalman filter to minimise the
effect of noise on the tracker performance (Figure 5).

A simple way of identifying motion is to compute the difference of the corre-
sponding pixels in two consecutive video frames. The result is then thresholded
to give a binary value for each pixel. The differenced frame is divided into blocks
corresponding to different regions of the image. The amount of motion in each
block can then be recorded by a counter; for instance an array of 64 counters will
be required for a design with 8 by 8 blocks. A counter selector keeps a record
of the current position of the incoming pixels on the screen, and enables the
appropriate counter to increment accordingly.

Several FPGA-based implementations of motion trackers have been reported
([3],[11]). The advantages of our counter-based design include simplicity, flexibil-
ity and scalability. For instance, this method enables each pixel to be processed
independently of the others within one cycle, so no inter-frame processing is
necessary. Our method is also scalable: the availability of more hardware allows
a larger counter array, and will usually lead to better performance.

1’" PRE
! sof tware
menory | count er Kal man
I sel ect X
; filter
I
L
i - PCST!
I
I
| . .
! di fferencer — LY obj ect =V| deo
| array | abel | er out
I
video |
. - e ———— e D

Fig.5. A design for motion tracking.

The main function of the PC is to calculate the statistically ‘best’ estimate
of the position and size of the object. Kalman filtering provides a method for
making this estimate. It considers the statistical models of signal and noise to
give optimum response to the actual motion, while giving minimum response to
the noise present in its detection. Our Kalman filter involves mainly floating-
point operations, and is best implemented in software. The post-processing on
the FPGA consists of hardware for labelling the detected objects in the video
stream, the locations of which are supplied by the PC.

6 Conclusion

Despite its simplicity and low cost, our reconfigurable engine has proved to be
an effective vehicle for experimenting with run-time reconfiguration and hard-
ware/software codesign techniques for video applications. We have shown that
the PC can be used as the host to the video engine, and as a co-processor for
executing complex, data-dependent and floating-point operations. Current and
future work includes exploring further multimedia and other applications using
our system, refining our framework and tools, and retargeting them to cater for
other FPGA-based platforms.

Acknowledgements

Thanks to Stuart Nisbet for help in developing the video interface board. The support
of Xilinx, Interval Research, Hewlett Packard Laboratories Bristol, INRIA, and the
UK Engineering and Physical Sciences Research Council (Grant Number GR/L24366,
GR/L54356 and GR/L59658) is gratefully acknowledged.

References

1. P.M. Athanas and A.L. Abbott, “Real-time image processing on a custom com-
puting platform”, IEEE Computer, February 1995.

2. M. Aubury and W. Luk, “Binomial filters”, Journal of VLSI Signal Processing,
vol. 12, 1996.

3. P. Dunn, “A configurable logic processor for machine vision”, in Field Pro-
grammable Logic and Applications, W. Moore and W. Luk (editors), LNCS 975,
Springer, 1995.

4. F. Lisa, F. Cuadrado, D. Rexachs and J. Carrabina, “A reconfigurable coprocessor
for a PCI-based real-time computer vision system”, in Field-Programmable Logic,
Smart Applications, New Paradigms and Compilers, LNCS 1142, Springer, 1996.

5. W. Luk, S. Guo, N. Shirazi and N. Zhuang, “A framework for developing
parametrised FPGA libraries”, in Field-Programmable Logic, Smart Applications,
New Paradigms and Compilers, LNCS 1142, Springer, 1996.

6. W. Luk and S. McKeever, “Pebble: a language for parametrised and reconfigurable
hardware design”, this volume.

7. W. Luk, N. Shirazi and P.Y.K. Cheung, “Modelling and optimising run-time re-
configurable systems”, in Proc. FCCM96, IEEE Computer Society Press, 1996.

8. W. Luk, N. Shirazi and P.Y.K. Cheung, “Compilation tools for run-time reconfig-
urable designs”, in Proc. FCCM97, IEEE Computer Society Press, 1997.

9. W. Luk, N. Shirazi, S. Guo and P.Y.K. Cheung, “Pipeline morphing and virtual
pipelines”, in Field Programmable Logic and Applications, LNCS 1304, Springer,
1997.

10. S. Nisbet and S.A. Guccione, “The XC6200DS development system”, in Field Pro-
grammable Logic and Applications, LNCS 1304, Springer, 1997.

11. I. Page, “Constructing hardware-software systems from a single description”, Jour-
nal of VLSI Signal Processing, Vol. 12, 1996.

12. S. Singh and R. Slous, “Accelerating Adobe Photoshop with reconfigurable logic”,
in Proc. FCCM98, IEEE Computer Society Press, 1998.

