Compiling Ruby into FPGAs

Shaori Guo' and Wayne Luk?

! Computing Laboratory, Oxford University, Parks Road, Oxford OX1 3QD, UK
2 Department of Computing, Imperial College, London SW7 2BZ, UK

Abstract. This paper presents an overview of a prototype hardware
compiler which compiles a design expressed in the Ruby language into
FPGAs. The features of two important modules, the refinement module
and the floorplanning module, are discussed and illustrated. Target code
can be produced in various formats, including device-specific formats
such as XNF or CFG, and device-independent formats such as VHDL.
The viability of our floorplanning scheme is demonstrated by a compiler
backend for Algotronix’s CAL1024 FPGAs. The implementation of a
priority queue is used to illustrate our approach.

1 Introduction

Compiling selected parts of application programs into hardware, such as FPGAs,
has recently attracted much interest. This method holds promise of producing
better special-purpose systems more rapidly than existing techniques. A number
of hardware compilers (see, for example, [8], [11]) have been developed for designs
described in various languages into hardware netlists, which can then be mapped
onto FPGAs by vendor software.

This paper presents an overview of two important modules, the refinement
module and the floorplanning module, in a prototype compilation system. The
system is based on Ruby [4], [9], a relational language for capturing block dia-
grams parametrically. There are mechanisms in Ruby for describing spatial and
temporal iteration, allowing succinct and precise design specification. Moreover,
the explicit representation of different forms of spatial iteration simplifies the
production of layouts, and the declarative nature of the language allows designs
to be refined by simple equational reasoning. Our aim is to exploit these features
of Ruby to provide an efficient hardware compilation system.

The refinement module enables users to focus on the high-level structure of
a design without being overwhelmed by details such as the size of individual
datapaths. It is based on a constraint-propagation procedure. Given the size
of inputs and a library of bit-level operators, it automatically constructs effi-
cient low-level designs rapidly and in a provably-correct manner; this facilitates
exploring architectures and evaluating the effects of different bit-level data rep-
resentations.

Another important module, the floorplanning module, 1s devised to reduce
the time to place and route a netlist produced by a hardware compiler. Since
Ruby expressions carry information about the way a circuit can be assembled
from primitive parts, our method is designed to exploit the structure of the

source program in generating a layout. It is also possible for the user to guide
the placement of components and to import layouts that are developed manually
or by other tools. Much of our floorplanning procedure is syntax-directed and is
therefore very efficient.

While our floorplanning scheme is largely device-independent, to demonstrate
its viability a compiler backend has been developed for Algotronix CAL1024
FPGAs. The implementation of a priority queue will be used to illustrate this
approach.

2 Ruby

Ruby is a language of functions and relations. It has been used in developing a
wide range of designs including signal processing architectures [2] and butterfly
networks [4], and it has also been used in producing implementations partly in
hardware and partly in software [7]. Detailed descriptions of Ruby can be found,
for instance, in [4] and [9].

In Ruby a design is captured by a binary relation R, which relates the inter-
face signals z and y in the form of z R y. For instance the maz operator, which
produces the maximum of two numbers, can be described by

(z, y) maz (mazimum(z, y)),

so {(3,4) maz 4 and (10,6) maz 10. The min operator for finding the minimum
of two numbers can be described in a similar way. The identity relation «d is
given by z «d z. To select or regroup components of composite data, there are
wiring primitives such as fork, m; and rsh, given by z fork (¢, z), {z,y) 71 ¢ and
(z,{y, z)) rsh {{z,y), z). To reflect a component along its trailing diagonal, we
can use the converse operator, given by

tR'y & yRux.

Complex designs in Ruby can be formed by composing simpler designs. For
instance, two components ¢ and R with a compatible interface connected in
series is denoted by Q ; R (Figure la):

1(Q; Ry & Js:(zQs)A(sRy).

The 3 symbol means that, unlike z and %, s 1s not an interface variable of the
composite and cannot be observed.

If there are no connections between) and R, the composite design is repre-
sented by parallel composition [@, R] (Figure 1b), where

(mo, 1) [Q, R] (30, 11) & (20 Qyo) N (21 Ry1).

Repeated compositions of n copies of @@ can be described by @™ or map,, @, so
for instance fork® = fork ; fork ; fork : fork and mapg 7sh = [rsh, rsh, rsh].

c
n—-y_ R —W b— B —r S
r—1 0 S p Ly s‘ r— R —1T¥
3
T0o— @ ——Yo a— @ —d
P
a. @ ; R b. [@, R] c. Q1R d. loop R

Fig. 1. Some Ruby operators.

Components with connections on four sides can be joined together by the
beside and below operators; below (Figure 1c) is given by

{{a,8),¢) (QIR) {p,{g, 7)) & Fs:({a,;5) Q(p,q)) N ({b;¢) R (s, 7).

To deal with designs operating on time-varying data, a relation in Ruby can be
considered to relate an infinite sequence of data in its domain to another infinite
sequence 1n its range; elements in these infinite sequences can be regarded as
values appearing at an interface at successive clock cycles. Given that V¢ denotes
“for all values of 7, a squarer can be described by

rsqy < Vi:zl = ..
A latch can be modelled by a delay relation D, given by
Dy & Vi:z_1=y:.

A latch initialised to value ¢ is denoted by D 1.

Latches are used in designs with feedback to prevent unbuffered loops. A
design @ containing an internal feedback path s can be modelled by the operator
loop (Figure 1d):

z(loop R)y < s :{z,s) R{s,y).

3 Refinement

We can use Ruby to describe word-level designs, like the maz or the min operator
for integers. At bit-level, these operators can be built by logic gates which can
also be captured in Ruby. The aim of our refinement system is to automatically
produce the most efficient bit-level design from a high-level description.
Bit-level designs produced by the refinement system should satisfy constraints
specified by the designer. Examples of constraints include the speed, size, latency
and power consumption of a design, the maximum and minimum values of inputs
and outputs, or a combination of the above. Of course, if the constraints are too
strict, there may not be any bit-level design that satisfies them all. Our efforts so

far have been concentrated on constraints specifying the maximum and minimum
values of inputs for a circuit.

There may be many possible bit-level designs which can implement a given
word-level design. Also each data representation (such as two’s complement rep-
resentation) will result in a specific family of bit-level implementations. The
refinement system can refine a word-level design into several bit-level implemen-
tations, depending on the bit-level data representation.

The refinement module is based on a constraint-propagation algorithm. The
maximum and minimum values of inputs are propagated across the circuit. For
a given component, once all constraints on its inputs are known, the constraints
on its outputs can be derived. Resolving the constraints fixes the size of the com-
ponents and the width of the output data path. Given a library of parametrised
bit-level operators and their sizes, our constraint-propagation procedure can be
used to determine the widths of all the data paths. A bit-level Ruby design can
then be constructed. As an example, consider a priority queue which can be
specified in Ruby as follows.

N =4.

pq = pgcell™.
pqcell = loop ((sort2 | muz2) | ([:d, D 127] ; fork2)).
sort2 = fork ; [min, mazx].
muz2 = fork ; [muzr 2, m].

fork2 = my =1 [fork™Y, fork] ; rsh.

Let us briefly introduce the correspondence between the Ruby program and
the pictorial description of the priority queue; further details about possible
designs and their development can be found in [9]. The Ruby descriptions for
the word-level design (Figure 2) are shown above, which is implemented as a
linear array of a repeating unit pgeell (expression 2), and the length of the
array is 4 (expression 1). The repeating unit pgcell (expression 3) consists of
three parts: an insertion sorter cell sort2 (expression 4), a selection unit muz2
(expression 5) and a data distribution unit fork2 (expression 6). There is an
internal path in pgcell where the minimum output of the sorter is fed back while
the maximum value is output to the next cell (expression 3). A latch (shown as
a small triangle) is placed on the top of the feedback path, and it is initialised
to the value 127.

Suppose the constraint specified by the designer is that the input data are
natural numbers no larger than 127. Given that a bit is either 7' (True) or
F (False), 127 is represented by (T, T, T, T, T, T, T). The refinement sys-
tem produces a bit-level Ruby program with min replaced by min_un_b77,
where 7 represents the number of bits of the input. It also replaces maz with
maz_un_b 77 1in expression 3, muzr 2 with muzr2_bit 7 in expression 4, and D 127
with map 7(D T) in expression 5. The bit-level descriptions include instantia-
tions from a library of parametrised bit-level components, which contains, for
instance, max_un_b, min_un_b and muzr2_bit, the bit-level implementations of

fork2 : data distribution unit

-
[muxr 2] | mux2: selection unit
min sort2 : insertion sorter cell

pacell
—— pocell— pacell— pacell— pocell—

Fig. 2. A priority queue (n = 4).

v
muxr2_bit 7
5

7 "P=max_un_b 7
| 7 7
min_un_b

7 7
\

bit-level pqcell

A NG A NG N
L pacelll-L pacell-L pocell-L pacell-L-
A N4 NA N4 NA

Fig. 3. Bit-level priority queue, with inputs not larger than 127 (n = 4).

maz, min and the multiplexer muzr 2 operating on unsigned integers. The bit-
level implementation of the priority queue is shown in Figure 3. Notice that the
big triangle D_7 represents seven D latches in parallel.

There are compiler backends for converting a bit-level description into various
formats, such as XNF (Xilinx Netlist Format) or VHDL. The physical mapping
onto FPGAs can then be carried out using commercial tools. An alternative
implementation path will be sketched in the next section.

4 Floorplanning

A major bottleneck in automatic hardware synthesis is the time to place and
route the netlist produced by a hardware compiler. The aim of our floorplanning
module is to expedite the placement and routing procedure by exploring the
structure of the source descriptions. To achieve high quality layouts, our floor-
planning scheme includes facilities which allow combination of layouts produced
both automatically and manually.

The floorplanning procedure consists of two phases. The first phase is the
global placement and routing, which is mainly device-independent. In this phase
a design is modelled as a rectangular block with connecting points on its four
sides. Our floorplanning scheme allows the variation of block sizes, so that con-
necting positions between two adjacent blocks match each other to minimise
the routing between them. In the second phase, the detailed routing within the
blocks and their interface will be determined.

Consider first the global placement and routing phase. A design in Ruby
is represented by a binary relation, while in pictorial form it is modelled as a
rectangular block. A convention is required for assigning the domain and range
variables of a relation to each side of the block — this step is known as direction
assignment. The following convention is chosen: the domain data will be mapped
onto the western or northern side, while the range data will be mapped onto the
southern or eastern side [4].

Following this convention, the layout of a relation with its domain in the
form of a two-tuple (z,y) can be a block with # on the western side and y on
the northern side, or both z and y on either the western or the northern side.
Similarly, the layout of a relation with its range in the form of a two-tuple can be
a block with some of its connecting points on the southern side and some on the
eastern side, or all of them on either the southern or the eastern side. One can
show that, for a relation with both its domain and range in the form of a two-
tuple, there are nine possible layouts [3]. The choice of which layout to adopt is
determined by context or by a default convention. For instance some combinators
in Ruby carry contextual information about possible direction assignment; the
below combinator requires two of its domain and two of its range connections to
be horizontal (Figure 1c).

After direction assignment, we check the compatibility of the interfaces be-
tween connected components. Since polymorphism is allowed in the domain and
range of some Ruby primitives such as fork, a simple structure comparison is

insufficient. Instead a general unification algorithm was used to determine the
most general substitution for the domain and range components, so that the
interface constraints can be satisfied.

Sometimes information on direction of signal flow is necessary for certain
devices, such as the cells used in Algotronix’s CAL1024. In these cases we apply
a constraint-propagation algorithm to determine the direction of signal flow for
each Ruby wiring constructs.

The placement stages of our floorplanning system are not time-consuming
because we exploit the structure of Ruby programs for placement. If we want to
include a circuit which has been placed and routed manually or by other tools,
we need to specify its size and the connection positions. Interface between the
original and the imported layouts can then be produced by the compiler. A pair
of curly braces are employed in the source Ruby program to indicate which part
of the circuit should be laid out separately. The right curly brace is followed by
a pair of parentheses which enclose the name of the manual layout file, so that
the compiler can import this part of the layout and link it with others.

Further descriptions of our syntax-guided placement technique can be found

in [3].

5 Device-Specific Mapping

While our approach to global placement and routing is largely device-independent,
the detailed placement and routing flattens each block produced after global
placement and routing, and it requires information specific to a particular device.
To demonstrate the viability of our floorplanning scheme, a compiler backend
has been customised for CAL1024 FPGAs developed by Algotronix (now Xilinx
Development Corporation).

CAL1024 arrays are orthogonally connected structures obtained by replicat-
ing a basic cell which has one input port and one output on each of its four sides.
An input port can be programmed to connect to one or more output ports, or
to a function unit which can be programmed to behave as a two-input combina-
tional logic gate or as a latch. The output of this function unit may also connect
to one or more output ports. Hence a CAL cell may be used to perform process-
ing and routing simultaneously. Figure 4 shows a CAL cell with its northerly
output connected to its easterly input, and its easterly output is the Boolean
conjunction of its westerly and northerly inputs.

I

%ﬁ% -

Fig.4. CAL Cell.

During global placement and routing, two kinds of blocks are produced:
blocks for combinational primitives such as AND and wiring primitives like fork.
For combinational primitive blocks, we have developed a simple river routing al-
gorithm to connect the connecting points on the four sides of the block to the
cell performing the logic function of the primitive. A simple switch-box routing
algorithm has also been devised to implement the detailed routing for the wiring
blocks. The output of the floorplanner is a program in OAL [6], a variant of Ruby
specialised for CAL devices. The OAL compiler can then be used to generate
CFG files used for FPGA programming.

Although the floorplanner can perform the placement and routing fully auto-
matically, the quality of the final implementation may be inferior to one produced
by hand or by other tools. It is our intention to give the designer the flexibility
to use our compiler for global placement and routing, while part of or all of the
detailed placement and routing can be produced by other means. For instance,
a designer may wish to develop by hand the repeating unit of an array-based
circuit, since any inefficiency in the basic cell will be multiplied many times.
The compiler can incorporate existing CAL designs into the implementation ac-
cording to the annotations specified by the designer in the source program, as
described in section 4.

Fig.5. CAL implementation of a bit-level priority queue cell.

Consider a priority queue implementation obtained by optimising the bit-
level design in section 3 (see [9]). The bit-level repeating unit (Figure 5) was
developed by hand and is highly optimised; this unit is then replicated vertically
to form a column which corresponds to the core of a pgcell in Figure 3. The
CAL implementation of the priority queue 1s shown in Figure 6. Note that the
number and order of the interface connections correspond to those in Figure 3,
except that the two bottom outputs of the rightmost pgcell are discarded.

Fig.6. CAL implementation of a bit-level priority queue (n = 4, m = 7).

6 Future Work

In the refinement module of our compilation system, we have focused on con-
straints specifying the maximum and minimum values of inputs for a word-level
circuit. Our method can be extended to take into consideration other kinds of
constraints: examples include critical path, latency or the number of a particular
component. If no solutions exist that satisfy all user-specified constraints, we can
choose the solution that satisfies most of the high-priority constraints.

The CAL backend of our compiler demonstrates the viability of our floor-
planning module. We have not, however, optimised the switch-box routing or
the river-routing algorithms, and the layouts produced automatically can be-
come rather large. For better results, we can use methods like min-cut or sim-
ulated annealing hierarchically in placement and routing [10]. Device-specific
compaction techniques should also be studied.

Much of our method for generating layouts is syntax-directed. The quality
of the compiled implementation depends largely on the Ruby source program
which describes the design; therefore source transformation can be adopted for
optimisation. One way to automate this step is to have an accurate performance
estimation procedure to drive the transformation engine.

It will also be interesting to extend our work to support partial and run-
time reconfiguration of FPGAs, to support developing multi-chip systems, and
to support implementing asynchronous and self-timed designs [1].

Acknowledgements

The support of Xilinx Development Corporation, Scottish Enterprise, Depart-
ment of Computing, Imperial College and Oxford University Hardware Compila-
tion Research Group is gratefully acknowledged. S. Guo thanks the Sino-British
Friendship Scholarships Foundation for their support.

References

10.

11.

E. Brunvand, “Using FPGAs to implement self-timed systems”, Journal of VLSI
Stgnal Processing, vol. 6, 1990, pp. 173-190.

S. Guo, W. Luk and P. Probert, “Developing parallel architectures for range and
image sensors”, in Proc. IEFE Int. Conf. on Robotics and Automation, IEEE Com-
puter Society Press, 1994, pp. 2205-2210.

. S. Guo and W. Luk, “Producing design diagrams from declarative descriptions”,

to appear in Proc. Fourth Int. Conf. on CAD and CG, SPIE, 1995.
G. Jones and M. Sheeran, “Circuit design in Ruby”, in Formal Methods for VLSI
Design, J. Staunstrup (ed.), North-Holland, 1990, pp. 13-70.

. W. Luk, “Analysing parametrised designs by non-standard interpretation”,

in Proc. Int. Conf. on Application-Specific Array Processors, S.Y. Kung,
E. Swartzlander, J.A.B. Fortes and K.W. Przytula (eds.), IEEE Computer Society
Press, 1990, pp. 133-144.

W. Luk and 1. Page, “Parameterising designs for FPGAs” in FPGAs, W. Moore
and W. Luk (eds.), Abingdon EE&CS Books, 1991, pp. 284-295.

W. Luk and T. Wu, “Towards a declarative framework for hardware-software code-
sign”, in Proc. Third International Workshop on Hardware/Software Codesign,
IEEE Computer Society Press, 1994, pp. 181-188.

. W. Luk, D. Ferguson and I. Page, “Structured hardware compilation of parallel

programs”, in More FPGAs, W. Moore and W. Luk (eds.), Abingdon EE&CS
Books, 1994, pp. 213-224.

W. Luk, “A declarative approach to incremental custom computing”, in
Proc. IEEE Workshop on FPGAs for Custom Computing Machines, D.A. Buell
and K.L. Pocek (eds.), IEEE Computer Society Press, 1995.

M. Newman, W. Luk and I. Page, “Constraint-based hierarchical hardware compi-
lation of parallel programs”, in Field- Programmable Logic: Architecture Synthesis
and Applications, LNCS 849, Springer-Verlag, 1994, pp. 220-229.

M. Wazlowski et. al., “PRISM II: compiler and architecture”, in Proc. IEFE Work-
shop on FPGAs for Custom Computing Machines, D.A. Buell and K.L. Pocek
(eds.), IEEE Computer Society Press, 1993, pp. 9-16.

This article was processed using the IATpX macro package with LLNCS style

