
Pipeline Ve
torization for Re
on�gurable Systems�Markus Weinhardt and Wayne LukDepartment of Computing, Imperial College, London, UKfmw8, wlg�do
.i
.a
.ukAbstra
tThis paper presents pipeline ve
torization, a methodfor synthesizing hardware pipelines in re
on�gurablesystems based on software ve
torizing
ompilers. Themethod improves eÆ
ien
y and ease of development ofre
on�gurable designs, parti
ularly for users with littleele
troni
s design experien
e. We propose several looptransformations to
ustomize pipelines to meet hard-ware resour
e
onstraints, while maximizing availableparallelism. For run-time re
on�gurable systems, weapply hardware spe
ialization to in
rease
ir
uit uti-lization. Our approa
h is espe
ially e�e
tive for highlyrepetitive
omputations in DSP and multimedia ap-pli
ations. Case studies using FPGA-based platformsare presented to demonstrate the bene�ts of our ap-proa
h and to evaluate trade-o�s between alternativeimplementations. The loop tiling transformation, forinstan
e, has been found to improve performan
e by30 to 40 times above a PC-based software implemen-tation, depending on whether run-time re
on�gurationis used.1 Introdu
tionMany appli
ation developers re
ognize that the keyto e�e
tive use of re
on�gurable systems is to max-imize their available parallelism. This task, whi
hhas to be a
hieved while meeting spe
i�
 hardwareresour
e
onstraints, is diÆ
ult to perform by hand.Ve
torizing
ompilers have proved su

essful in de-te
ting and exploiting parallelism for
onventionalpro
essors with a �xed ar
hite
ture. A ve
tor exe
u-tion unit adapted for DSP and multimedia pro
essinghas also been identi�ed as an important
omponentof novel
omputer ar
hite
tures, su
h as the ve
tor�This work is supported by a European Union trainingproje
t �nan
ed by the Commission in the TMR programme,the UK Engineering and Physi
al S
ien
es Resear
h Coun-
il (Grant Number GR/L24366, GR/L54356 and GR/L59658),Embedded Solutions Ltd., and Xilinx In
.

IRAM [1℄. This paper presents an approa
h for auto-mati
ally produ
ing optimized pipelined
ir
uits froma high-level program, using te
hniques derived fromsoftware ve
torizing
ompilers. The
ompile-time andrun-time re
on�gurability of FPGAs
an also be eÆ-
iently exploited.Our approa
h, whi
h we
all pipeline ve
torization,involves essentially the synthesis of pipelined
opro-
essors whi
h exe
ute inner loops of programs. Datadependen
e analysis similar to software ve
torizationis performed, whi
h determines if a pipeline
an begenerated for a loop. In
ontrast to software ve
toriza-tion, we do not expli
itly generate ve
tor instru
tions.Instead, all instru
tions of the loop body are ve
tor-ized and
hained by pipelining input data through theentire data
ow graph synthesized from the loop body.2 Overview and Related WorkThis paper is organized as follows. Se
tion 3presents the pipeline ve
torization design
ow and its
ore
omponents. Next, we devise several loop trans-formations whi
h widen the appli
ability of our te
h-nique by adjusting the amount of hardware used inve
torized loops to the given FPGA resour
es in Se
-tion 4. In Se
tion 5, we explore methods to in
reasepipeline
ir
uit utilization by run-time
ir
uit spe
ial-ization and run-time re
on�guration. Finally we pro-vide
ase studies evaluating these new optimizationsin Se
tion 6, and
on
lude the paper in Se
tion 7.An earlier version of our approa
h, whi
h
overssome of the ideas in Se
tion 3, has been reported [2℄.Some restri
tions in that work have been over
ome inour
urrent approa
h.Several resear
h proje
ts address the synthesis ofpipelined
ir
uits from program loops. The
losest toour approa
h is the NAPA C
ompiler [3℄. However, ittargets spe
i�
ally the NAPA1000
hip and
onsidersonly innermost loops. No optimizing transformationssimilar to ours are reported. The RaPiD-B
ompiler[4℄, too, is ar
hite
ture spe
i�
 for the RaPiD
hip and

requires manual parallelisation and partitioning. Ourte
hniques
an be used as a frontend for RaPiD-B.Loop parallelization based on the ALPHA system [5℄is restri
ted to linear systoli
 arrays, whereas our te
h-niques
an ve
torize more general programs.3 Pipeline Ve
torizationFigure 1 shows the pipeline ve
torization design
ow. We �rst present the
ore
omponents on the di-re
t path III from an input program to an exe
utableappli
ation. Later se
tions will
over the optimizingtransformations (paths I and II in Figure 1).

Program
annotated with: candidates,dependence

information, dataflow graphs, area estimates

Program
annotated with: candidates,

dependence information

Dataflow Graph Generation

Program
with coprocessor calls

Software Compiler

Host Object Code

FPGA
component

library

Circuit Speciali-
sation for RTR

Feedback
to

User

Dataflow Graphs
of candidates

Pipelining and Area Estimation

III
Hardware/Software Partitioning

delay,
area

instances

II

Candidate Loop
Transformations

I

Input Program

Hardware Candidate Selection

Loop Normalization

Dependence Analysis

Library Instantiation
and Integration

(Differential netlist generation)

Partial ConfigurationsFigure 1: Pipeline ve
torization.Hardware Candidate Sele
tion Regular, itera-tive
omputations whi
h perform identi
al operationson a large set of data are likely to bene�t from hard-ware a

eleration. Hen
e loops are natural
andi-dates for hardware
opro
essors. We only generatepipelines for innermost loops, sin
e outer loops have

a smaller speedup potential and require more
ompli-
ated
ontrol
ir
uitry, and are better handled in soft-ware. However, our pro
edure will initially
onsider allloops sin
e the loop transformations presented in Se
-tion 4 rearrange loop nests. We
on
entrate on FOR-loops for ve
torization, sin
e eÆ
ient pipelined
o-pro
essors
annot be synthesized for general WHILE-loops. FOR-loops have predetermined loop
ounts and
an thus be handled by eÆ
ient
ontrol
ir
uitry.There are some additional restri
tions for the
an-didate loops: they must not
ontain re
ursive fun
tion
alls, external operating system or library
alls.1The
andidate loop of the example program in Fig-ure 2 will be used to synthesize a pipeline
ir
uit.unsigned short x[N℄;...unsigned short rand = 0x1; /* 16-bit */for(i=0; i<=N-2; i++) { /* CANDIDATE */if (rand >> 15) /* bit 15 is set */rand = (rand << 1) ^ 0x7549;elserand = rand << 1;x[i℄ = x[i+1℄ + x[i+2℄ + rand; }Figure 2: Example program.Loop Normalization For ve
torization, we nor-malize the
andidate loops by the following transfor-mations [6℄. First, we remove all additional indu
tionvariables and normalize the loop's lower bound to zeroand its step to one. Next, the index expressions areredu
ed to linear expressions of the indu
tion variableif possible. Note that the
andidate loop in Figure 2is already normalized.Dependen
e Analysis The next pro
essing stepanalyzes
andidate loops for dependen
es. In a loopnest, we determine for ea
h loop hierar
hy the de-penden
es
arried by ea
h loop: dependen
es betweenstatements in di�erent iterations of this loop. Onlythese loop-
arried dependen
es a�e
t the loop levelparallelism. However, sin
e the pipeline exe
utionoverlaps the loop iterations but maintains their or-der, memory writes are never out of order. Hen
e weonly have to
onsider true dependen
es, but not anti-or output-dependen
es.2 Therefore pipeline ve
toriza-1Non-re
ursive fun
tion
alls
an be inlined. Therefore weassume | without loss of generality | that no fun
tion
allsexist in the
andidates.2True or
ow dependen
e o

urs when a variable is assignedor de�ned in one statement and used in a subsequently exe
utedstatement. Anti-dependen
e o

urs when a variable is used inone statement and reassigned in a subsequently exe
uted state-

tion applies to more loops than software ve
torization.We utilize standard dependen
e analysis methods [6℄to dete
t these dependen
es. As in software ve
tor-ization [6℄, only array index expressions linear in theindu
tion variable
an be analyzed. Other
ases, espe-
ially indire
t array a

esses, are assumed dependent.Next, we
he
k if the dete
ted true loop-
arried de-penden
es o

ur in all loop iterations with the samedependen
e distan
e. We
all these dependen
es reg-ular. All dependen
es stemming from s
alar variablesand from array a

esses with the same stride are reg-ular. They
an be implemented by feedba
k paths inthe
ir
uit. In
ontrast to software ve
torization, reg-ular dependen
es do not prevent pipeline synthesis, al-though they redu
e parallelism be
ause the feedba
kpaths restri
t the speedup a
hieved by pipelining in alater pro
essing stage.Irregular dependen
es
an be handled, providedthat the original order of read and write a

esses ofthe arrays involved are maintained. However, this re-quires many sequential memory a

esses and is onlyfeasible with very fast memories, su
h as on-
hip mem-ories. Sin
e this extension requires synthesis of an ad-ditional
ontroller for states within a pipeline
y
le, itis not supported by our
urrent prototype.In Figure 2, there is a dependen
e stemming fromthe s
alar variable rand. In every iteration, its valuefrom the previous iteration is read. Sin
e this depen-den
e is regular, it
an be realized by a sequentialfeedba
k path, resulting in a linear feedba
k shift reg-ister generating random numbers (see Figure 3). Addi-tionally, there are two more loop-
arried dependen
esstemming from the assignment to array x. Sin
e theyare anti-dependen
es (only an out-of-order exe
utionof the assignments would lead to real dependen
es),we
an disregard them. Consequently, the loop in Fig-ure 2
an be pipeline ve
torized though it
ould notbe exe
uted on a parallel or ve
tor
omputer.Data
ow Graph Generation For those
andidateloops whi
h pass the dependen
e test, pipeline
ir
uitsare synthesized. We employ a simple storage allo
a-tion s
heme: s
alar variables are held in FPGA regis-ters, and arrays are stored on o�-
hip memory.3 Arrayelements are fed to the pipeline as
ontinuous datastreams through ve
tor inputs, and output streamsare written ba
k to lo
al memory through ve
tor out-ment. Output dependen
e o

urs when a variable is assigned inone statement and reassigned in a subsequently exe
uted state-ment [6℄.3On some FPGA families, small arrays of data
an be storedin very fast on-
hip memory. However, this requires synthesisof a

ess logi
 for these arrays.

puts. In this way one loop iteration is exe
uted ev-ery pipeline
y
le. Element addresses for linear ar-ray a

esses
an be pre
omputed. However, for ar-bitrary a

esses, address
omputation logi
 must begenerated and syn
hronized with the lo
al memory.Pointer a

esses are indire
t a

esses to the entire hostmemory spa
e and
ould be treated similarly. Sin
emost re
on�gurable systems do not have dire
t a

essto host memory, we do not handle pointers
urrently.When targeting tightly-
oupled ar
hite
tures with di-re
t memory a

ess, this restri
tion is not ne
essary.Synthesis starts with generating an a
y
li

ombi-national data
ow graph (DG) for the loop body byusing multiplexers to sele
t the
orre
t values of
on-ditionally assigned variables. We treat array a

essesand s
alar variables uniformly. Index-shifted a

essesto the same array are then
ombined and realized byshift registers. Using these delayed values of the in-put stream avoids a

essing the same value in mem-ory more than on
e and redu
es the number of re-quired ve
tor inputs. This redu
tion is
ru
ial sin
eall ve
tor input streams must be read and all outputstreams written on
e for every loop iteration. Thusthe pipeline throughput dire
tly depends on the num-ber of ve
tor inputs and outputs.Figure 3 shows the DG for the example programfrom Figure 2. There is a ve
tor input and output forx, and a s
alar input and output for rand. Registersare represented by delay elements D. Note that bothbran
hes of the if-statement are implemented and the
orre
t value for rand is sele
ted by a multiplexer. The
ondition is evaluated by sele
ting bit 15 of the inputregister. The purpose of the multiplexer on the left-hand side will be explained next.
<< 1

select bit 15

D

D
++

rand

<< 1 ^ 0x7549

x[i+2]

rand

scalar_in

x[i]

x[i+1]Figure 3: Data
ow graph for Figure 2.If a loop has regular loop-
arried dependen
es,
or-responding feedba
k
y
les need to be inserted in itsDG. This is simple for dependen
es stemming froms
alar variables: sin
e one loop iteration is exe
utedevery
lo
k
y
le, the input register of su
h a variable(whi
h is read and written in the loop) must always
ontain the value
omputed in the previous
lo
k
y
le.To a
hieve this, a multiplexer is added at the register's

input. It sele
ts the input value during initializationand the feedba
k value during normal operation, de-pending on an external
ontrol signal (s
alar in inFigure 3) whi
h is provided by the environment.Dependen
es stemming from array a

esses aretreated similarly. An output value, however,
annotbe dire
tly fed ba
k into an input register if its depen-den
e distan
e is greater than one. In this
ase addi-tional registers are inserted to a

ount for the greaterdelay. Figure 3 shows a feedba
k path for the de-pendent variable rand and a multiplexer sele
ting the
orre
t input.Pipelining and Area Estimation The DGs gen-erated so far may not be very eÆ
ient be
ause the
ombinational delays of
hained operators may a

u-mulate to a long
riti
al path. The
riti
al path delay
an be redu
ed by pipelining, thereby improving theperforman
e. Although the laten
y is also in
reased,it often has only a minimal e�e
t sin
e the time for�lling and
ushing the pipeline is normally negligible.We use a standard retiming te
hnique [7℄ to insertthe minimal number of FPGA
ip
ops ne
essary toa
hieve the
y
le time determined by the given I/Obandwidth. The te
hnique is extended to take intoa

ount that in many FPGAs
ombinational gate out-puts
an be lat
hed in the same
ell. We use an FPGAte
hnology spe
i�

omponent library to determineoperators' delays. The
omponents are parametrizedby operator bitwidth to provide a

urate estimates.However, routing delays
annot be estimated a

u-rately. The same
omponent library is used to esti-mate the pipeline's area (or resour
e usage) by sum-ming up the area used by all
omponents. These esti-mates are used in the partitioning step des
ribed later.These te
hniques will redu
e the
riti
al path ofthe data
ow graph in Figure 3 by inserting additionalpipeline registers at the inputs of the adder on theright side.Hardware/Software Partitioning Partitioningdetermines whi
h part of a program will be exe
utedin software and hardware. If loops are to be exe-
uted in hardware, their DGs' area estimations mustnot ex
eed the given hardware resour
es. Of
ourse,partitioning must also
onsider the expe
ted speedupa
hieved by the
opro
essor. This estimation problemhas been addressed elsewhere [2, 8℄ and is not the sub-je
t of this paper. Partitioning extensions related tothe optimizing transformations will be
overed in therespe
tive se
tions.

However, automati
 partitioning is not always de-sirable. The user might want to in
uen
e the result.Therefore, our prototype
ompiler produ
es explana-tions about whether a loop is a hardware
andidateor not. Hen
e the user
an
hange the program a
-
ordingly, for instan
e by substituting
oating pointwith �xed point data, or by eliminating dependen
es.For the
andidates, area and speed estimations aregiven as well. Thus an experien
ed user
an assess the
han
es of improving the generated
ir
uit manuallyand partition the program himself.The program running on the host is generated bysubstituting the
hosen loops by runtime library
allsfor
on�guring and exe
uting the pipeline as well as
opying data between host and
opro
essor. They re-
on�gure the FPGAs if a new
opro
essor is needed.Library Instantiation and Integration The DGsare transformed into an FPGA spe
i�
 netlist by in-stantiating all operators with ma
ros from the
om-ponent library also used for estimation. These netlistshave to be
ombined with
ontrol
ir
uitry whi
h pro-vides a

ess to the host and lo
al memory, and
lo
ksthe
ir
uit. They are then further pro
essed with o�-the-shelf vendor tools, resulting in a
on�guration bit-stream. Di�erential netlist generation applies only forpartially re
on�gurable systems, see Se
tion 5. In
asethe implemented
ir
uit does not meet the estimatedarea or delay targets, the dotted design
ow
y
le inFigure 1 ba
k-annotates the DGs with a

urate values,and the subsequent steps are repeated. For instan
e,more pipeline stages are inserted to redu
e the delay.Alternatively, an experien
ed user
an review and op-timize the generated
ir
uits manually.The
ontrol
ir
uitry
an be a Pipeline Control Unit[2, 8, 9℄ whi
h is initialized by the host, but a

essesve
tor data from lo
al memory and runs the pipelinewithout host intera
tion. The length of a pipeline
y-
le is determined by the number of memory a

essesper
y
le, given by the number of ve
tor inputs andoutputs. Alternatively, the pipeline
an dire
tly
om-muni
ate with the host or with external data sour
esand sinks. Pipeline ve
torization is not restri
ted to aspe
i�
 system and interfa
e ar
hite
ture.4 Loop TransformationsThe
ore design
ow dis
ussed so far is limited toprograms with suitable innermost loops. If the loopbody is too small to warrant the hardware overheadsor too large to �t in the given hardware, no
opro-

essor
an be synthesized. This se
tion shows howloop unrolling, loop tiling, loop merging, loop distri-bution, and loop inter
hange | transformation te
h-niques known from parallelizing software
ompilers |
an be adapted to over
ome these problems and widenthe appli
ability of pipeline ve
torization. Sin
e thetransformations naturally involve the part of the ap-pli
ation remaining in software, they are more sys-temati
 and
omprehensive than just optimizing thehardware parts after partitioning and hardware gener-ation. We apply unrolling and tiling wherever possiblesin
e they in
uen
e the resulting performan
e signi�-
antly. The other transformations are only used underspe
i�

ir
umstan
es.The transformations generate new variations of the
andidates and add them to the internal program rep-resentation. Then DG generation, pipelining and areaestimation are repeated for the new loops (see path I inFigure 1). Finally, the best suited among the originaland alternative
opro
essors are implemented (pathIII, Figure 1). Sin
e the transformations only manip-ulate the internal program and high-level DG repre-sentations, all interesting alternatives
an be gener-ated qui
kly. Only the implementation of the sele
ted
opro
essors involves running slow hardware designtools, su
h as pla
e and route tools.Loop Unrolling In software
ompilers, loop un-rolling is an important te
hnique to in
rease basi
blo
k sizes, extending the s
ope of lo
al optimizations.Unrolling inner loops results in larger loop bodies. Forpipeline ve
torization, this means larger
opro
essorsand therefore more potential parallelism. However,the size of the
opro
essors must mat
h the availableFPGA resour
es.We gain the most by
ompletely unrolling a
andi-date loop. This is possible if its bounds are
onstant.This situation o

urs in many programs, for instan
ein image pro
essing appli
ations with loops over small,
onstant-size templates [10℄. Spe
i�
 examples in
ludethe skeletonization program used in Se
tion 6, or �l-ters with a
onstant number of taps.The inner loop is
ompletely removed so that theouter loop
an be ve
torized. Sin
e the new loop bodymight be too large for the given FPGA resour
es, orthe
opro
essor might be too slow due to too manyve
tor inputs and outputs, unrolling might not leadto a feasible pipeline
opro
essor for the outer loop.Therefore partitioning will de
ide if the original or theunrolled
andidate is sele
ted.Let us now
onsider partial unrolling. If an innerloop is only partially unrolled, the next outer loop
an-

not be ve
torized and remains in software. This meansthat unrolling n iterations also in
reases the number ofve
tor inputs and outputs and the length of a pipeline
y
le n-fold, thus annihilating the speedup gained byfewer loop iterations.4 Hen
e partial loop unrollingis not useful for pipeline ve
torization. However, itwould be useful if the outer loop was ve
torized. Thisis a
hieved by loop tiling.Loop Tiling Loop tiling is an alternative transfor-mation for
ases where
omplete unrolling is not ap-pli
able due to variable loop bounds or resulting
o-pro
essors be
oming too large. In these
ases it is verybene�
ial to partially unroll a loop, thereby adjustingthe
ir
uit size to the given hardware resour
es, andve
torize the next outer loop. Loop tiling a
hieves thisby
ombining loop partitioning and inter
hange. Weadjust this te
hnique for pipeline ve
torization.Transformation steps (1) and (2) in Figure 4 showloop tiling in the general form used here. The trans-formation works on two nested loops where PRE(i)and POST(i) do not
ontain loops themselves. Theinner loop is partitioned in tiles whi
h will eventuallybe unrolled. The tile size tsize is
hosen as the max-imum number of \pro
essing elements" (instan
es ofthe loop body F(i,j)) �tting in the given hardwareresour
es along with the operations in PRE(i) andPOST(i)whi
h are exe
uted before the �rst tile and af-ter the last tile, respe
tively. Hen
e tsize is estimatedas tsize = (areaHW � areaPRE � areaPOST)=areaFwhere areaHW is the size of the hardware resour
es,areaPRE , areaPOST and areaF are the estimated sizesof PRE(i), POST(i) and F(i,j), and / denotes inte-ger division. Loop tiling will then result in a
opro
es-sor whi
h is approximately tsize times larger and tsizetimes faster than the
opro
essor generated from theoriginal loop.Transformation step (1) partitions the loop for agiven tsize and renormalizes the bounds and steps.Rather than unrolling the inner loop, step (2) inter-
hanges the outer loop with the tile loop. This allowsus to ve
torize the former outer i-loop and to unrollthe redu
ed inner j-loop without
onsidering the (nowoutermost) tile loop. PRE(i) and POST(i) were �rst\sunk" in the tile loop (by adding guards) sin
e inter-
hange is only possible for perfe
tly nested loops (withno statements between the inner and outer loop).However, loop tiling is not possible if the boundsof the inner loop depend on the outer loop index or if4Note that this is not automati
ally the
ase for
ompletelyunrolled loops sin
e the outer loop (with another index variable)is ve
torized.

1 for (i=0; i<M; i++) {2 PRE(i);3 for (j=0; j<n; j++)4 F(i,j);5 POST(i); })(1) 1 for (i=0; i<M; i++) {2 PRE(i);3 for (jt=0; jt<(n-1)/tsize+1; jt++)4 for (j=0; j<min(tsize,n-jt*tsize); j++)5 F(i,j+jt*tsize);6 POST(i); })(2) 1 for (jt=0; jt<(n-1)/tsize+1; jt++)2 for (i=0; i<M; i++) {3 if (jt==0) /* first tile */4 PRE(i);5 for (j=0; j<min(tsize,n-jt*tsize); j++)6 F(i,j+jt*tsize);7 if (jt==(n-1)/tsize) /* last tile */8 POST(i); })(3) 1 for (jt=0; jt<(n-1)/tsize+1; jt++) {2 for (i=0; i<M; i++) {3 if (jt==0) /* first tile */4 PRE(i);5 for (j=0; j<tsize; j++)6 if (jt!=(n-1)/tsize || j<(n-1)%tsize+1)7 F(i,j+jt*tsize);8 if (jt==(n-1)/tsize) /* last tile */9 POST(i); } }
)(4)

1 for (jt=0; jt<(n-1)/tsize+1; jt++) {2 for (i=0; i<M; i++) {3 if (jt==0) /* first tile */4 PRE(i);5 F(i,jt*tsize); /* no guard ne
essary */6 if (jt!=(n-1)/tsize || 1<(n-1)%tsize+1)7 F(i,1+jt*tsize);8 ...9 if (jt!=(n-1)/tsize ||10 tsize-1<(n-1)%tsize+1)11 F(i,tsize-1+jt*tsize);12 if (jt==(n-1)/tsize) /* last tile */13 POST(i); } }
)(5)

1 guard_1 = 1<(n-1)%tsize+1;2 guard_2 = 2<(n-1)%tsize+1;3 ...4 guard_last = tsize-1<(n-1)%tsize+1;5 for (jt=0; jt<(n-1)/tsize+1; jt++) {6 first_tile = jt==0;7 last_tile = jt==(n-1)/tsize;8 for (i=0; i<M; i++) {9 if (first_tile)10 PRE(i);11 F(i,jt*tsize); /* no guard ne
essary */12 if (!last_tile || guard_1)13 F(i,1+jt*tsize);14 ...15 if (!last_tile || guard_last)16 F(i,tsize-1+jt*tsize);17 if (last_tile)18 POST(i); } }Figure 4: Hardware spe
i�
 loop tiling.

data dependen
es prevent the loop inter
hange. For-tunately this
an be
he
ked before starting the entiretransformation sin
e step (2) is legal i� the originalloops are fully permutable [11℄. This is the
ase if alldependen
es
arried by these loops have non-negativedistan
es. This
ondition
an be tested during depen-den
e analysis. It means that no dependen
e on anearlier iteration of the inner loop is allowed. In termsof the generated pipelines, no ba
kward data
ow be-tween \pro
essing elements" is allowed, but non-lo
alforward
ow is.The output of step (2)
annot dire
tly be ve
tor-ized. Thus we devise additional hardware spe
i�
transformations extending software loop-tiling. Thenon-
onstant upper bound min(tsize; n� jt � tsize)prevents unrolling the inner loop. Sin
e tsize is
on-stant, the upper bound
an never be larger, and wesubstitute it by tsize. To maintain
orre
tness, theloop body F has to be guarded by j < n � jt � tsizefor the
ase that n � jt � tsize is the a
tual mini-mum. This guard
an only be wrong for the last tilejt = (n� 1)=tsize, so we
an rewrite it tojt 6= (n� 1)=tsize_ j < (n� 1)%tsize+ 1where % denotes the modulo operator. Step (3) showsthis transformation.Now the inner loop
an be unrolled in step (4).Unfortunately the guards have to be repli
ated, too.5Implementing them in hardware would in
rease thepipeline area
onsiderably. Fortunately this is not ne
-essary, sin
e their values do not depend on the indexvariable i. We
an assign
ags outside the ve
tor-ized loop (in software) and pass them to the hard-ware. Step (5) in Figure 4 shows this �nal transfor-mation. Note that guard 1 to guard last need onlybe
omputed on
e sin
e they do not
hange in the tileloop, whereas first tile and last tile need to beadjusted in the tile loop. The resulting program gen-erates a DG adjusted to the given hardware resour
es.An example will be given in Se
tion 6.Loop Merging Loop merging is another means ofin
reasing parallelism in loop bodies. Its s
ope is, how-ever, rather limited sin
e loops (or loop nests) musttraverse exa
tly the same index spa
e to allow merg-ing. Moreover, all dependen
es of the original loopsmust be preserved in the merged loop. A simple ex-ample is given in Figure 5. Merging is legal if F and Gonly depend on p1[v℄[h℄ and p2[v℄[h℄ respe
tively.However, a more realisti
 program where F and G are5Only for j = 0, the
ondition is always true be
ause everytile performs at least one inner loop iteration. Hen
e it
an beomitted.

for instan
e linear image pro
essing operators depend-ing on a 3� 3 neighborhood6 has dependen
es whi
hprevent dire
t merging. This is be
ause new p2 valueshave to be
omputed for the entire neighborhood be-fore a new p3 value
an be
omputed. Fortunately thisdependen
e does not mean the loops
annot overlap;they
an if the se
ond operator only starts when the�rst has �nished
omputing the �rst row. We developa new transformation whi
h merges loops systemati-
ally even if there are lo
al dependen
es like these.for (v=1; v<vlen-2; v++)for (h=1; h<hlen-2; h++)p2[v℄[h℄ = F(p1); /*A*/for (v=1; v<vlen-2; v++)for (h=1; h<hlen-2; h++)p3[v℄[h℄ = G(p2); /*B*/) for (v=1; v<vlen-2; v++)for (h=1; h<hlen-2; h++){p2[v℄[h℄ = F(p1); /*A*/p3[v℄[h℄ = G(p2); /*B*/}Figure 5: Loop merging.Our strategy is to delay the se
ond loop body B(with respe
t to the outermost loop) by d iterationswhere d is large enough to preserve all dependen
es. dis determined by dire
tly merging the loops and
he
k-ing for anti-dependen
es
arried by the outermost loopfrom a statement in B to a statement in A. They in-di
ate a dependen
e in the original loops from iter-ation i in A to iteration j in B with j < i. Thisdependen
e has been violated by merging. We deter-mine d as the largest o

urring anti-dependen
e dis-tan
e. For instan
e, in Figure 5, a right-hand-sidea

ess to p2[v-1℄[h℄ in B and a left-hand-side a

essto p2[v℄[h℄ in A establish an anti-dependen
e withdistan
e 1. If no anti-dependen
es exist, d = 0 anddire
t merging is possible. However, if irregular anti-dependen
es exist (no distan
e
an be determined),merging is not possible.Let us
onsider the
ase d > 0. We
an delay loopbody B by subtra
ting d from all o

urren
es of theouter loop index in B. Additionally, the upper boundof the outer loop has to be in
reased by d to exe-
ute the delayed iterations on B. A and B have tobe guarded so that the �rst d iterations are only ex-e
uted by A and the last d iterations only by B. Fig-ure 6 shows the result for the operators dependingon a 3 � 3 neighborhood. In this
ase d = 1; Fig-ure 7 (a) shows the
orresponding DG. We see thatthe merged pipeline requires �ve ve
tor inputs andtwo outputs. This might slowdown the pipeline
on-siderably and make merging not worthwhile. It mustbe
he
ked by the �nal
opro
essor sele
tion in thehardware/software partitioning phase. On the other6That is, p2[v℄[h℄ = F(p1[v-1℄[h-1℄, p1[v-1℄[h℄, ...,p1[v+1℄[h℄, p1[v+1℄[h+1℄); and analogous for G.

hand, we
an eÆ
iently implement these ve
tor inputsand outputs on ar
hite
tures with several
on
urrentlya

essible memory banks by allo
ating p1, p2 and p3to di�erent banks. We dis
uss a detailed
ase studyon this in Se
tion 6.for (v=1; v < vlen-2+d; v++)for (h=1; h < hlen-2; h++) {if (v < vlen-2) /* A */p2[v℄[h℄ = F(p1[v-1℄, p1[v℄, p1[v+1℄);if (v >= 1+d) /* B */p3[v-d℄[h℄ = G(p2[v-1-d℄, p2[v-d℄, p2[v+1-d℄); }Figure 6: Generalized loop merging result.
F

p1[v-1]

p1[v]

p1[v+1]

(b) d=2

p2[v]

p2[v-2]

p2[v-1]

p2[v-3]

G

(a) d=1

p2[v-2]

p2[v-1]

p1[v-1]

p1[v] F

p1[v+1]

G p3[v-1]

p2[v]

p3[v-2]

Figure 7: Data
ow graphs for merged loop.By slightly
hanging this transformation, it be-
omes suitable for multi-FPGA systems. Figure 7 (b)shows the resulting DG if we \overdelay" B by one(d = 2 in this example). In this
ase, the pipelinesof the original loop bodies be
ome
ompletely inde-pendent and
ommuni
ate only via memory. Hen
ethey
an easily be allo
ated to separate FPGAs whi
hshare a

ess to a memory bank for array p2. In this
ase we do not really merge the loops but determinehow two (or more) pipelines
an overlap forming a
omposite pipeline. For n pipelines, a speedup fa
torup to n
an be a
hieved
ompared to sequential exe
u-tion. This would not be possible without the analysisinformation. The minimal or overdelayed d-value is
hosen depending on the given ar
hite
ture.Other Loop Transformations Loop distributionis the opposite of loop merging. It results in smallerpipelines and thus
an be applied if a loop body istoo large to �t on the given hardware. A loop
an-not be distributed if dependen
es of the original loopare violated. As in loop tiling | whi
h is a formof loop distribution | pipeline feedba
k paths mustnot be
ut. Loop inter
hange swaps perfe
tly nestedloops. As dis
ussed for loop tiling, it is legal if theinter
hanged loops are fully permutable. This trans-

formation does not
hange the size of the generatedhardware, but
an in
rease the length of the ve
tor-ized loop, thereby redu
ing the overhead for settingup, �lling and
ushing the pipeline. Furthermore, it
an in
rease the lo
ality of data a

esses by
hangingthe index variable relevant for ve
torization. This isne
essary for some memory a

ess models. Finally,strip mining (the �rst step of loop tiling)
an redu
elo
al memory requirements if
ombined with array re-gion analysis and applied to the ve
torized loop.We do not attempt to transform entire loop nestsas in [11℄ sin
e it is diÆ
ult to de�ne a strategy forsu
h a global transformation in the
ontext of pipelineve
torization. This is an area of future resear
h. Inaddition, our
ompiler provides feedba
k to the user toallow manual improvements of the program. Chang-ing an entire loop nest would make the
ompiler lessunderstandable and predi
table, and would thereforelimit the ability of the user to improve the program.Partitioning Extensions Automati
 hardware/software partitioning is extended by a re
ursive algo-rithm whi
h sele
ts the transformed loop whi
h resultsin the largest feasible
opro
essor. Alternatively, theuser sele
ts the applied transformations. He
an alsosele
t parameters as the tile size. This is espe
iallyuseful if the area targets are not met and the dotteddesign
ow
y
le in Figure 1 is a
tivated.5 Run-time Cir
uit Spe
ializationConstant propagation has long been used in soft-ware and hardware
ompilers to optimize programs or
ir
uit designs. The advent of re
on�gurable hard-ware has opened the opportunity to propagate val-ues whi
h are not
onstant, thereby redu
ing a de-sign's delay and area [12℄. Whenever a value
hanges,the
ir
uit is re
on�gured. Rather than
hanging theinput of
exible operators, a design whi
h exploitsrun-time re
on�guration (RTR) uses smaller opera-tors obtained by
onstant propagation. Hen
e moreof a program's operators
an be implemented on agiven hardware area. Be
ause of the re
on�gurationoverhead, only values
hanging infrequently should be
onsidered. We therefore only
onsider those variablesfor value propagation whi
h do not
hange inside theloops to be ve
torized. The hardware/software par-titioning must evaluate the trade-o� between designimprovement and re
on�guration overhead.We distinguish two
ases of RTR. First, the numberof propagated values is limited and the values them-

selves are known at
ompile time. Se
ond, there isan arbitrary number of values unknown at
ompiletime. We present methods for exploiting these
asesfor pipeline ve
torization next.Limited Value Propagation If the number of pos-sible values is limited, the hardware
andidate
an bereprodu
ed for all values. Consider the transforma-tion of the example in Figure 8. The program is astring pattern mat
her where PM(x, i, pat)
omputesa boolean value indi
ating if the input string x
on-tains the pattern pat at position i. The original ver-sion uses the variable input pat in the FOR-loop. Bystandard de�nition-use analysis, the
onditional as-signment to pat
an be propagated to its use in theFOR-loop (step (1) in Figure 8). The next step (2)moves the evaluation of sel out of the FOR-loop. Theloop is dupli
ated, but ea
h instan
e now has a
on-stant input to PM whi
h results in smaller and fasterhardware. This transformation
an easily be extendedfor more than two values or more than one variablebeing
onsidered. It performs
onstant propagationin software and e�e
tively produ
es several indepen-dent loops. Standard hardware generation is appli
a-ble, and the design
ow path I in Figure 1 is used.As with the other loop transformations the originalprogram
ode is retained, sin
e only the partitioningphase de
ides if the propagated version will be used.1 pat = (sel) ? "new" : "not";2 ...3 for (i=0; i<N-2; i++)4 y[i℄ = PM(x, i, pat);)(1) 1 for (i=0; i<N-2; i++)2 y[i℄ = PM(x, i, ((sel) ? "new" : "not"));)(2) 1 if (sel)2 for (i=0; i<N-2; i++)3 y[i℄ = PM(x,i,"new");4 else5 for (i=0; i<N-2; i++)6 y[i℄ = PM(x,i,"not");Figure 8: Limited value propagation.We
an also generate independent loops for tiledloops if the tiling is ne
essary due to limited hardwareresour
es, while the inner loop length (and thereforethe number of tiles) stays
onstant. Unrolling the tileloop (whi
h is the outermost loop
onsidered) gener-ates an independent ve
torizable loop for every tilewith
onstant values for jt and for all guards (
f.Figure 4). Note however that the tiling transforma-tion should be repeated if RTR is
onsidered sin
evalue propagation redu
es the area of a \pro
essing

element". Hen
e more elements �t on the availablehardware, and the tile size
an be in
reased.This
ase of RTR is suitable for
hip-level and par-tially re
on�gurable systems. However, the trade-o�swill be di�erent. If partial re
on�guration is not sup-ported, the re
on�guration time will be large, regard-less of how small the di�eren
e between two
on�g-urations is. So
hip-level RTR will not be useful forexamples like the pattern mat
her in Figure 8 whereonly three
omparators
an be simpli�ed. The gainwill be negligible
ompared with the re
on�gurationoverhead.On the other hand, for partially re
on�gurable de-vi
es the re
on�guration time is proportional to theamount of logi
 altered. We use tools like Con�gDi�[13℄ to determine the fastest partial
on�guration toswit
h between two similar designs. Hen
e small
hanges
an be performed very qui
kly.Arbitrary Value Propagation The se
ond
aseof run-time re
on�guration o

urs if a variable
an as-sume any value at run-time. Then we
annot prepareseparate
on�gurations for ea
h of them at
ompiletime. Sin
e it is prohibitive to run the entire designtool suite for new values at run-time, this
ase
annotbe handled with FPGAs whi
h
an only be
on�gured
ompletely. It is only suitable for partially re
on�g-urable FPGAs whi
h allow to adapt an operator to any
onstant input values within a few
y
les at run-time.Therefore a
ir
uit \skeleton" is synthesized whi
h re-serves area for the largest possible
onstant input op-erator. At run-time all these operators are adaptedto the given values. Doing this also requires a spe
ial
omponent library whi
h provides the operator \skele-tons" along with information on how to generate the
on�guration instru
tions for a given input value anda given position of the operator on the
hip.Generating su
h a
ir
uit \skeleton" adds an al-ternative implementation for a given hardware
andi-date, but the
andidate loop itself remains un
hanged.Sin
e the
onstant input operators have smaller delaysthan their
exible
ounterparts, their pipelined ver-sions might
ontain less registers. Therefore pipelin-ing and area estimation | but not DG generation |is repeated for these new implementations (path IIin Figure 1). As for limited value propagation, thetile size for partially unrolled loops is in
reased. Thustiling should be repeated.This is the most
exible approa
h to RTR. Unfortu-nately, generating su
h designs has not yet been
om-pletely automatized. However, we present a manuallyimplemented
ase study in Se
tion 6.

RTR Partitioning and Integration In RTR sys-tems, the original or the spe
ialized
ir
uit must besele
ted automati
ally (unless only the spe
ialized
ir-
uit �ts on the given hardware). There is a trade-o�between the re
on�guration time and the amount of
omputation performed in one
on�guration. The re-
on�guration time depends on the FPGA te
hnology(partial or
omplete re
on�guration) and on the re
on-�guration frequen
y. The latter depends on the overall
ontrol
ow of the program. Its analysis involves es-timating loop and bran
h exe
ution
ounts and mustbe addressed in the
ontext of the overall speedup es-timation,
f. [2, 8℄. Alternatively, an implementation
an be sele
ted manually.For partially re
on�gurable systems, di�erentialnetlists
an be generated. This additional step re-pla
es
omplete
on�gurations by di�erential
on�gu-rations whi
h just
hange the di�eren
es between two
onse
utive
on�gurations. Thereby even the
on�g-uration times of unrelated
opro
essors are redu
ed,espe
ially if they share the same
ontrol
ir
uitry.6 Implementation and Case StudiesWe have implemented a simple version of the
oredesign
ow in theModula Pipeline Compiler prototype[8℄. Here we present
ase studies whi
h demonstratethe new te
hniques presented in this paper. The re-sults have been produ
ed with the assistan
e of a pro-totype
ompiler based on the SUIF framework [14℄,whi
h provides C and Fortran frontends, and power-ful loop analysis and transformation libraries.String Pattern Mat
her This
ase study evalu-ates the bene�ts of loop tiling and run-time
ir
uit spe-
ialization. We implement a string pattern mat
heron a PC-based Xilinx 6200DS board using a XC6216FPGA. This program, shown in Figure 9, is the sameas that in Figure 8, but with arbitrary pattern lengthsand values. Therefore the inner loop
annot be un-rolled. However, the inner loop
an be ve
torized andthe tiling transformation
an be applied. The result-ing pipeline
ir
uit is a linear datapath of
ompara-tors and registers. Both
ompile-time re
on�gurable(CTR) and run-time re
on�gurable (RTR) versionsare possible. The CTR version
ontains generi

om-parators and the XC6200's prote
ted registers so thatpattern bytes
an be loaded dire
tly from the host,whereas the spe
ialized RTR version
ontains
onstant
omparators. The pipelines have been pla
ed auto-mati
ally. The XC6216 is large enough to implement

for (i=0; i<N-P+1; i++) {y[i℄ = 1;for (j = 0; j<P; j++)if (pat[j℄ != x[i+j℄)y[i℄ = 0; }Figure 9: String pattern mat
her program.the Pipeline Control Unit (about 25% of the
hip area)and 54 CTR pro
essing elements or 90 smaller, spe-
ialized RTR pro
essing elements.Soft- Inner loop Tiled ve
t.ware ve
torizat. CTR RTRPerforman
e 24.8 12.5 671 1,032Speedup | 0.5 27 42Table 1: Analysis of string pattern mat
her: raw perfor-man
e in 106
omparisons/s and speedup over software.Table 1 shows the raw performan
e of the imple-mentations, in
luding speedups over software on a 300MHz Pentium II PC. All values are a
tual measure-ments, ex
ept those related to inner loop ve
torizationwhi
h are estimated. The values for the tiled imple-mentations in
lude the times for
hanging a tile, amor-tized over 100,000 pipeline
y
les. The pipeline
y
leis 80 ns for all
ir
uits.7However, the hardware performan
e data do notin
lude the overheads for initialising the FPGA
on-�guration and data transfer sin
e their signi�
an
edepends on the overall number of tiles. The CTRand RTR performan
e numbers only
on
ern the
asewhen all pro
essing elements are used. Figure 10shows the overall exe
ution times in
luding
on�gu-ration and data transfer times, whi
h are indi
ated bytwo additional lines in the graph. Sin
e the exe
utiontime of a tiled implementation only depends on thenumber of tiles, their graphs are step fun
tions.We
on
lude that loop tiling is a transformationwhi
h enables a
onsiderable speedup for string pat-tern mat
hing in the �rst pla
e, and run-time re
on�g-uration further improves the performan
e by approx-imately 50% for large patterns.Morphologi
al Skeletonization We now analyzethe morphologi
al skeletonization algorithm from [10℄.This example evaluates loop unrolling and general-ized loop merging. Figure 11 shows the algorithm's7The Pipeline Control Unit
an a

ess one lo
al memoryword in 40 ns. Therefore a pipeline
y
le with two a

essestakes 80 ns on our system.

0

10

20

30

40

50

60

70

80

90

0
 50
 100
 150
 200
 250
 300
 350
 400
 450

pattern length

ex
ec

u
ti

o
n

 t
im

e
 [

m
s]

configuration

CTR/tiled

data transfer

inner loop vectorization

software

RTR/tiled

Figure 10: Exe
ution times for string pattern mat
herfor N = 100,000.stru
ture. IMAGE is initialized with the input image,and SKELETON with an empty image. Then the opera-tors erosion, dilation and di�eren
e/union are repeat-edly performed on the data until IMAGE is
ompletelyeroded. The dotted arrows indi
ate whi
h operators'outputs are used for the next repetition.
Erosion DilationIMAGE

SKELETON Union

DifferenceFigure 11: Morphologi
al skeletonization.The erosion operator
onsists of two nested innerloops whi
h iterate over a
onstant 5 � 5 template.Pipelining the innermost loops would not be bene�-
ial sin
e it only
ontains one operator
omputing theminimum of two inputs. However, after
ompletelyunrolling both inner loops, a pipeline
ontaining 20minimum operators
an be generated. It
an
omputeone output pixel every pipeline
y
le.The upper part of Table 2 gives raw performan
e,pipeline frequen
y and exe
ution time data (for a512�512 pixel image), as well as the total time for theindependent exe
ution of all skeletonization operators,based on 50 ns memory a

esses. Dilation is similar toerosion, but the
ombined di�eren
e and union opera-tor loop is not very eÆ
ient, sin
e it
ontains only twooperations and no inner loops to unroll. Note that thefrequen
y is higher for ar
hite
tures with two memorybanks, sin
e
on
urrent read and write a

esses arepossible.The performan
e
an be improved by merging alloperators to produ
e one large pipeline. The last line

1 memory bank 2 memory banksF P T F P TErosion 3.3 66.7 79 4.0 80.0 66Dilation 3.3 66.7 79 4.0 80.0 66Di�./Union 5.0 10.0 52 10.0 20.0 26Total 210 158Merged 1.7 70.0 157 3.3 140.0 79Table 2: Analysis of skeletonization operators: pipelinefrequen
y F in MHz, raw performan
e P in 106 opera-tions/s, exe
ution time T for a 512� 512 image in ms.in Table 2 shows that the advantage of loop mergingis limited for one memory bank, sin
e too many mem-ory a

esses have to be performed sequentially in one
y
le. For two banks, however, merging is e�e
tive. Ithalves the exe
ution time.We have implemented in the Handel-C language themerged pipeline on an ESL RC1000-PP board [15℄.The design, running at 20 MHz,
ompletes one skele-tonization iteration for a 512� 512 pixel image in 97ms. Even in
luding data transfer (8 ms for the imagedata using pa
ked DMA, amortized over 15 to 30 it-erations), the hardware was measured to be 11 timesfaster than software (1,045 ms on the 300 MHz PC).8To summarize, loop unrolling is an enabling trans-formation for the erosion and dilation loops, whereasgeneralized loop merging further improves the entireskeletonization program.7 Con
lusionThis paper presents a framework based on pipelineve
torization for produ
ing optimized pipelined
ir-
uits from high-level programs. The framework in-
ludes new optimizing transformations whi
h
us-tomize hardware
opro
essors to meet spe
i�
 FPGAresour
e
onstraints and exploit run-time re
on�gura-tion. The
ase studies show that some transforma-tions result in hardware a

eleration whi
h
annot bea
hieved easily by hand. Others improve the perfor-man
e of
opro
essors signi�
antly. Our framework
an sele
t, generate and integrate
opro
essors auto-mati
ally while retaining the
exibility to allow usersto in
uen
e the synthesis pro
ess. Future work will
ombine our �ne-grain ve
torization with
oarse-grain,8The RC1000-PP's Xilinx XC4085XL FPGA also has to be
on�gured on
e during program exe
ution. Though we utilizeonly 30%, the
hip must be re
on�gured
ompletely. This takes780 ms on our board (despite only 240 ms pure
on�gurationtime). We expe
t mu
h faster
on�guration for the Virtex
hip.

task-level parallelism for large multi-FPGA systems.Strategies to transform entire loop nests will also bestudied. We are interested in supporting various inputlanguages, parti
ularly parallel ones, in order to opti-mize existing parallel programs. Further extensionswill allow users to in
lude manually designed hard-ware blo
ks and to synthesize digit-serial designs.Referen
es[1℄ C.E. Kozyrakis and D.A. Patterson. A new dire
tionfor
omputer ar
hite
ture resear
h. IEEE Computer,Nov. 1998.[2℄ M. Weinhardt. Compilation and pipeline synthesis forre
on�gurable ar
hite
tures. In Re
on�gurable Ar
hi-te
tures Workshop RAW'97, 1997.[3℄ M.B. Gokhale and J.M. Stone. NAPA C:
om-piling for a hybrid RISC/FPGA ar
hite
ture. InPro
. FCCM'98. IEEE Computer So
iety Press, 1998.[4℄ D.C. Cronquist, P. Franklin, S.G. Berg and C. Ebel-ing. Spe
ifying and
ompiling appli
ations for RaPiD.In FCCM'98. IEEE Computer So
iety Press, 1998.[5℄ E. Fabiani, D. Lavenier and L. Perraudeau. Loop par-allelization on a re
on�gurable
opro
essor. In Pro
.WDTA'98: Workshop on Design, Test and Appli
a-tions, Dubrovnik, Croatia, June 1998.[6℄ M. Wolfe. High Performan
e Compilers for ParallelComputing. Addison-Wesley, 1996.[7℄ C.E. Leiserson and J.B. Saxe. Optimizing syn-
hronous systems. Journal of VLSI and ComputerSystems, 1:41{67, 1983.[8℄ M. Weinhardt. �Ubersetzungsmethoden f�ur struk-turprogrammierbare Re
hner (Compilation te
hniquesfor stru
turally programmable
omputers, in Ger-man). PhD thesis, Universit�at Karlsruhe, July 1997.[9℄ M. Weinhardt. Portable pipeline synthesis forFCCMs. In Pro
. FPL'96. Springer, 1996.[10℄ H.R. Myler and A.R. Weeks. Computer ImagingRe
ipes in C. P T R Prenti
e Hall, 1993.[11℄ M.E. Wolf and M.S. Lam. A loop transformation the-ory and an algorithm to maximize parallelism. IEEETrans. on Parallel and Distr. Systems, O
t. 1991.[12℄ M.J. Wirthlin and B.L. Hut
hings. Improving fun
-tional density through run-time
onstant propagation.In Pro
. FPGA'97. ACM Press, February 1997.[13℄ W. Luk, N. Shirazi and P.Y.K. Cheung. Compi-lation tools for run-time re
on�gurable designs. InPro
. FCCM'97. IEEE Computer So
iety Press, 1997.[14℄ The Stanford SUIF Compiler Group. Homepagehttp://suif.stanford.edu.[15℄ Embedded Solutions Limited. Homepagehttp://www.embedded-solutions.ltd.uk.

