Pipeline Vectorization for Reconfigurable Systems*

Markus Weinhardt and Wayne Luk

Department of Computing, Imperial College, London, UK
{mw8, wl}@doc.ic.ac.uk

Abstract

This paper presents pipeline vectorization, a method
for synthesizing hardware pipelines in reconfigurable
systems based on software vectorizing compilers. The
method improves efficiency and ease of development of
reconfigurable designs, particularly for users with little
electronics design experience. We propose several loop
transformations to customize pipelines to meet hard-
ware resource constraints, while mazximizing available
parallelism. For run-time reconfigurable systems, we
apply hardware specialization to increase circuit uti-
lization. Our approach is especially effective for highly
repetitive computations in DSP and multimedia ap-
plications. Case studies using FPGA-based platforms
are presented to demonstrate the bemefits of our ap-
proach and to evaluate trade-offs between alternative
implementations. The loop tiling transformation, for
instance, has been found to improve performance by
30 to 40 times above a PC-based software implemen-
tation, depending on whether run-time reconfiguration
is used.

1 Introduction

Many application developers recognize that the key
to effective use of reconfigurable systems is to max-
imize their available parallelism. This task, which
has to be achieved while meeting specific hardware
resource constraints, is difficult to perform by hand.

Vectorizing compilers have proved successful in de-
tecting and exploiting parallelism for conventional
processors with a fixed architecture. A vector execu-
tion unit adapted for DSP and multimedia processing
has also been identified as an important component
of novel computer architectures, such as the vector

*This work is supported by a European Union training
project financed by the Commission in the TMR programme,
the UK Engineering and Physical Sciences Research Coun-
cil (Grant Number GR/1.24366, GR/1.54356 and GR/1.59658),
Embedded Solutions Ltd., and Xilinx Inc.

IRAM [1]. This paper presents an approach for auto-
matically producing optimized pipelined circuits from
a high-level program, using techniques derived from
software vectorizing compilers. The compile-time and
run-time reconfigurability of FPGAs can also be effi-
ciently exploited.

Our approach, which we call pipeline vectorization,
involves essentially the synthesis of pipelined copro-
cessors which execute inner loops of programs. Data
dependence analysis similar to software vectorization
is performed, which determines if a pipeline can be
generated for a loop. In contrast to software vectoriza-
tion, we do not explicitly generate vector instructions.
Instead, all instructions of the loop body are vector-
ized and chained by pipelining input data through the
entire dataflow graph synthesized from the loop body.

2 Overview and Related Work

This paper is organized as follows. Section 3
presents the pipeline vectorization design flow and its
core components. Next, we devise several loop trans-
formations which widen the applicability of our tech-
nique by adjusting the amount of hardware used in
vectorized loops to the given FPGA resources in Sec-
tion 4. In Section 5, we explore methods to increase
pipeline circuit utilization by run-time circuit special-
ization and run-time reconfiguration. Finally we pro-
vide case studies evaluating these new optimizations
in Section 6, and conclude the paper in Section 7.

An earlier version of our approach, which covers
some of the ideas in Section 3, has been reported [2].
Some restrictions in that work have been overcome in
our current approach.

Several research projects address the synthesis of
pipelined circuits from program loops. The closest to
our approach is the NAPA C compiler [3]. However, it
targets specifically the NAPA1000 chip and considers
only innermost loops. No optimizing transformations
similar to ours are reported. The RaPiD-B compiler
[4], too, is architecture specific for the RaPiD chip and

requires manual parallelisation and partitioning. Our
techniques can be used as a frontend for RaPiD-B.
Loop parallelization based on the ALPHA system [5]
is restricted to linear systolic arrays, whereas our tech-
niques can vectorize more general programs.

3 Pipeline Vectorization

Figure 1 shows the pipeline vectorization design
flow. We first present the core components on the di-
rect path III from an input program to an executable
application. Later sections will cover the optimizing
transformations (paths I and II in Figure 1).

Input Program

Hardware Candidate Selection

i

Loop Normalization
v Feedback

annotated with: candidates,
dependence information

-

Dataflow Graph Generation

o
‘ '
Circuit Speciali- Pipelining and Area Estimation 5 _ _ _ _ _ i
sation for RTR

Program
annotated with: candidates,dependence
information, dataflow graphs, area estimates

| L I

Candidate Loop 3
Hardware/Software Partitioning |

Transformations

/

Program Dataflow Graphs
with coprocessor calls of candidates

Library Instantiation _ .

and Integration —~—
* instances

Software Compiler

(Differential netlist generation)

1

[Host Object CodeH Partial Configurati ons]

Figure 1: Pipeline vectorization.

Hardware Candidate Selection Regular, itera-
tive computations which perform identical operations
on a large set of data are likely to benefit from hard-
ware acceleration. Hence loops are natural candi-
dates for hardware coprocessors. We only generate
pipelines for innermost loops, since outer loops have

a smaller speedup potential and require more compli-
cated control circuitry, and are better handled in soft-
ware. However, our procedure will initially consider all
loops since the loop transformations presented in Sec-
tion 4 rearrange loop nests. We concentrate on FOR-
loops for vectorization, since efficient pipelined co-
processors cannot be synthesized for general WHILE-
loops. FOR-loops have predetermined loop counts and
can thus be handled by efficient control circuitry.

There are some additional restrictions for the can-
didate loops: they must not contain recursive function
calls, external operating system or library calls.!

The candidate loop of the example program in Fig-
ure 2 will be used to synthesize a pipeline circuit.

unsigned short x[N];

unsigned short rand = Ox1l; /* 16-bit */
for(i=0; i<=N-2; i++) { /* CANDIDATE x*/
if (rand >> 15) /* bit 15 is set */
rand = (rand << 1) ~ 0x7549;
else
rand = rand << 1;
x[i] = x[i+1] + x[i+2] + rand; }

Figure 2: Example program.

Loop Normalization For vectorization, we nor-
malize the candidate loops by the following transfor-
mations [6]. First, we remove all additional induction
variables and normalize the loop’s lower bound to zero
and its step to one. Next, the index expressions are
reduced to linear expressions of the induction variable
if possible. Note that the candidate loop in Figure 2
is already normalized.

Dependence Analysis The next processing step
analyzes candidate loops for dependences. In a loop
nest, we determine for each loop hierarchy the de-
pendences carried by each loop: dependences between
statements in different iterations of this loop. Only
these loop-carried dependences affect the loop level
parallelism. However, since the pipeline execution
overlaps the loop iterations but maintains their or-
der, memory writes are never out of order. Hence we
only have to consider true dependences, but not anti-
or output-dependences.? Therefore pipeline vectoriza-

INon-recursive function calls can be inlined. Therefore we
assume — without loss of generality — that no function calls
exist in the candidates.

2 True or flow dependence occurs when a variable is assigned
or defined in one statement and used in a subsequently executed
statement. Anti-dependence occurs when a variable is used in
one statement and reassigned in a subsequently executed state-

tion applies to more loops than software vectorization.
We utilize standard dependence analysis methods [6]
to detect these dependences. As in software vector-
ization [6], only array index expressions linear in the
induction variable can be analyzed. Other cases, espe-
cially indirect array accesses, are assumed dependent.

Next, we check if the detected true loop-carried de-
pendences occur in all loop iterations with the same
dependence distance. We call these dependences reg-
ular. All dependences stemming from scalar variables
and from array accesses with the same stride are reg-
ular. They can be implemented by feedback paths in
the circuit. In contrast to software vectorization, reg-
ular dependences do not, prevent pipeline synthesis, al-
though they reduce parallelism because the feedback
paths restrict the speedup achieved by pipelining in a
later processing stage.

Irregular dependences can be handled, provided
that the original order of read and write accesses of
the arrays involved are maintained. However, this re-
quires many sequential memory accesses and is only
feasible with very fast memories, such as on-chip mem-
ories. Since this extension requires synthesis of an ad-
ditional controller for states within a pipeline cycle, it
is not, supported by our current prototype.

In Figure 2, there is a dependence stemming from
the scalar variable rand. In every iteration, its value
from the previous iteration is read. Since this depen-
dence is regular, it can be realized by a sequential
feedback path, resulting in a linear feedback shift reg-
ister generating random numbers (see Figure 3). Addi-
tionally, there are two more loop-carried dependences
stemming from the assignment to array x. Since they
are anti-dependences (only an out-of-order execution
of the assignments would lead to real dependences),
we can disregard them. Consequently, the loop in Fig-
ure 2 can be pipeline vectorized though it could not
be executed on a parallel or vector computer.

Dataflow Graph Generation For those candidate
loops which pass the dependence test, pipeline circuits
are synthesized. We employ a simple storage alloca-
tion scheme: scalar variables are held in FPGA regis-
ters, and arrays are stored on off-chip memory.? Array
elements are fed to the pipeline as continuous data
streams through vector inputs, and output streams
are written back to local memory through vector out-

ment. Output dependence occurs when a variable is assigned in
one statement and reassigned in a subsequently executed state-
ment [6].

30n some FPGA families, small arrays of data can be stored
in very fast on-chip memory. However, this requires synthesis
of access logic for these arrays.

puts. In this way one loop iteration is executed ev-
ery pipeline cycle. FElement addresses for linear ar-
ray accesses can be precomputed. However, for ar-
bitrary accesses, address computation logic must be
generated and synchronized with the local memory.
Pointer accesses are indirect accesses to the entire host
memory space and could be treated similarly. Since
most reconfigurable systems do not have direct access
to host memory, we do not handle pointers currently.
When targeting tightly-coupled architectures with di-
rect memory access, this restriction is not necessary.

Synthesis starts with generating an acyclic combi-
national dataflow graph (DG) for the loop body by
using multiplexers to select the correct values of con-
ditionally assigned variables. We treat array accesses
and scalar variables uniformly. Index-shifted accesses
to the same array are then combined and realized by
shift registers. Using these delayed values of the in-
put stream avoids accessing the same value in mem-
ory more than once and reduces the number of re-
quired vector inputs. This reduction is crucial since
all vector input streams must be read and all output
streams written once for every loop iteration. Thus
the pipeline throughput directly depends on the num-
ber of vector inputs and outputs.

Figure 3 shows the DG for the example program
from Figure 2. There is a vector input and output for
x, and a scalar input and output for rand. Registers
are represented by delay elements D. Note that both
branches of the if-statement are implemented and the
correct value for rand is selected by a multiplexer. The
condition is evaluated by selecting bit 15 of the input
register. The purpose of the multiplexer on the left-
hand side will be explained next.

i+2] x[i+1]
+

Figure 3: Dataflow graph for Figure 2.

If a loop has regular loop-carried dependences, cor-
responding feedback cycles need to be inserted in its
DG. This is simple for dependences stemming from
scalar variables: since one loop iteration is executed
every clock cycle, the input register of such a variable
(which is read and written in the loop) must always
contain the value computed in the previous clock cycle.
To achieve this, a multiplexer is added at the register’s

input. It selects the input value during initialization
and the feedback value during normal operation, de-
pending on an external control signal (scalar_in in
Figure 3) which is provided by the environment.

Dependences stemming from array accesses are
treated similarly. An output value, however, cannot
be directly fed back into an input register if its depen-
dence distance is greater than one. In this case addi-
tional registers are inserted to account for the greater
delay. Figure 3 shows a feedback path for the de-
pendent variable rand and a multiplexer selecting the
correct input.

Pipelining and Area Estimation The DGs gen-
erated so far may not be very efficient because the
combinational delays of chained operators may accu-
mulate to a long critical path. The critical path delay
can be reduced by pipelining, thereby improving the
performance. Although the latency is also increased,
it often has only a minimal effect since the time for
filling and flushing the pipeline is normally negligible.

We use a standard retiming technique [7] to insert
the minimal number of FPGA flipflops necessary to
achieve the cycle time determined by the given I/0O
bandwidth. The technique is extended to take into
account that in many FPGAs combinational gate out-
puts can be latched in the same cell. We use an FPGA
technology specific component library to determine
operators’ delays. The components are parametrized
by operator bitwidth to provide accurate estimates.
However, routing delays cannot be estimated accu-
rately. The same component library is used to esti-
mate the pipeline’s area (or resource usage) by sum-
ming up the area used by all components. These esti-
mates are used in the partitioning step described later.

These techniques will reduce the critical path of
the dataflow graph in Figure 3 by inserting additional
pipeline registers at the inputs of the adder on the
right side.

Hardware/Software Partitioning Partitioning
determines which part of a program will be executed
in software and hardware. If loops are to be exe-
cuted in hardware, their DGs’ area estimations must
not exceed the given hardware resources. Of course,
partitioning must also consider the expected speedup
achieved by the coprocessor. This estimation problem
has been addressed elsewhere [2, 8] and is not the sub-
ject of this paper. Partitioning extensions related to
the optimizing transformations will be covered in the
respective sections.

However, automatic partitioning is not always de-
sirable. The user might want to influence the result.
Therefore, our prototype compiler produces explana-
tions about whether a loop is a hardware candidate
or not. Hence the user can change the program ac-
cordingly, for instance by substituting floating point
with fixed point data, or by eliminating dependences.
For the candidates, area and speed estimations are
given as well. Thus an experienced user can assess the
chances of improving the generated circuit manually
and partition the program himself.

The program running on the host is generated by
substituting the chosen loops by runtime library calls
for configuring and executing the pipeline as well as
copying data between host and coprocessor. They re-
configure the FPGAs if a new coprocessor is needed.

Library Instantiation and Integration The DGs
are transformed into an FPGA specific netlist by in-
stantiating all operators with macros from the com-
ponent library also used for estimation. These netlists
have to be combined with control circuitry which pro-
vides access to the host and local memory, and clocks
the circuit. They are then further processed with off-
the-shelf vendor tools, resulting in a configuration bit-
stream. Differential netlist generation applies only for
partially reconfigurable systems, see Section 5. In case
the implemented circuit does not meet the estimated
area or delay targets, the dotted design flow cycle in
Figure 1 back-annotates the DGs with accurate values,
and the subsequent steps are repeated. For instance,
more pipeline stages are inserted to reduce the delay.
Alternatively, an experienced user can review and op-
timize the generated circuits manually.

The control circuitry can be a Pipeline Control Unit
[2, 8, 9] which is initialized by the host, but accesses
vector data from local memory and runs the pipeline
without host interaction. The length of a pipeline cy-
cle is determined by the number of memory accesses
per cycle, given by the number of vector inputs and
outputs. Alternatively, the pipeline can directly com-
municate with the host or with external data sources
and sinks. Pipeline vectorization is not restricted to a
specific system and interface architecture.

4 Loop Transformations

The core design flow discussed so far is limited to
programs with suitable innermost loops. If the loop
body is too small to warrant the hardware overheads
or too large to fit in the given hardware, no copro-

cessor can be synthesized. This section shows how
loop unrolling, loop tiling, loop merging, loop distri-
bution, and loop interchange transformation tech-
niques known from parallelizing software compilers
can be adapted to overcome these problems and widen
the applicability of pipeline vectorization. Since the
transformations naturally involve the part of the ap-
plication remaining in software, they are more sys-
tematic and comprehensive than just optimizing the
hardware parts after partitioning and hardware gener-
ation. We apply unrolling and tiling wherever possible
since they influence the resulting performance signifi-
cantly. The other transformations are only used under
specific circumstances.

The transformations generate new variations of the
candidates and add them to the internal program rep-
resentation. Then DG generation, pipelining and area
estimation are repeated for the new loops (see path Iin
Figure 1). Finally, the best suited among the original
and alternative coprocessors are implemented (path
ITT, Figure 1). Since the transformations only manip-
ulate the internal program and high-level DG repre-
sentations, all interesting alternatives can be gener-
ated quickly. Only the implementation of the selected
coprocessors involves running slow hardware design
tools, such as place and route tools.

Loop Unrolling In software compilers, loop un-
rolling is an important technique to increase basic
block sizes, extending the scope of local optimizations.
Unrolling inner loops results in larger loop bodies. For
pipeline vectorization, this means larger coprocessors
and therefore more potential parallelism. However,
the size of the coprocessors must match the available
FPGA resources.

We gain the most by completely unrolling a candi-
date loop. This is possible if its bounds are constant.
This situation occurs in many programs, for instance
in image processing applications with loops over small,
constant-size templates [10]. Specific examples include
the skeletonization program used in Section 6, or fil-
ters with a constant number of taps.

The inner loop is completely removed so that the
outer loop can be vectorized. Since the new loop body
might be too large for the given FPGA resources, or
the coprocessor might be too slow due to too many
vector inputs and outputs, unrolling might not lead
to a feasible pipeline coprocessor for the outer loop.
Therefore partitioning will decide if the original or the
unrolled candidate is selected.

Let us now consider partial unrolling. If an inner
loop is only partially unrolled, the next outer loop can-

not be vectorized and remains in software. This means
that unrolling n iterations also increases the number of
vector inputs and outputs and the length of a pipeline
cycle n-fold, thus annihilating the speedup gained by
fewer loop iterations.* Hence partial loop unrolling
is not useful for pipeline vectorization. However, it
would be useful if the outer loop was vectorized. This
is achieved by loop tiling.

Loop Tiling Loop tiling is an alternative transfor-
mation for cases where complete unrolling is not ap-
plicable due to variable loop bounds or resulting co-
processors becoming too large. In these cases it is very
beneficial to partially unroll a loop, thereby adjusting
the circuit size to the given hardware resources, and
vectorize the next outer loop. Loop tiling achieves this
by combining loop partitioning and interchange. We
adjust this technique for pipeline vectorization.

Transformation steps (1) and (2) in Figure 4 show
loop tiling in the general form used here. The trans-
formation works on two nested loops where PRE (i)
and POST(i) do not contain loops themselves. The
inner loop is partitioned in #iles which will eventually
be unrolled. The tile size tsize is chosen as the max-
imum number of “processing elements” (instances of
the loop body F(i,j)) fitting in the given hardware
resources along with the operations in PRE(i) and
POST (i) which are executed before the first tile and af-
ter the last tile, respectively. Hence tsize is estimated
as tsize = (areagw — areappp — areaposr)/areap
where areagw is the size of the hardware resources,
areaprg, areapost and arear are the estimated sizes
of PRE(i), POST(i) and F(i,j), and / denotes inte-
ger division. Loop tiling will then result in a coproces-
sor which is approximately tsize times larger and tsize
times faster than the coprocessor generated from the
original loop.

Transformation step (1) partitions the loop for a
given tsize and renormalizes the bounds and steps.
Rather than unrolling the inner loop, step (2) inter-
changes the outer loop with the tile loop. This allows
us to vectorize the former outer i-loop and to unroll
the reduced inner j-loop without considering the (now
outermost) tile loop. PRE(i) and POST(i) were first
“sunk” in the tile loop (by adding guards) since inter-
change is only possible for perfectly nested loops (with
no statements between the inner and outer loop).

However, loop tiling is not possible if the bounds
of the inner loop depend on the outer loop index or if

4Note that this is not automatically the case for completely
unrolled loops since the outer loop (with another index variable)
is vectorized.

D O W N

—

—~
MlJ/
~

00 ~N O O W N =

W00 N U WN -

—

Y

0 N O O WN -

—
N
=

Y

©

—~
Ut
=~

w
=

o W N

el
w N = O

0 N O O wWwN -

[y
o

11
12
13
14
15
16
17
18

for (i=0; i<M; i++) {
PRE(i);
for (j=0; j<m; j++)
F(i,3);
POST(i); }

for (i=0; i<M; i++) {
PRE(i);
for (jt=0; jt<(n-1)/tsize+l; jt++)
for (j=0; j<min(tsize,n-jt*tsize); j++)
F(i,j+jt*tsize);
POST(i); }

for (jt=0; jt<(n-1)/tsize+l; jt++)

for (i=0; i<M; i++) {
if (jt==0) /* first tile */
PRE(i);

for (j=0; j<min(tsize,n-jt*tsize); j++)
F(i,j+jt*tsize);

if (jt==(n-1)/tsize) /* last tile */
POST(i); }

for (jt=0; jt<(n-1)/tsize+1l; jt++) {

for (i=0; i<M; i++) {
if (jt==0) /* first tile */
PRE(i);

for (j=0; j<tsize; j++)
if (jt!=(n-1)/tsize || j<(n-1)%tsize+1)
F(i,j+jt*tsize);
if (jt==(n-1)/tsize) /* last tile */
POST(i); } }

for (jt=0; jt<(n-1)/tsize+l; jt++) {
for (i=0; i<M; i++) {
if (jt==0) /* first tile x/
PRE(i);
F(i,jt*tsize); /* no guard necessary */
if (jt!=(n-1)/tsize || 1<(n-1)%tsize+1)
F(i,1+jt*tsize);

if (jt!=(n-1)/tsize ||
tsize-1<(n-1)%tsize+1)
F(i,tsize-1+jt*tsize);
if (jt==(n-1)/tsize) /* last tile */
POST(i); } }

1<(n-1)%tsize+1;
2<(n-1)%tsize+1;

guard_1
guard_2

guard_last = tsize-1<(n-1)%tsize+1;
for (jt=0; jt<(n-1)/tsize+1l; jt++) {
first_tile = jt==0;
last_tile = jt==(n-1)/tsize;
for (i=0; i<M; i++) {
if (first_tile)
PRE(i);
F(i,jt*tsize); /* no guard necessary */
if (!last_tile || guard_1)
F(i,1+jt*tsize);

if (!last_tile || guard_last)
F(i,tsize-1+jt*tsize);

if (last_tile)
POST(i); } %

Figure 4: Hardware specific loop tiling.

data dependences prevent the loop interchange. For-
tunately this can be checked before starting the entire
transformation since step (2) is legal iff the original
loops are fully permutable [11]. This is the case if all
dependences carried by these loops have non-negative
distances. This condition can be tested during depen-
dence analysis. It means that no dependence on an
earlier iteration of the inner loop is allowed. In terms
of the generated pipelines, no backward dataflow be-
tween “processing elements” is allowed, but non-local
forward flow is.

The output of step (2) cannot directly be vector-
ized. Thus we devise additional hardware specific
transformations extending software loop-tiling. The
non-constant upper bound min(tsize,n — jt x tsize)
prevents unrolling the inner loop. Since tsize is con-
stant, the upper bound can never be larger, and we
substitute it by tsize. To maintain correctness, the
loop body F has to be guarded by 7 < n — jt x tsize
for the case that m — jt x tsize is the actual mini-
mum. This guard can only be wrong for the last tile
jt = (n —1)/tsize, so we can rewrite it to

Jjt# (n—1)/tsizeV j < (n — 1)%tsize + 1
where % denotes the modulo operator. Step (3) shows
this transformation.

Now the inner loop can be unrolled in step (4).
Unfortunately the guards have to be replicated, too.3
Implementing them in hardware would increase the
pipeline area considerably. Fortunately this is not nec-
essary, since their values do not depend on the index
variable i. We can assign flags outside the vector-
ized loop (in software) and pass them to the hard-
ware. Step (5) in Figure 4 shows this final transfor-
mation. Note that guard_1 to guard_last need only
be computed once since they do not change in the tile
loop, whereas first_tile and last_tile need to be
adjusted in the tile loop. The resulting program gen-
erates a DG adjusted to the given hardware resources.
An example will be given in Section 6.

Loop Merging Loop merging is another means of
increasing parallelism in loop bodies. Its scope is, how-
ever, rather limited since loops (or loop nests) must
traverse exactly the same index space to allow merg-
ing. Moreover, all dependences of the original loops
must be preserved in the merged loop. A simple ex-
ample is given in Figure 5. Merging is legal if F and G
only depend on p1[v] [h] and p2[v] [h] respectively.
However, a more realistic program where F and G are

50nly for j = 0, the condition is always true because every
tile performs at least one inner loop iteration. Hence it can be
omitted.

for instance linear image processing operators depend-
ing on a 3 x 3 neighborhood® has dependences which
prevent direct merging. This is because new p2 values
have to be computed for the entire neighborhood be-
fore a new p3 value can be computed. Fortunately this
dependence does not mean the loops cannot overlap;
they can if the second operator only starts when the
first has finished computing the first row. We develop
a new transformation which merges loops systemati-
cally even if there are local dependences like these.

for (v=1; v<vlen-2; v++) for (v=1; v<vlen-2; v++)
for (h=1; h<hlen-2; h++) for (h=1; h<hlen-2; h++)
p2[vl[h] = F(p1); /*A*/ {

for (v=1; v<vlen-2; v++) p2[vl[h] = F(pl); /*A*/
for (h=1; h<hlen-2; h++) p3[lvl[h] = G(p2); /*B*/
p3Lvl[h] = G(p2); /*Bx*/ }

Figure 5: Loop merging.

Our strategy is to delay the second loop body B
(with respect to the outermost loop) by d iterations
where d is large enough to preserve all dependences. d
is determined by directly merging the loops and check-
ing for anti-dependences carried by the outermost loop
from a statement in B to a statement in A. They in-
dicate a dependence in the original loops from iter-
ation 7 in A to iteration j in B with j < 4. This
dependence has been violated by merging. We deter-
mine d as the largest occurring anti-dependence dis-
tance. For instance, in Figure 5, a right-hand-side
access to p2[v-1][h] in B and a left-hand-side access
to p2[v] [h] in A establish an anti-dependence with
distance 1. If no anti-dependences exist, d = 0 and
direct merging is possible. However, if irregular anti-
dependences exist (no distance can be determined),
merging is not possible.

Let us consider the case d > 0. We can delay loop
body B by subtracting d from all occurrences of the
outer loop index in B. Additionally, the upper bound
of the outer loop has to be increased by d to exe-
cute the delayed iterations on B. A and B have to
be guarded so that the first d iterations are only ex-
ecuted by A and the last d iterations only by B. Fig-
ure 6 shows the result for the operators depending
on a 3 x 3 neighborhood. In this case d = 1; Fig-
ure 7 (a) shows the corresponding DG. We see that
the merged pipeline requires five vector inputs and
two outputs. This might slowdown the pipeline con-
siderably and make merging not worthwhile. It must
be checked by the final coprocessor selection in the
hardware/software partitioning phase. On the other

6That is, p2[v]l[h] = F(p1lv-1]1[h-1], pi[v-1][h], ...,
pllv+1]1[h], pillv+1][h+1]); and analogous for G.

hand, we can efficiently implement these vector inputs
and outputs on architectures with several concurrently
accessible memory banks by allocating p1, p2 and p3
to different banks. We discuss a detailed case study
on this in Section 6.

for (v=1; v < vlen-2+d; v++)
for (h=1; h < hlen-2; h++) {

if (v < vlen-2) /* A *x/
p2[vl[h] = F(pilv-1]1, pilv], pilv+1]);
if (v >= 1+d) /* B x/

p3lv-dl1[h] = G(p2[v-1-d], p2[v-d], p2[v+1i-dl); }

Figure 6: Generalized loop merging result.

pov-2 pev-g |
p2v-]] —— G p3[v-1] p2[v-2] = G ™ p3[v-2]
p2lv-1] = |
p{v-1] piv-1] |
p1{v] F p2[v] piv] — F ™ p2[v]
plv+1] plv+l] = |
(a) d=1 (b) d=2

Figure 7: Dataflow graphs for merged loop.

By slightly changing this transformation, it be-
comes suitable for multi-FPGA systems. Figure 7 (b)
shows the resulting DG if we “overdelay” B by one
(d = 2 in this example). In this case, the pipelines
of the original loop bodies become completely inde-
pendent and communicate only via memory. Hence
they can easily be allocated to separate FPGAs which
share access to a memory bank for array p2. In this
case we do not really merge the loops but determine
how two (or more) pipelines can overlap forming a
composite pipeline. For n pipelines, a speedup factor
up to n can be achieved compared to sequential execu-
tion. This would not be possible without the analysis
information. The minimal or overdelayed d-value is
chosen depending on the given architecture.

Other Loop Transformations Loop distribution
is the opposite of loop merging. It results in smaller
pipelines and thus can be applied if a loop body is
too large to fit on the given hardware. A loop can-
not be distributed if dependences of the original loop
are violated. As in loop tiling — which is a form
of loop distribution — pipeline feedback paths must
not be cut. Loop interchange swaps perfectly nested
loops. As discussed for loop tiling, it is legal if the
interchanged loops are fully permutable. This trans-

formation does not change the size of the generated
hardware, but can increase the length of the vector-
ized loop, thereby reducing the overhead for setting
up, filling and flushing the pipeline. Furthermore, it
can increase the locality of data accesses by changing
the index variable relevant for vectorization. This is
necessary for some memory access models. Finally,
strip mining (the first step of loop tiling) can reduce
local memory requirements if combined with array re-
gion analysis and applied to the vectorized loop.

We do not attempt to transform entire loop nests
as in [11] since it is difficult to define a strategy for
such a global transformation in the context of pipeline
vectorization. This is an area of future research. In
addition, our compiler provides feedback to the user to
allow manual improvements of the program. Chang-
ing an entire loop nest would make the compiler less
understandable and predictable, and would therefore
limit the ability of the user to improve the program.

Partitioning Extensions Automatic hardware/
software partitioning is extended by a recursive algo-
rithm which selects the transformed loop which results
in the largest feasible coprocessor. Alternatively, the
user selects the applied transformations. He can also
select parameters as the tile size. This is especially
useful if the area targets are not met and the dotted
design flow cycle in Figure 1 is activated.

5 Run-time Circuit Specialization

Constant propagation has long been used in soft-
ware and hardware compilers to optimize programs or
circuit designs. The advent of reconfigurable hard-
ware has opened the opportunity to propagate val-
ues which are not constant, thereby reducing a de-
sign’s delay and area [12]. Whenever a value changes,
the circuit is reconfigured. Rather than changing the
input of flexible operators, a design which exploits
run-time reconfiguration (RTR) uses smaller opera-
tors obtained by constant propagation. Hence more
of a program’s operators can be implemented on a
given hardware area. Because of the reconfiguration
overhead, only values changing infrequently should be
considered. We therefore only consider those variables
for value propagation which do not change inside the
loops to be vectorized. The hardware/software par-
titioning must evaluate the trade-off between design
improvement and reconfiguration overhead.

We distinguish two cases of RTR. First, the number
of propagated values is limited and the values them-

selves are known at compile time. Second, there is
an arbitrary number of values unknown at compile
time. We present methods for exploiting these cases
for pipeline vectorization next.

Limited Value Propagation If the number of pos-
sible values is limited, the hardware candidate can be
reproduced for all values. Consider the transforma-
tion of the example in Figure 8. The program is a
string pattern matcher where PM(x, i, pat) computes
a boolean value indicating if the input string x con-
tains the pattern pat at position i. The original ver-
sion uses the variable input pat in the FOR-loop. By
standard definition-use analysis, the conditional as-
signment to pat can be propagated to its use in the
FOR-loop (step (1) in Figure 8). The next step (2)
moves the evaluation of sel out of the FOR-loop. The
loop is duplicated, but each instance now has a con-
stant input to PM which results in smaller and faster
hardware. This transformation can easily be extended
for more than two values or more than one variable
being considered. It performs constant propagation
in software and effectively produces several indepen-
dent loops. Standard hardware generation is applica-
ble, and the design flow path I in Figure 1 is used.
As with the other loop transformations the original
program code is retained, since only the partitioning
phase decides if the propagated version will be used.

1 pat = (sel) 7 "new" : "not";
2 ...
3 for (i=0; i<N-2; i++)
4 y[i]l = PM(x, i, pat);
= 1 for (i=0; i<N-2; i++)
(1) 2 y[i]l = PM(x, i, ((sel) ? "new" : "not"));
1 if (sel)
2 for (i=0; i<N-2; i++)
= 3 y[il = PM(x,i,"neuw");
(2) 4 else
5 for (i=0; i<N-2; i++)
6 y[i]l = PM(x,i,"not");

Figure 8: Limited value propagation.

We can also generate independent loops for tiled
loops if the tiling is necessary due to limited hardware
resources, while the inner loop length (and therefore
the number of tiles) stays constant. Unrolling the tile
loop (which is the outermost loop considered) gener-
ates an independent vectorizable loop for every tile
with constant values for jt and for all guards (cf.
Figure 4). Note however that the tiling transforma-
tion should be repeated if RTR is considered since
value propagation reduces the area of a “processing

element”. Hence more elements fit on the available
hardware, and the tile size can be increased.

This case of RTR is suitable for chip-level and par-
tially reconfigurable systems. However, the trade-offs
will be different. If partial reconfiguration is not sup-
ported, the reconfiguration time will be large, regard-
less of how small the difference between two config-
urations is. So chip-level RTR will not be useful for
examples like the pattern matcher in Figure 8 where
only three comparators can be simplified. The gain
will be negligible compared with the reconfiguration
overhead.

On the other hand, for partially reconfigurable de-
vices the reconfiguration time is proportional to the
amount of logic altered. We use tools like ConfigDiff
[13] to determine the fastest partial configuration to
switch between two similar designs. Hence small
changes can be performed very quickly.

Arbitrary Value Propagation The second case
of run-time reconfiguration occurs if a variable can as-
sume any value at run-time. Then we cannot prepare
separate configurations for each of them at compile
time. Since it is prohibitive to run the entire design
tool suite for new values at run-time, this case cannot
be handled with FPGAs which can only be configured
completely. It is only suitable for partially reconfig-
urable FPGAs which allow to adapt an operator to any
constant input values within a few cycles at run-time.
Therefore a circuit “skeleton” is synthesized which re-
serves area for the largest possible constant input op-
erator. At run-time all these operators are adapted
to the given values. Doing this also requires a special
component library which provides the operator “skele-
tons” along with information on how to generate the
configuration instructions for a given input value and
a given position of the operator on the chip.

Generating such a circuit “skeleton” adds an al-
ternative implementation for a given hardware candi-
date, but the candidate loop itself remains unchanged.
Since the constant input operators have smaller delays
than their flexible counterparts, their pipelined ver-
sions might contain less registers. Therefore pipelin-
ing and area estimation but not DG generation
is repeated for these new implementations (path II
in Figure 1). As for limited value propagation, the
tile size for partially unrolled loops is increased. Thus
tiling should be repeated.

This is the most flexible approach to RTR. Unfortu-
nately, generating such designs has not yet been com-
pletely automatized. However, we present a manually
implemented case study in Section 6.

RTR Partitioning and Integration In RTR sys-
tems, the original or the specialized circuit must be
selected automatically (unless only the specialized cir-
cuit fits on the given hardware). There is a trade-off
between the reconfiguration time and the amount of
computation performed in one configuration. The re-
configuration time depends on the FPGA technology
(partial or complete reconfiguration) and on the recon-
figuration frequency. The latter depends on the overall
control flow of the program. Its analysis involves es-
timating loop and branch execution counts and must
be addressed in the context of the overall speedup es-
timation, cf. [2, 8]. Alternatively, an implementation
can be selected manually.

For partially reconfigurable systems, differential
netlists can be generated. This additional step re-
places complete configurations by differential configu-
rations which just change the differences between two
consecutive configurations. Thereby even the config-
uration times of unrelated coprocessors are reduced,
especially if they share the same control circuitry.

6 Implementation and Case Studies

We have implemented a simple version of the core
design flow in the Modula Pipeline Compiler prototype
[8]. Here we present case studies which demonstrate
the new techniques presented in this paper. The re-
sults have been produced with the assistance of a pro-
totype compiler based on the SUIF framework [14],
which provides C and Fortran frontends, and power-
ful loop analysis and transformation libraries.

String Pattern Matcher This case study evalu-
ates the benefits of loop tiling and run-time circuit spe-
cialization. We implement a string pattern matcher
on a PC-based Xilinx 6200DS board using a XC6216
FPGA. This program, shown in Figure 9, is the same
as that in Figure 8, but with arbitrary pattern lengths
and values. Therefore the inner loop cannot be un-
rolled. However, the inner loop can be vectorized and
the tiling transformation can be applied. The result-
ing pipeline circuit is a linear datapath of compara-
tors and registers. Both compile-time reconfigurable
(CTR) and run-time reconfigurable (RTR) versions
are possible. The CTR version contains generic com-
parators and the XC6200’s protected registers so that
pattern bytes can be loaded directly from the host,
whereas the specialized RTR version contains constant
comparators. The pipelines have been placed auto-
matically. The XC6216 is large enough to implement

for (i=0; i<N-P+1; i++) {
y[i]l = 1;
for (j = 0; j<P; j++)
if (pat[j]l !'= x[i+j])
y[il = 0; }

Figure 9: String pattern matcher program.

the Pipeline Control Unit (about 25% of the chip area)
and 54 CTR processing elements or 90 smaller, spe-
cialized RTR processing elements.

Soft- | Inner loop Tiled vect.

ware | vectorizat. | CTR | RTR
| Performance [| 24.8 | 125 [671 | 1,032 |
| Speedup || — | 0.5 | 27 | 42 |

Table 1: Analysis of string pattern matcher: raw perfor-
mance in 10° comparisons/s and speedup over software.

Table 1 shows the raw performance of the imple-
mentations, including speedups over software on a 300
MHz Pentium IT PC. All values are actual measure-
ments, except those related to inner loop vectorization
which are estimated. The values for the tiled imple-
mentations include the times for changing a tile, amor-
tized over 100,000 pipeline cycles. The pipeline cycle
is 80 ns for all circuits.”

However, the hardware performance data do not
include the overheads for initialising the FPGA con-
figuration and data transfer since their significance
depends on the overall number of tiles. The CTR
and RTR performance numbers only concern the case
when all processing elements are used. Figure 10
shows the overall execution times including configu-
ration and data transfer times, which are indicated by
two additional lines in the graph. Since the execution
time of a tiled implementation only depends on the
number of tiles, their graphs are step functions.

We conclude that loop tiling is a transformation
which enables a considerable speedup for string pat-
tern matching in the first place, and run-time reconfig-
uration further improves the performance by approx-
imately 50% for large patterns.

Morphological Skeletonization We now analyze
the morphological skeletonization algorithm from [10].
This example evaluates loop unrolling and general-
ized loop merging. Figure 11 shows the algorithm’s

"The Pipeline Control Unit can access one local memory
word in 40 ns. Therefore a pipeline cycle with two accesses
takes 80 ns on our system.

inner loop vectorization

80 —
software ,_/

70

60 |
CTRftiled ’—I

50

40

,_I ,—I RTR/tiled

30

20

execution time [ms]

data transfer

configuration
— T e R — —
0 50 100 150 200 250 300 350 400 450

pattern length

Figure 10: Execution times for string pattern matcher
for N = 100,000.

structure. IMAGE is initialized with the input image,
and SKELETON with an empty image. Then the opera-
tors erosion, dilation and difference/union are repeat-
edly performed on the data until IMAGE is completely
eroded. The dotted arrows indicate which operators’
outputs are used for the next repetition.

Difference =~

Figure 11: Morphological skeletonization.

The erosion operator consists of two nested inner
loops which iterate over a constant 5 x 5 template.
Pipelining the innermost loops would not be benefi-
cial since it only contains one operator computing the
minimum of two inputs. However, after completely
unrolling both inner loops, a pipeline containing 20
minimum operators can be generated. It can compute
one output pixel every pipeline cycle.

The upper part of Table 2 gives raw performance,
pipeline frequency and execution time data (for a
512 x 512 pixel image), as well as the total time for the
independent execution of all skeletonization operators,
based on 50 ns memory accesses. Dilation is similar to
erosion, but the combined difference and union opera-
tor loop is not very efficient, since it contains only two
operations and no inner loops to unroll. Note that the
frequency is higher for architectures with two memory
banks, since concurrent read and write accesses are
possible.

The performance can be improved by merging all
operators to produce one large pipeline. The last line

1 memory bank 2 memory banks
F | P] T F | P] T
Erosion 3.3 | 66.7 79 4.0 80.0 66
Dilation 3.3 | 66.7 79 4.0 80.0 66
Diff./Union || 5.0 | 10.0 52 10.0 20.0 26
Total 210 158

Merged [17700] 157 [33] 1400 [79]

Table 2: Analysis of skeletonization operators: pipeline
frequency F in MHz, raw performance P in 105 opera-
tions/s, execution time T for a 512 x 512 image in ms.

in Table 2 shows that the advantage of loop merging
is limited for one memory bank, since too many mem-
ory accesses have to be performed sequentially in one
cycle. For two banks, however, merging is effective. It
halves the execution time.

We have implemented in the Handel-C language the
merged pipeline on an ESL RC1000-PP board [15].
The design, running at 20 MHz, completes one skele-
tonization iteration for a 512 x 512 pixel image in 97
ms. Even including data transfer (8 ms for the image
data using packed DMA, amortized over 15 to 30 it-
erations), the hardware was measured to be 11 times
faster than software (1,045 ms on the 300 MHz PC).®

To summarize, loop unrolling is an enabling trans-
formation for the erosion and dilation loops, whereas
generalized loop merging further improves the entire
skeletonization program.

7 Conclusion

This paper presents a framework based on pipeline
vectorization for producing optimized pipelined cir-
cuits from high-level programs. The framework in-
cludes new optimizing transformations which cus-
tomize hardware coprocessors to meet specific FPGA
resource constraints and exploit run-time reconfigura-
tion. The case studies show that some transforma-
tions result in hardware acceleration which cannot be
achieved easily by hand. Others improve the perfor-
mance of coprocessors significantly. Our framework
can select, generate and integrate coprocessors auto-
matically while retaining the flexibility to allow users
to influence the synthesis process. Future work will
combine our fine-grain vectorization with coarse-grain,

8The RC1000-PP’s Xilinx XC4085XT, FPGA also has to be
configured once during program execution. Though we utilize
only 30%, the chip must be reconfigured completely. This takes
780 ms on our board (despite only 240 ms pure configuration
time). We expect much faster configuration for the Virtex chip.

task-level parallelism for large multi-FPGA systems.
Strategies to transform entire loop nests will also be
studied. We are interested in supporting various input
languages, particularly parallel ones, in order to opti-
mize existing parallel programs. Further extensions
will allow users to include manually designed hard-
ware blocks and to synthesize digit-serial designs.

References

[1] C.E. Kozyrakis and D.A. Patterson. A new direction
for computer architecture research. IEEE Computer,
Nov. 1998.

[2] M. Weinhardt. Compilation and pipeline synthesis for
reconfigurable architectures. In Reconfigurable Archi-
tectures Workshop RAW’97, 1997.

[3] M.B. Gokhale and J.M. Stone. NAPA C: com-
piling for a hybrid RISC/FPGA architecture. In
Proc. FCCM’98. IEEE Computer Society Press, 1998.

[4] D.C. Cronquist, P. Franklin, S.G. Berg and C. Ebel-
ing. Specifying and compiling applications for RaPiD.
In FCCM’98. IEEE Computer Society Press, 1998.

[6] E. Fabiani, D. Lavenier and L. Perraudeau. Loop par-
allelization on a reconfigurable coprocessor. In Proc.
WDTA’98: Workshop on Design, Test and Applica-
tions, Dubrovnik, Croatia, June 1998.

[6] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, 1996.

[7] C.E. Leiserson and J.B. Saxe. Optimizing syn-
chronous systems. Journal of VLSI and Computer
Systems, 1:41 67, 1983.

[8] M. Weinhardt. Ubersetzungsmethoden fir struk-
turprogrammierbare Rechner (Compilation techniques
for structurally programmable computers, in Ger-
man). PhD thesis, Universitiat Karlsruhe, July 1997.

[9] M. Weinhardt. Portable pipeline synthesis for
FCCMs. In Proc. FPL’96. Springer, 1996.

[10] H.R. Myler and A.R. Weeks. Computer Imaging
Recipes in C. P T R Prentice Hall, 1993.

[11] M.E. Wolf and M.S. Lam. A loop transformation the-
ory and an algorithm to maximize parallelism. IEEE
Trans. on Parallel and Distr. Systems, Oct. 1991.

[12] M.J. Wirthlin and B.L. Hutchings. Improving func-
tional density through run-time constant propagation.
In Proc. FPGA’97. ACM Press, February 1997.

[13] W. Luk, N. Shirazi and P.Y.K. Cheung. Compi-
lation tools for run-time reconfigurable designs. In
Proc. FCCM’97. IEEE Computer Society Press, 1997.

[14] The Stanford SUIF Compiler Group. Homepage
http://suif.stanford.edu.
[15] Embedded Solutions Limited. Homepage

http://www.embedded-solutions.ltd.uk.

