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Abstract

We present a simple model for specifying and op-
timising designs which contain elements that can be
reconfigured at run-time. In this model the control
mechanism for reconfiguration can be implemented in
many ways: by the user using multiplexers or other
logic blocks, or by FPGAs which support dynamic
partial reconfiguration. The model can be used for
encoding layout information and for assessing trade-
offs in circuit speed, design size, reconfiguration time,
complexity of reconfiguration controller and so on.
Our approach is illustrated by various reconfigurable
implementations for filtering and locating edges in im-
ages. The design tradeoffs of these implementations
are being evaluated on a PCI platform, which contains
a Xilinx 6216 device.

1 Introduction

FPGAs have become the favoured choice in imple-
menting ‘glue logic’, experimental systems and hard-
ware prototypes, because of advantages such as short
turnaround time, user reconfigurability and low de-
velopment costs. However the density and speed of
these devices are only a fraction of those of custom-
designed integrated circuits in similar technology, due
to area and time overheads for providing uncommitted
logic and routing resources, as well as the associated
control circuitry.

Many designers now realize that the key to over-
coming these drawbacks is to exploit fully the flexibil-
ity of FPGAs, especially those which can be rapidly
and partially reconfigured. The purpose is to multi-

plex operations in the time domain, so that a design
can maintain a high performance while minimising the
required amount of resources. We have used run-time
and partial reconfiguration of FPGAs in several com-
puter vision designs such as edge and corner detectors
[14]; other applications include coding and decoding
([2], [10]), neural networks ([6], [16]) and database
searching ([4], [11]).

Although hardware reconfiguration is becoming in-
creasingly popular, at present their deployment is still
largely an art involving tedious and error prone craft-
ing of low-level designs [6]. There have been very
few studies on specification and development methods
for designs with elements reconfiguring at run time,
and on assessing trade-offs in circuit speed, design
size, reconfiguration time, complexity of reconfigura-
tion controller and so on. The objective of our work
is to enhance the effective use of reconfiguration tech-
nology by addressing these issues. In particular, an ap-
propriate model is necessary to provide the basis for
techniques involved in producing efficient reconfig-
urable systems and in analysing their trade-offs.

An overview of the paper is as follows. Section 2
describes a simple model for specifying, visualising
and developing reconfigurable systems. Section 3
covers an architecture for two-dimensional image pro-
cessing, and reconfigurable implementations of this
architecture are developed in Section 4. Section 5 de-
scribes a PCI board which we use to evaluate recon-
figurable designs, and Section 6 shows how reconfig-
urable implementations can be mapped onto a Xilinx
6200 device [3] on this board. Concluding remarks are
presented in Section 7.



2 Modelling reconfiguration

An appropriate model is often the key to under-
standing a new technology and to exploiting it effec-
tively. The main difficulty in understanding reconfig-
uration is its dynamic nature. In the following, a sim-
ple model is proposed which uses a static network to
capture this dynamic behaviour.

The basic idea is straightforward. A block that can
be configured to behaved either as

�
or as � is de-

scribed by a network with
�

and � sandwiched be-
tween two control blocks � and ��� (Figure 1). � and� � are responsible for routing the data and results from
the external ports � and � to either

�
or � at the de-

sired instant; the choice can be determined by run-
time conditions. Possible control inputs to � and � �
are not shown in the figure.
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Figure 1 A static network modelling a design that
can behave either as

�
or as � , depending on the con-

trol blocks � and � � .
While some readers may feel that � behaves like a

demultiplexer and ��� behaves like a multiplexer, one
should note that, while these components may indeed
be possible implementations, � and � � are intended to
be abstract entities which need not be implementable.
The importance of these control blocks stem from two
simple and intuitive properties that they should pos-
sess in order to be useful for reasoning about designs:� Property I: a cascade of � � and � should behave

like a pair of wires such that, at any time, only
one of the wires is active (Figure 2);� Property II: if

�
and � are identical in Figure 1,

then the network collapses to one that just con-
tains

�
(Figure 3). This property corresponds to

the observation that a design reconfiguring to be
the same block all the time cannot be distinguish
from one which does not reconfigure.

Any implementations of � and � � that satisfy these
two properties will be acceptable.
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Figure 2 Property I: a cascade of � � and � should
behave like a pair of wires such that only one of the
wires is active at any time.
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Figure 3 Property II: a design reconfiguring to be the
same block all the time cannot be distinguished from
one which does not reconfigure.

How can these properties help in refining designs?
An important optimisation in developing reconfigur-
ing designs is to minimise the amount of reconfigu-
ration. This can be achieved by avoiding to recon-
figure components that are common to temporally-
consecutive configurations [6]. The two properties de-
scribed above can reduce the granularity of reconfig-
uring elements, in three steps:

1. identify common blocks in temporally- consecu-
tive configurations and partition them from other
components;

2. insert a pair of � and � � control blocks at each
partition using Property I;

3. collapse the common blocks into a single block
using Property II.

As an example, consider a simple design with three
blocks

�
, � and � which behaves either as

�
in se-

ries with � , or as
�

in series with � (Figure 4a). The
application of the above steps to move

�
outside the



C

P

P

C’C

P

C’

Q

R

P C C’

R

Q

C

R

Q

C’

P

(b)

(a)

(c)

Figure 4 (a) A design behaves either as
�

in series with � , or as
�

in series with � . The dotted line separates�
, which is common to both configurations, from � and � . (b) Property I is used to introduce a � and ��� pair

along the dotted line. (c) Property II is used to collapse the � -
�

- � � circuit into a single
�

block.

reconfigurable ‘sandwich’ is shown in Figure 4b and
Figure 4c.

The model presented informally here can be for-
malised in various ways. We are capturing this model
in the Ruby language [12] and the Rebecca system
[15], which provide a means to simulate designs and to
assist in their realisation; examples of using Ruby for
reasoning about reconfiguring designs can be found in
[8] and [12]. Other notations such as CSP [7] may also
be useful.

Let us summarise the features of our model:

� It provides a way of specifying reconfigurable
designs as a static network, with appropriate con-
trol blocks.

� It provides a methodology for developing recon-
figurable systems: a design with global reconfig-
uration is usually easier to understand but ineffi-

cient; the steps outlined above can vary the num-
ber of elements that required reconfiguring.� The three steps for altering the granularity of re-
configuring regions can be used to extract regis-
ters common to temporally-consecutive configu-
rations, so that register values for one configura-
tion can be used in the following configuration.� Our method may be used to guide the physi-
cal implementation of dynamically reconfigur-
ing designs, for instance when it is expressed
in the Ruby framework [5] which facilitates the
encoding of layout information. Readers who
are familiar with Ruby would recognise that our
transformations can be captured very concisely
in Ruby.� In the appropriate context, the control blocks
can be implemented as fan-outs, multiplexers or



merged with the processing logic; examples will
be given later.

3 Filtering and finding edges

To illustrate our approach, let us look at an architec-
ture which consists of a Gaussian filter Gf for remov-
ing noise in an image, and a Sobel edge detector for
locating vertical edges (by block Ved) and horizontal
edges (by block Hed) in the image (Figure 5). While
these components are not new, they are representative
of low-level image operations that can benefit from
hardware acceleration.

Hed

Gf +
Ved

Figure 5 A design consists of a Gaussian filter Gf, a
vertical edge detector Ved and a horizontal edge detec-
tor Hed.

The three blocks Gf, Ved and Hed can be realised as
convolvers with masks
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respectively. Let us consider two implementations
which involve run-time reconfiguration:

(1) a design for devices which support partial recon-
figuration,

(2) a design with the reconfiguration mechanism
largely included in the user’s circuit.

For each design we shall estimate the size and the
reconfiguration time when implemented on a Xilinx
6216 device. This device is of particular interest, be-
cause of its capability for rapid and partial run-time re-
configuration [3]. More details about this device will
be provided later.

4 Reconfiguring implementations

We now present optimised implementations for
Gaussian filtering and Sobel edge detection. The bi-
nomial filter structure [1] is used in implementing
Gaussian filtering; the core of this design contains six
adders and six registers (Figure 6).
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Figure 6 Implementation of the Gf block for Gaus-
sian filtering. The block ��� corresponds to an � -
stage delay line, where � is the width of the image.
Unlabelled blocks represent registers.
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Figure 7 Implementation of the Ved block for find-
ing vertical edges in an image.

We exploit the values of the coefficients in the con-
volver mask to avoid multiplication, and there are
only two shifters implementing multiply-by-two and
divide-by-16.

Figure 7 and Figure 8 show how the vertical and
horizontal edge detectors can be implemented in hard-
ware. The ABS block computes the absolute value.
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Figure 9 (a) A design that can be reconfigured to be the core element for Gf or for Ved. The dotted lines identify
the components that are common to both configurations. (b) A implementation of (a) with a smaller number of
reconfiguring elements, suitable for partially-reconfigurable FPGAs. (c) A variation of (b) which implements �
by a fan-out, � � by a multiplexer, and the reconfigurable adder/subtractor by a bit-level implementation.
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Figure 8 Implementation of the Hed block for find-
ing horizontal edges in an image.

Consider the case when we need to implement the
three blocks Gf, Ved and Hed sequentially by reconfig-
uration to minimise space. The size of the reconfigur-

ing block will be dictated by the largest configuration,
which in this case is likely to be Gf. Three reconfigu-
rations are involved: from Gf to Ved, from Ved to Hed
and from Hed to Gf.

Let us illustrate the techniques described in Sec-
tion 2 to produce optimised reconfigurable designs.
To reconfigure the Gf block to become the Ved block,
we need to transform:

(i) two adder-register pairs into a subtractor and two
registers, and

(ii) a divide-by-16 block into an ABS block.

Figure 9 shows the development of two optimised
implementations for (i). As explained in Section 2, we
first identify the common components in the two suc-
cessive configurations; this is indicated by the dotted
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Figure 10 BVH: an architecture containing circuitry (such as MUX) to support reconfiguring itself to become
Gf, Ved or Hed.

lines in Figure 9(a). Next, we use Property I and Prop-
erty II to reduce the size of the reconfiguring region –
the result is shown in Figure 9(b). This design can be
implemented effectively on devices capable of partial
reconfiguration, provided that registers can retain their
state while other parts of the circuit are undergoing re-
configuration. Figure 9(b) shows that two local recon-
figurations are involved: the first adder is transformed
into wires, and the second adder is transformed into a
subtractor.

An alternative implementation, shown
in Figure 9(c), can be derived by implementing � by
a fan-out and � � by a multiplexer MUX – one should
check that these control block implementations sup-
port Property I and Property II within their operating
environment. The other reconfiguring component, the
reconfigurable adder/subtractor, is implemented by an
array of Controlled Add/Subtract cells ([9], page 43).
The complete design, which we shall call a BVHCell,
may be larger than the one shown in Figure 9(b) be-
cause of the extra hardware for multiplexing, but it
should have a much shorter reconfiguration time and
a simpler reconfiguration controller because one only
needs to reconfigure the control inputs of the MUX and
the adder/subtractor block. These kinds of tradeoffs
for the Xilinx 6200 device will be illustrated in Sec-
tion 6.

Figure 10 shows the use of BVHCells in an archi-
tecture, called BVH, which can be reconfigured to be-
have either as Gf, or as Ved, or as Hed. Because the
reconfiguration control is now part of the design, this

implementation can be mapped efficiently on devices
without support for partial reconfiguration.

5 PCI board architecture

The viability of our designs is demonstrated using
a PCI board supplied by Xilinx Development Corpo-
ration, which contains a Xilinx 6216 device. As ex-
plained earlier, our implementation efforts have been
focused on Xilinx 6200 devices, because of their abil-
ity for rapid and partial reconfiguration. Figure 11
shows the primary components of the board architec-
ture. There are four 8-bit wide memories (SRAMs),
and data flow is controlled by bus switches and mul-
tiplexer chips. A Xilinx 4013E FPGA is used as the
PCI bus interface.

The board architecture allows the Xilinx 6216 to
be reconfigured through the PCI interface during run-
time. The PCI interface provides direct access from
the host PC to logic cells within the user’s circuit. The
output of any cell’s function unit can be read through
the PCI interface, and the flip-flop within any cell can
be written to. We find these facilities very useful for
testing and evaluating designs, especially those in-
volving run-time reconfiguration.

The memory for the Xilinx 6216 is organised into
two banks. Each bank of memory can be accessed
from either of the two separate address busses, and
each of the four memories can be controlled individu-
ally. This memory architecture allows multiple modes
of operation to be set-up by selecting multiplexers and
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Figure 11 A PCI board for demonstrating reconfigurable designs.

bus switches in the desired manner. The delay lines in
our designs (see for example Figure 6) can be imple-
mented efficiently using these memories.

A 44-bit external datapath is available to the
XC6216 Input Output Blocks. This datapath can be
used to attach daughterboards for real-time video in-
put.

6 Mapping onto Xilinx 6200 devices

A Xilinx 6216 device contains an array of 64 by 64
cells, each of which can be configured either as a two-
input logic function block, or as a multiplexer, or as a

latch. There is a hierarchical routing network for con-
necting cells.

We have studied two ways of realising the image
processing design described in Section 4. At the time
of writing we have completed the detailed implemen-
tation and test of a design based on BVHCell (Fig-
ure 9(c)), an 8-bit version of which is shown in Fig-
ure 12. Six 6216 cells, arranged as a two by three
block, can be used to implement a full adder with a
latch, or a subtractor with two latches; the same func-
tions would have taken up at least 30% more resources
in the CAL technology [1]. Our arithmetic building
blocks involve only nearest neighbour connections,



Design Number of 6216 cells % of 6216 Savings over BVH

BVH 785 19.2% 0%
Gf 628 15.3% 20%
Ved 571 13.9% 27%
Hed 521 12.7% 34%

Table 1 Size statistics.

although hierarchical routing is occasionally used in
overcoming routing congestion in the interconnecting
cells.

ADDSUB9

REG8 MUX2_9

ADD8

Figure 12 Implementation of BVHCell on a Xilinx
6216 device.

The complete BVH design (Figure 10) takes up 785
cells, around 19.2% of a Xilinx 6216 device. No extra
time is required for reconfiguring the design from the
filter mode to the edge detector modes and vice versa,
since the multiplexers and the adder/subtractor which
require reconfiguration can be set or reset in the same
cycle as input data. The reconfiguration controller can
be kept simple because it only needs to write to a few

components at the appropriate time. If routing conges-
tion is a problem, the memory-mapped input/output
feature of the Xilinx 6200 FPGA [3] can be used in-
stead of routing the control signals to external pins.

An alternative way of implementing the image pro-
cessing design described in Section 4 is to use indi-
vidually optimised configurations for Gf, Ved and Hed
rather than reconfiguring the BVH architecture. For
this method, we estimate that it will take at least 7 cy-
cles to reconfigure from Gf to Ved, 6 cycles from Ved
to Hed, and 8 cycles from Hed to Gf. As explained
earlier, the size of this design will be given by the Gf
block, the largest of the three configurations. A recon-
figuration controller capable of reconfiguring the ap-
propriate cells at the appropriate time is required, and
power dissipation may also be larger than the imple-
mentation based on BVH since the size of the recon-
figuring region is larger.

Table 1 summarises the size of various blocks. We
conclude that:

(i) a design which does not use BVHCell is 20%
smaller and has a shorter critical path than one
which does, but

(ii) a design based on BVHCell is estimated to save
more than 20 cycles in reconfiguration time, re-
quires a simpler reconfiguration controller and
may consume less power. Also only one opti-
mised configuration needs to be developed in-
stead of three.

It is interesting to note that Xilinx 6200 devices in-
clude support for efficient implementation of both of



these design styles. First, although Design (i) takes
longer to reconfigure than Design (ii), its reconfigu-
ration time is still independent of the datapath size,
thanks to the ‘wildcard’ registers in these devices [3].
Second, the extra multiplexing circuitry in Design (ii)
can be implemented efficiently, since a multiplexer
with two data inputs takes up a single 6200 cell. Fi-
nally, the memory-mapped input/output feature of the
Xilinx 6200 device can be used to avoid the need
for routing reconfiguration control signals to external
pins. Both Design (i) and Design (ii) should run faster
than the speed required for real-time video, and the
performance can be improved further by including ad-
ditional pipeline stages in the designs.

7 Concluding remarks

Rapid run-time reconfiguration offers the possibil-
ity of implementing architectures flexibly and with
high performance, while minimising the resources re-
quired. We have presented a simple model for speci-
fying, visualising and developing designs which con-
tain elements that can be reconfigured in run-time. An
architecture for image processing is used to illustrate
the application of this model; the design tradeoffs of
the resulting reconfigurable implementations are eval-
uated using Xilinx 6200 devices.

Clearly the work described here represents only the
beginning of an exciting project. Further research in-
cludes (i) extending our model and its applications,
for instance by including temporal information in the
model, (ii) studying the parametrisation of macros
which support reconfiguration, (iii) the development
of techniques and tools for automatically varying the
granularity of reconfiguring regions and estimating
the resulting impact on metrics such as size, perfor-
mance and complexity of reconfiguration controller,
(iv) investigating how such techniques can be used in
conjunction with other optimisation methods such as
serialisation [12], and (v) how they can benefit com-
pilers for declarative [15] and imperative languages
[13].
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