
In Proc. IEEE Workshop on FPGAs for Custom Computing Machines, D.A. Buell and K.L. Pocek (eds.), IEEE Computer Society Press, 1994.

Hardware-Software Codesign of Multidimensional Programs

Wayne Luk, Teddy Wu and Ian Page
Programming Research Group,

Oxford University Computing Laboratory,
11 Keble Road, Oxford, England OX1 3QD

Abstract

We present a method for parametrised partitioning of
multidimensional programs for acceleration using a hard-
ware coprocessor. The method involves a divide-and-
conquer structure, with the “divide” and “merge” phases
carried out by a general-purpose processor while the “con-
quer” phase is handled by application-specific hardware.
The partitioning strategy has been captured in a simple
functional language, and we have automated the produc-
tion of partitioned programs in this language. Our ap-
proach has been tested on an FPGA-based system using a
number of computer vision algorithms, including the Canny
edge detector, and the performance is compared against ex-
ecuting the programs on the PC host.

1 Introduction

The objective of our research on hardware-software
codesign is to develop systems containing both hardware
and software components with higher quality, in shorter
time, and at lower cost than existing ones. Recent advances
in programmable logic, particularly Field-Programmable
Gate Arrays (FPGAs), offer a rapid route for building re-
configurable hardware accelerators. It is clear that a cost-
effective implementation can be obtained by combining
fast but expensive hardware with slow but cheap micropro-
cessors; in particular, methods for appropriate partitioning
of computations for coordinated execution in hardware and
in software are essential.

This paper describes a strategy for partitioning programs
operating on multidimensional arrays of data. The aim is to
convert such programs by correctness-preserving transfor-
mations into parametrised descriptions, which can then be
used to generate efficient implementations with a variety
of hardware-software trade-offs. Our method may be ap-
plied to overcome physical limitations – such as having an
insufficient amount of memory – in hardware accelerators.
It partitions an program into three steps: “divide”, “con-

quer” and “merge”. A general-purpose processor, usually
proficient in executing relatively complex, data-dependent
and variable size operations, can be used for dividing the
input data into smaller pieces and for merging the results
of processing the pieces. Purpose-built hardware is used
for processing the partitioned data, often in a systolic mode
[7].

Many algorithms can be expressed clearly and concisely
in a functional language; functional programs are often
used as executable specifications and in rapid prototyping.
Moreover, simple equational transformations can be used
to reason about functional programs. Our partitioning strat-
egy has been captured in a functional notation adopted by
Bird and Wadler [2]. In this notation, applying � to an ar-
gument � – which can itself be a function – will be denoted
by � � ; function application is left associative, so � �����
= ��� � �	�
����� . The infix operator
 denotes function com-
position: ����
 � ��������� � �	� . It is the least binding among
binary operators, so ��
 � � = ��
�� � �	� .

It is straightforward to state the correctness requirement
for a partitioning strategy in a functional notation. Let �
be the program to be partitioned. Our partitioning strategy,
given by �������������! �"#� , is a composition of three functions$ �&%'� $)(, *� +"-,/. (� and 0 (� � (,

�	�+���1���1�! +"2� � 0 (� � (
�*� +"-,/. (�3��
 $ �&%�� $)(

Later on we shall show that under certain conditions, this
definition of �	�+���1���1�! +" satisfies the correctness requirement
that

�������������! �"4� � �
In other words, the partitioning strategy does not affect the
behaviour of � .

Our partitioning strategy has been implemented
in a functional programming environment known
as Gofer [5], which can be obtained by anony-
mous ftp from nebula.cs.yale.edu in directory
pub/haskell/gofer. The Gofer language is very sim-
ilar to the notation that we use, although there are minor

1

syntactic differences. It should not be difficult to implement
our method in other functional languages such as Orwell,
Miranda or SML.

A number of partitioned programs, including sorting and
computer vision routines, have been tested on an FPGA-
based hardware accelerator known as CHS2x4 [1]. The
CHS2x4 is a full-length IBM AT card which communi-
cates with the host computer through the AT bus. The board
consists of three subsystems: the Computation Subsystem
which holds eight CAL 1024 chips [6] arranged in a two by
four array, the Memory Subsystem which contains 256 kilo-
bytes of SRAM, and the Interface and Control Subsystem
which deals with the communication between the board and
its host machine. At present data transfer between the CAL
chips and the on-board memory is restricted to sequential
input and output over a byte-wide channel, controlled by
invoking C-library routines provided by the manufacturer.
Each CAL chip is an FPGA consisting of 32 by 32 cells.
Each cell has a one-bit input port and a one-bit output port
on each of its four sides. An input port can be programmed
to connect to one or more output ports, or to a function unit
which can be programmed to behave either as a two-input
combinational logic gate or as a latch.

In the following sections we present the partitioning
strategy, and show how it can be adopted in developing
multidimensional programs that can be speeded up by the
CHS2x4.

2 Partitioning Strategy

As explained above, a simple approach has been adopted
for partitioning programs: a slow engine is used for ar-
ranging data into fixed-size blocks that can be handled by
a fast but resource-limited engine. Usually the former cor-
responds to a general-purpose processor, while the latter
is implemented by application-specific hardware. Possi-
ble applications of this paradigm include computer vision
and medical image processing, where the amount of data
is often too large for the hardware coprocessor to handle at
once.

Although the “divide” and “merge” phases for some
computations involve simply partitioning the input data for
the dedicated hardware and concatenating the results, this
may not always be the case. For instance, in convolution-
based algorithms it is usually necessary to replicate the pix-
els around the partition boundary in neighbouring blocks.
This is taken into account by our partitioning method.

Let � be the function to be partitioned; � is required
to satisfy certain conditions to be described later in this
paper. To capture hardware constraints for implementing
an " -dimensional program, we use " constants, 0������	5 with

1 67�867" , to denote for each dimension the maximum
number of elements in a partition. The function �������������! �"
takes � as argument and returns the partitioned operation. It
is defined in terms of three functions,

$ �9%'� $:(, *; �"<,=. (� and
0 (� � (, each corresponding to one step in the partitioned
program:

�	�+���1���1�! +"2� � 0 (� � (
�*� +"-,/. (�3��
 $ �&%�� $)(

Note that
$ �9%'� $:(, *� +"<,=. (� , 0 (� � (and the conditions which

� must satisfy are specific to the number of dimensions of
the program, although the basic principle behind the parti-
tioning strategy is the same for programs of any dimension.
Let us begin with the simple case of one-dimensional pro-
grams, and later extend the strategy to programs for higher
dimensions.

3 Partitioning One-Dimensional Programs

A one-dimensional array of data will be represented by
a list, the elements of which will be enclosed by square
brackets. # �'> denotes the number of elements in list ��> .
List construction is signified by a colon, so

� : ?&@:A+*+A $�B � ?&�	A+@:AC*�A $�B
� � : �D@ : �D* : � $: ? B ���E�

The (F/F) operator appends two lists, for example

?&�GAC@ B F/FH?&*+A $ A (�B � ?&�	A+@:AC*�A $ A (DB

Two functions �I�CJ (and
$ �; D� will be used in describ-

ing our partitioning method. Each of them takes a non-
negative integer " and a list ��> as arguments. The value
of ���I�CJ ("���>'� is the initial segment of ��> of length " , and
the value of � $ �� ���"K�'>'� is the list which remains when the
first " elements are removed: so

�I�CJ (3 ?&�	A+@:AC*�A $ A (DB � ?��GA+@)A+* B$ �; D� 3 ?&�	A+@:AC*�A $ A (DB � ? $ A (DB

Clearly for 0 6L�M6 # �'> ,
�I�CJ (�N��>OF/F $ �; ��P�N�'>Q� �'>

During the initial “divide” step, a list of data will be
partitioned into a list of shorter lists of equal length, except
possibly the last one. For some algorithms such as convo-
lution, it is necessary to replicate the boundary elements; in
other words, we need to include in each sub-array a num-
ber of elements in neighbouring sub-arrays. The number of
replicated elements in successive partitions is given by the
constant 0��+� � �&" , and the maximum number of elements in

2

each partition will be denoted by 0������ ; for " -dimensional
programs these constants will become 0R��� � �&"S5 and 0R�C�;�G5
for 1 6T�36L" . Let 0R�C�;�-U = 0�������VW0R��� � �&" : then

$ �&%�� $)(
is implemented by the function

$ �9%'� $:(1 in one dimension,

$ �&%'� $)(1 ��>
�X�E��J (0R�C�;�P��> : � $ �&%�� $)(1
 $ �; D��0������ U �M��>)A

if # ��>ZYL0R�C�;�
�[?\�'> B A otherwise

This recursive definition indicates that provided that # ��>]Y
0�������Y^0��+� � �&" , the first 0������ elements of ��> will form
the first sublist of the partitioned list, and the remaining
sublists can be obtained by applying

$ �&%'� $)(1 again to a
version of �'> shortened by dropping the first 0������-U ele-
ments. For instance, given 0R�C�;�W� 3 and 0��+� � �&"�� 1,$ �&%'� $)(1 ? 0 A 1 A 2 A 3 A 4 A 5B �^?�? 0 A 1 A 2 B A/? 2 A 3 A 4 B A/? 4 A 5 B_B .

To process each sublist in the list produced by
$ �9%'� $:(1,

*� +"-,/. (� is given by

*; �"<,=. (�`� 0����
where 0R�D� applies the function � to each element of a list:
0���� � ?\� 0 A=� 1 A/� 2 B �L? � � 0 A � � 1 A � � 2 B .

Merging the list of results from *� +"<,=. (� is performed by
the function 0 (� � (1 which is defined in terms of a binary
operator a :

0 (� � (1 � �� +b $ � 1 ��ac�
where �' �b $ � 1 is given by

�' �b $ � 1 ��ac�d?\� 0 A/� 1 A . . . A/��e B
�X� 0 af�E� 1 af
'
�
��E��eSg 1 ah��e��i
�
�
 �

We can now specify what it means for a partitioning
strategy to be correct: the same result would be obtained
whether or not partitioning is involved. Given the above
definitions, it can be shown by induction that

����>j� �	�+���1���1�! +" 1 ���'> (1)

provided that a satisfies

����>j� �k�����I�CJ (0������P��>'�E�
af�k��� $ �; ��l0������ U ��>'�E� (2)

Since 0R�C�;�-U = 0�������VH0R��� � �&" , Equation 2 shows that if
we divide a list into two with 0��+� � �9" elements duplicated at
the point of division, combining the results using a should
give the same value as that obtained without partitioning.
Different a ’s correspond to different ways of combining
the partial results.

A simple example which satisfies Equation 2 is ���m� $,
an�oF/F and 0��+� � �9"p� 0, where � $ is the identity func-
tion given by � $ �W�q� . Another example is �h�q>= ���� ,
aH�^0 (� � (b\��>�� and 0R��� � �&"�� 0, where >' +��� sorts a list of
elements into ascending order, and 0 (� � (b\��>�� merges two
sorted lists to form a sorted list. This method for partition-
ing sorters has been implemented on the CHS2x4 system
[9]. A more complicated example will be considered next.

4 One-Dimensional Convolution

Consider first the function �D�r�ts����!u , which takes a binary
operator v and applies it to corresponding elements of two
lists which may have different number of elements:

�D�r�ts����!uZvw?_� 0 A=� 1 A=� 2 B ?�� 0 A�� 1 A�� 2 A�� 3 A�� 4 B
� ?\� 0 vZ� 0 A3� 1 vH� 1 A3� 2 vH� 2 B

The length of the result is the same as the length of the
shorter of the two arguments. Some readers may recognise
that this definition of �/�x�ts����yu is the same as that in Gofer,
and is slightly different from �/�x�<zM���!u in [2].

One-dimensional convolution can be described by

*� +"	%+ +b\% (1 z�>
��>Q� 0���� � ? 0 {�{\� # �'>3V # z�>'� B (3)

where
� �[� �k�' �b $ � 1 ��vc�d{:�D�r�ts����!u��1|]���dz�>
� $ �; ��l�N��>'�

Note that ? 0 {�{�0 B corresponds to the list ? 0 A 1 A . . . A�0 B . An
experienced functional programmer may recast *� �"	%C �b_% (1
into a more succinct form using list comprehension [2], but
we shall not go into the details here.

The correctness of the definition given by Equation 3 can
be demonstrated using symbolic execution. Let us define

�Zv}� � “(” F=F8�]F/F “ F ” F/F��SF/F “)”

�Z|}� � “(” F=F8�]F/F “ ~ ” F/F��SF/F “)”

and

z�>Q� ? “ z 0”,“ z 1”,“ z 2”
B A

��>�� ? “ � 0”,“ � 1”,“ � 2”,“ � 3”,“ � 4”,“ � 5”,“ � 6”,“ � 7”
B {

It can then be shown by hand or by the Gofer interpreter
that

*� �"	%C �b_% (1 z�>2�'>
� ? “ ���;z 0 ~l� 0 �NFh�E��z 1 ~l� 1 �NFh��z 2 ~�� 2 ���E� ” A

“ �E��z 0 ~l� 1 �NFh���;z 1 ~�� 2 �iFZ��z 2 ~l� 3 �E��� ” A
“ �E��z 0 ~l� 2 �NFh���;z 1 ~�� 3 �iFZ��z 2 ~l� 4 �E��� ” A
“ �E��z 0 ~l� 3 �NFh���;z 1 ~�� 4 �iFZ��z 2 ~l� 5 �E��� ” A
“ �E��z 0 ~l� 4 �NFh���;z 1 ~�� 5 �iFZ��z 2 ~l� 6 �E��� ” A
“ �E��z 0 ~l� 5 �NFh���;z 1 ~�� 6 �iFZ��z 2 ~l� 7 �E��� ” B

3

The above is an example of symbolic simulation. The
corresponding numerical evaluation can be obtained by re-
placing symbolic operations and symbolic data by numeri-
cal ones.

From the properties of functions such as �E��J (, $ �� ��
and �/�x�ds����yu , it can be shown that *� +"	%+ +b\% (1 z�> satisfies
Equation 2 with a���F/F and 0R��� � �&"W��� # z�>'�dV 1. In
other words,

*; �"	%+ +b_% (1 z�>4��>
��*� �"	%C �b_% (1 z�>2�E�E��J (0R�C�;�P��>'�

F/F�*� +"	%+ +b\% (1 z�>
� $ �; D��0������-Ui�'>'�
Hence by Equation 1,

� +"	%+ +b\% (1 z�>4��>Q� �	�+���1���1�! +" 1 �D� �"	%C �b_% (1 z�>'����>){

5 Partitioning Multidimensional Programs

An " -dimensional array will be represented by a list with
" nested levels. Given that � 0 �^� $ and � 5 � �
 �
 . . .
 �
(� times) and u $ ��� : ��>'� = � , the definitions of

$ �&%�� $)(,
*� +"-,/. (� and 0 (� � (can be generalised to deal with nested
lists:$ �&%�� $:(

�[0R�D� eSg 1 $ �&%'� $)(e#
 . . .
)0���� $ �&%�� $:(2
 $ �9%'� $:(1
*� +"<,=. (�
�[0R�D� e

0 (� � (
�[0 (� � (1
+0R�D�l0 (� � (2
 . . .
)0���� e�g 1 0 (� � (e

Also for 1 6L��6L" , let 0������<U5 = 0������	5NV�0��+� � �&"S5 , and
$ �&%�� $)(5 ��>
�[0���� 5!g 1 ���I�CJ (0������ 5 �M�'>

: � $ �9%'� $:(5
:0R�D� 5yg 1 � $ �; ��P0������<U5 ���M�'>)A
if # �Eu $ 5!g 1 ��>'�dYL0R�C�;� 5

�[?\��> B A otherwise

and there exist " binary operators a 1, a 2, .., a�e such that
for 1 6���6L" ,

0 (� � (5
���� +b $ � 1 ���/�x�ts����!u����/�x�ts����!u . . . �E�/�x�ts����yu� �'� �

5yg 1 ���I�1�3�
��a�5���� . . . �E�

Given that � is the program to be partitioned, then these
binary operators should satisfy

����>Q� �E�/�x�ds����yu��E�/�x�ds����yu . . . ���/�x�ts����!u� ��� �
5yg 1 �&�1�1�3�

��a�51�E� . . . ���

�k���;0���� 5 ���I�CJ (0R�C�;�G5��M�'>'���
�k���;0���� 5 � $ �� ��P0R�C�;� U5 �M�'>'��� (4)

for 1 6���6L" .
A Gofer program has been written which can generate

the appropriate Gofer definitions of
$ �9%'� $:(, *� +"<,=. (� and

0 (� � (for a given number of dimensions. For instance, the
following definitions are produced for "�� 3:

$ �9%'� $:(
���;0�����
:0R�D��� $ �&%�� $:(3
)0���� $ �&%�� $)(2
 $ �&%�� $:(1

*� +"<,=. (�
��0R�D��
+0����P
+0R�D�

0 (� � (
��0 (� � (1
)0����P0 (� � (2
��;0����P
+0R�D���d0 (� � (3

The definitions of
$ �&%'� $)(1 and 0 (� � (1 have been given in

a Section 3. The definitions of
$ �&%�� $:(2 and 0 (� � (2 are

similar to those of
$ �&%�� $)(3 and 0 (� � (3, and will not be

included below.
$ �&%�� $:(3 ��>
�X�;0�����
:0R�D���M�E�E��J (0R�C�;� 3 ����>

: � $ �&%�� $)(3
��;0�����
:0R�D���M� $ �; D��0������<U3 �E�M��>)A
if # �E��u $
+u $ �M�'>'�dYL0������ 3

�[?_��> B A otherwise

0 (� � (3
���' +b $ � 1 ���D�r�ts����!u����D�r�ts����!u8��a 3 �E���

The next section outlines the application of our partition-
ing strategy to two-dimensional programs for processing
images on computer.

6 Implementing Partitioned Programs

Many hardware accelerators have fast local memories,
but sometimes these memories may not be large enough to
hold all the data. For instance, the memory available on
the basic CHS2x4 system restricts the image size to around
19600 pixels in our implementation of the Sobel edge de-
tector (see Section 7). This limitation can be overcome by
our partitioning strategy.

To obtain an efficient implementation and to be able
to use the libraries provided by the manufacturer, the parti-
tioning strategy for two-dimensional arrays is implemented
in C. In order to assist converting a program in C to its par-
titioned version, a C function partition has been devel-
oped. The following fragments of an imperative program
were produced by hand, and we are currently exploring au-
tomated methods for generating them from descriptions in
the functional notation adopted in the preceding sections.

Since C allows global variables, in our implementation
we pass the position of the top left corner and the size
of the sub-images as parameters in function calls instead

4

of passing sub-images as parameters. This method avoids
copying sub-images and increases efficiency, since divid-
ing an image into sub-images becomes calculations of the
positions of the top left corner and the size of sub-images.
It follows that the data structure for an image may include
the following fields (Figure 1): top and left, the � and
� co-ordinates of the top left-hand corner of the sub-image;
ht and wd, the height and width of the sub-image; and
buf, the memory location holding the first pixel of the im-
age. Other fields that are required for a particular program
and or for a specific image storage format, such as the num-
ber of pixels in an image, may also be included in the data
structure.

typedef struct
{ int top, left;

int ht, wd;
pixel *_huge *buf;

} image;

Figure 1 Data structure for storing images.

The function partition requires six parameters:
process, the name of the function (corresponds to f in
the preceding section) for processing the image; im, the
image to be processed; max ht, the maximum height of a
sub-image; max wd, the maximum width of a sub-image;
and margin ht and margin wd, which correspond to
margin1 and margin2 in the preceding section.

Calculating the positions of the top left corner, the width
and the height of sub-images can be performed by a nested
for-loop (Figure 2); although there are some optimisations,
on the whole the code is written for clarity rather than for
efficiency. Since the three stages of the partitioning strategy
will be executed sequentially on the CHS2x4, it is more ef-
ficient to include the conquer step in the same nested loop as
divide, so the line “(*process) (&subim);” corre-
sponds to conquer f . This applies the function process
to each sub-image. Merging is included in process,
because different programs may require different ways of
merging the results. If the merging is performed by F/F , par-
tial results can be written into the memory block specified
by the top left corner, width and height of the sub-image.

To use partition properly, the following procedure
is suggested. Starting from a C program that implements
the function f to be partitioned as a C function process,

1. Find the appropriate values for the parameters
max ht, max wd, margin ht and margin wd.

2. Modify the functions for processing an image to op-
erate on the proper sub-images.

partition (void
(*process) (image *),
image *im, /* pointer to an image */
int max_ht, int max_wd,
int margin_ht, int margin_wd)

{
image subim;
int max_ht’ = max_ht - margin_ht;
int max_wd’ = max_wd - margin_wd;

subim.buf = im->buf;
for (subim.top = 0;

subim.top + max_ht’ < im->ht;
subim.top += max_ht’)

{
subim.ht = max_ht;
/* insert code for */
/* the inner loop here */

}
subim.ht = im->ht - subim.top;
/* insert code for the */
/* inner loop here again */

}

The code for the inner loop is given by

for (subim.left = 0;
subim.left + max_wd’ < im->wd;
subim.left += max_wd’)

{
subim.wd = max_wd;
subim.size = subim.ht * subim.wd;
(*process) (&subim);

}
subim.wd = im->wd - subim.left;
subim.size = subim.ht * subim.wd;
(*process) (&subim);

Figure 2 An example of partitioning in C.

3. Look for a method for combining the results from sub-
images. The eligibility of the method can be checked
by finding a binary operator a for merging the parti-
tioned results in each dimension such that Equation 4
is satisfied.

4. Modify the program to perform the selected merging
method.

5. Replace the function call to process the image by a
call to partition.

To benefit from the use of the hardware coprocessor, the
speed loss due to overhead in partitioning should be smaller
than the speed gained by using the coprocessor. Moreover,

5

the amount of overhead should not increase faster than the
time required for processing the image as the image size
increases. We can analyse the conditions for obtaining an
efficient partitioning as follows.

Let N2 be the number of pixels of an image. The pro-
cessing time is at least O(N2). Overhead is introduced in
each step of the partitioned process. The time for dividing
the image is O(N2), as can be seen from the for-loops in
partition.

The amount of overhead in merging the results depends
on the merging operator a . It is obvious that this should
be no worse than O(N2) for the partitioning strategy to be
efficient. The total overhead will then be O(N2), which
means that it is of the same order as, or shorter than, the
time required for processing the image.

Further improvement in speed can be obtained if the di-
vide and merge steps can be executed in parallel with the
conquer step. This is not possible with the CHS2x4 sys-
tem, but one can develop a hardware platform with several
banks of local memories accessible by the general-purpose
processor, such that the hardware can operate on data in
one of the memory banks while the software is dividing
the data and combining the results in other memory banks.
The optimal partitioning can be obtained when the hard-
ware and the software processes complete the execution in
a similar length of time.

7 The Sobel Edge Detector

Using the strategy described in previous sections, we
have partitioned two programs for detecting edges in im-
ages, one by Sobel [7] and the other by Canny [3]. The
size of a partition is determined by the amount of memory
available in our CHS2x4 system. The result of applying the
Sobel edge detector will be given in the rest of this section,
while the Canny edge detector will be discussed later.

The Sobel edge detector involves a two-dimensional
convolution using the masks

?�?\V 1 A=V 2 A=V 1
B A'? 0 A 0 A 0 B A=? 1 A 2 A 1 B_B

and
?�?\V 1 A 0 A 1 B A�?xV 2 A 0 A 2 B A�?xV 1 A 0 A 1 B_B

to produce the image gradient in the horizontal and in the
vertical direction. The squares of the two gradients are then
summed together and compared against a threshold. Our
implementation consists of adders, subtractors, registers,
multiplexers, magnitude extractors and a multiplier.

Table 1 compares the Sobel edge detector in software
on a 386-based PC against the FPGA-assisted version. The
stages put, pipe and get respectively correspond to trans-
ferring the image data from disk to the local memory on

the CHS2x4 board, piping the data through the FPGA cir-
cuitry, and getting the results from the board. Even with
the slow software-controlled FPGA execution, a speedup
of over 20 times can be obtained if data transfer overhead
to and from disk is not included (software time/pipe time),
while a speedup of a factor of two is observed if we include
the data transfer overhead. Notice that the total time for
the hardware-assisted version is not equal to the sum of the
time required for put, pipe and get; the difference (given by
others) accounts for the time spent on dividing the image
into sub-images and combining the results, and on routines
for timing the program. Since this length of time is around
5% of the total processing time, our partitioning strategy
appears to incur a modest overhead for this system.

Image size (pixels) Software Hardware
and software

25600 put 0.45
(160x160) pipe 0.16

get 0.55
others 0.06

Total time (seconds) 2.19 1.22

40960 put 0.71
(160x256) pipe 0.21

get 0.89
others 0.11

Total time (seconds) 4.28 2.19

50176 put 0.88
(224x224) pipe 0.28

get 1.04
others 0.10

Total time (seconds) 4.39 2.30

84956 put 1.55
(268x317) pipe 0.39

get 1.80
others 0.21

Total time (seconds) 7.09 3.95

Table 1 Comparing performance of Sobel edge detection
in software and in hardware/software.

6

Figure 3 Hardware design for the Canny edge detector.

8 The Canny Edge Detector

The Canny algorithm [3] is a more elaborate edge de-
tector than the Sobel algorithm. It consists of four stages:
two-dimensional Gaussian smoothing for removing noise
in the image, gradient calculations for extracting the poten-
tial edge points, suppression of non-maximum edge points
for generating local maxima, and thresholding and hystere-
sis of the local maxima for recovering broken edges.

Our hardware design for the Canny edge detector is
shown in Figure 3. It consists of four blocks, gauss,
grad, non max and hys, which are invoked one at a
time by dynamically reconfiguring the control logic, such
that their inputs are taken from the input port on the left and
their outputs are multiplexed by or-gates (labelled “OR” in
the diagram) to the output port on the right. The over-
lapped region reflects an optimisation in the use of FPGA
cells; there are no connections between circuits belonging
to different blocks. These blocks were developed by hand,
although there are now various compilers that can be used
to automate their production [8].

The block labelled gauss contains adders and shifters
for implementing a Gaussian filter using the mask

?k? 1 A 2 A 1 B A=? 2 A 4 A 2 B A�? 1 A 2 A 1 B\B {
The grad block computes the image gradient by calculat-
ing the difference in magnitude between a given pixel and
its four neighbours; circuits for arithmetic and multiplexing

are included. Non-maximum suppression and thresholding
are performed by the non max block, which is an array of
registers, comparators, multiplexers and a multiplier. The
hys block is responsible for hysteresis and is constructed
from several gates and registers. Example input and output
images are given in Figure 4.

The final stage of Canny’s algorithm, hysteresis, compli-
cates the merging of results from sub-images. For reasons
that we shall not go into here, the pixels near the edges of
the image and neighbouring sub-images must be combined
using the logical “or” operation. This is an example where
merging is performed by a binary operator other than F=F .

Our implementation involves several arrays, each of
length equal to the maximum size of sub-images, to store
intermediate results. To reduce memory usage even fur-
ther, we only read in part of the image at any time instead
of the whole image. Partial edge results are written to a
file so that the array can be reused to store results of the
next sub-image. This method permits an image of arbitrary
size to be processed, although the program runs slower as
there are more accesses to disk. Figure 5 compares the
processing time for a software Canny program against that
for a hardware-assisted version for images of various sizes.
The processing time by the software version is non-linear
in the number of pixels of the images, since it increases
with the number of edges in the image. In contrast, the
processing time by the hardware-assisted version increases
linearly with the number of pixels and is independent of the

7

number of edges. This explains why the software version
sometimes outperforms the hardware-assisted version: it
happens when there are relatively few edges in the image.
In general, the hardware-assisted version is around 39%
faster than the software version.

Notice that around 88% of the measured time is devoted
to communication with the PC; the corresponding times
for the Sobel edge detector are given by the put and get
figures in Table 1. If this overhead is not included, then the
hardware-assisted design is approximately 13 times faster
than the software version. Furthermore, if the input-output
bottleneck can be eliminated so that the only speed limita-
tion is the critical path delay, we estimate that a speedup
of about 300 times can be achieved. The critical path of
the hardware can be reduced by improving the layout and
by adding latches along the critical path – at the expense
of increasing power consumption and latency. This will be
necessary if the edge detector is to operate at video rate.

9 Summary

A codesign strategy has been presented for developing
flexible and efficient implementations for systems contain-
ing both hardware and software components. A frame-
work based on functional programming has been used in
describing and verifying the hardware-software partition-
ing strategy. This approach facilitates the production of
parametrised realisations with a range of cost/performance
trade-offs. Our experiments indicate that for a number of
applications, the overhead associated with the partitioning
strategy is acceptable.

Further work includes studying the use of other for-
malisms for multidimensional arrays (such as [10]) and
other data structures, which may simplify program descrip-
tion and verification. The refinement from such high-level
descriptions to a hardware notation – for instance Ruby (see
[8],[9]) – would be investigated.

We are also exploring the theory and practice of gener-
ating the hardware, the software and their interface from
high-level descriptions. Concurrency and synchronisation
can be captured effectively in a framework based on CSP
[4], and our HARP system [11], which contains a Xilinx
FPGA, a transputer and other components, would be used in
experimenting with different variations of our partitioning
method.

Acknowledgements

The hardware Sobel edge detector was implemented by
Steve Chiu. Thanks to Mark Jones, John O’Leary, Mike
Spivey and Alan Wenban for comments and suggestions.
The support of Oxford Parallel Applications Centre, Esprit

OMI/HORN project, Scottish Enterprise and Xilinx Devel-
opment Corporation is gratefully acknowledged.

References

[1] Algotronix Ltd, CHS2x4 Custom Computer User
Manual, 1992.

[2] R. Bird and P. Wadler, Introduction to Functional
Programming, Prentice-Hall International, 1988.

[3] J. Canny, “A computational approach to edge detec-
tion,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-8, No.6, pp. 679–
698, November 1986.

[4] C.A.R. Hoare, Communicating Sequential Processes,
Prentice Hall International, 1985.

[5] M.P. Jones, An Introduction to Gofer, Oxford Univer-
sity Programming Research Group, 1991.

[6] T. Kean and J. Gray, “Configurable hardware: two
case studies of micro-grain computation,” in Sys-
tolic Array Processors, J.V. McCanny, J. McWhirter
and E.E. Swartzlander Jr. (eds.), Prentice Hall, 1989,
pp. 310–319.

[7] S.Y. Kung, VLSI Array Processors, Prentice Hall,
1988.

[8] W. Luk and I. Page, “Parameterising designs for FP-
GAs,” in FPGAs, W. Moore and W. Luk (eds.), Abing-
don EE&CS Books, 1991, pp. 284–295.

[9] W. Luk, V. Lok and I. Page, “Hardware acceleration
of divide-and-conquer paradigms: a case study,” in
Proc. IEEE Workshop on FPGAs for Custom Com-
puting Machines, D.A. Buell and K.L. Pocek (eds.),
IEEE Computer Society Press, 1993, pp. 192–201.

[10] R. Miller, A Constructive Theory of Multidimensional
Arrays, Oxford University Programming Research
Group, 1993.

[11] I. Page and W. Luk, “Compiling occam into FPGAs,”
in FPGAs, W. Moore and W. Luk (eds.), Abingdon
EE&CS Books, 1991, pp. 271–283.

[12] A. Wenban, J. O’Leary and G.M. Brown, “Code-
sign of communication protocols,” IEEE Computer,
Vol. 26, No. 12, pp. 46–52, December 1993.

8

Figure 4 The image “Perfume” and the result of applying Canny’s algorithm.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

100

200

300

400

500

600

Image size (number of pixels)

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

o - Software
+ - Hardware and software
x - Hardware and software (theoretical)

Figure 5 Comparing performance of our implementations of Canny’s edge detector.

9

