
Hardware Acceleration of Divide-and-Conquer Paradigms: a Case Study

Wayne Luk, Vincent Lok and Ian Page
Programming Research Group,

Oxford University Computing Laboratory,
11 Keble Road, Oxford, England OX1 3QD

Abstract

We describe a method for speeding up divide-and-
conquer algorithms with a hardware coprocessor, using
sorting as an example. The method employs a conventional
processor for the “divide” and “merge” phases, while the
“conquer” phase is handled by a purpose-built coproces-
sor. It is shown how transformation techniques from the
Ruby language can be adopted in developing a family of
systolic sorters, and how one of the resulting designs is
prototyped in eight FPGAs on a PC coprocessor board
known as CHS2x4 from Algotronix. The execution of the
hardware unit is embedded in a sorting program, with the
PC host merging the sorted sequences from the hardware
sorter. The performance of this implementation is com-
pared against various sorting algorithms on a number of
PC systems.

1 Introduction

It has long been recognised that the performance of
a conventional processor can be speeded up many times
if computationally-intensive operations are delegated to
purpose-built hardware. Such hardware accelerators may
even be put on the same chip as the processor itself – the
inclusion of a floating-point unit in the Inmos T805 trans-
puter and the Intel 486 microprocessor are well-known ex-
amples. There is, however, a limit on the number of spe-
cialised units that can reasonably be attached to the main
processor. RAM-based Field-Programmable Gate Array
(FPGA) technology offers an attractive solution: an array
of FPGAs, closely coupled to a host microprocessor, can be
reconfigured rapidly as a special-purpose coprocessor for
many applications.

What factors should one consider when implementing
algorithms on FPGA-based coprocessors? There are, of
course, the features of the FPGA itself – the number and
function of cells and their interconnection structure – as
well as the size and shape of the computation array if more
than one FPGA is employed. Another important factor is

the way that data are passed through the hardware: the
speed, location and size of the input and output ports. The
availability of appropriate design methods and tools must
also not be overlooked. Our objective is to study a strategy
for mapping divide-and-conquer algorithms onto an FPGA-
based coprocessor that takes the above factors into account.

A number of hardware accelerators based on FPGAs
have been reported recently. Some are built mainly for a
particular application such as gene sequence analysis [4],
while others are designed to be general-purpose (see [2],
[5]). Our work involves a commercially available system
from Algotronix known as CHS2x4 [1]. It is a full-length
IBM AT card which communicates with the host computer
through the AT bus. The board consists of three subsys-
tems: the Computation Subsystem which holds eight CAL
1024 chips [7] arranged in a two by four array, the Memory
Subsystem which contains 256 kilobytes of SRAM, and
the Interface and Control Subsystem which deals with the
communication between the board and its host machine.
At present data transfer between the CAL chips and the on-
board memory is restricted to sequential input and output
over a byte-wide channel, controlled by invoking C-library
routines provided by the manufacturer.

Each CAL chip is an FPGA consisting of 32 by 32 cells.
Each cell has a one-bit input port and a one-bit output port
on each of its four sides. An input port can be programmed
to connect to one or more output ports, or to a function unit
which can be programmed to behave either as a two-input
combinational logic gate or as a latch. Figure 1 shows a
CAL cell with its function unit configured as an and-gate
taking inputs from the north and west and output to the east;
the spare ports on the north and east are used for routing.

In the following sections we review the partitioning
strategy and the architectural development route for imple-
menting a hardware accelerator for sorting on the CHS2x4.

2 Partitioning strategy

The first problem is to decide how the algorithm can
be partitioned in two: one that will be implemented in

DDDDD���HHHHBBB 6�-- ?
AND

Figure 1 An example CAL cell.

software running on the host processor, and the other on
the coprocessor board. It is clear that the host processor is
suitable for executing relatively complex, data-dependent
and irregular operations, while the hardware unit – because
of the array structure of CAL – can best be exploited in a
systolic mode.

A simple but promising approach for partitioning divide-
and-conquer algorithms is to employ the host processor for
the “divide” and “merge” phases, and the coprocessor for
the “conquer” phase. This approach is particularly effective
if the “conquer” phase is computationally demanding. An
obvious solution is for the host processor to divide the data
into fixed-size blocks that can be handled by the dedicated
hardware; possible applications include signal and image
processing, where the amount of data is often too large for
the coprocessor to handle at once.

This paper illustrates the above partitioning strategy us-
ing a simple example: sorting. Devising the task for the
host processor was straightforward; it would divide the data
into fixed-size blocks for the hardware sorter, and would
merge the sorted sequences from the hardware sorter. The
selection of appropriate sorting algorithms for the CHS2x4
board, however, needs careful consideration.

Algorithms with good asymptotic behaviour but requir-
ing non-uniform data movements or a bulky control unit,
such as quicksort, mergesort or heapsort, cannot be effi-
ciently mapped onto the CHS2x4 board. Regular networks
like odd-even sort and bitonic sort are possible candidates,
but they work best if data can be input and output in parallel,
and their connection structures are more complicated than
the orthogonal grid that CAL offers. In the end we choose
to implement a systolic insertion sorter, which reads a given
sequence in a bit-parallel word-serial format, and produces
the sorted sequence in the same manner. This method con-
forms to the hardware constraints of the CHS2x4 board,
provided that the data to be sorted do not exceed the width
of the input and output ports – in this case eight bits.

While the “divide” and “merge” phases for our sorter
implementation involve simply partitioning and merging
of sequences of numbers, this may not be the case for some
applications such as image processing. For instance, in
convolution-based edge detection it is necessary to repli-

cate part of the image to overcome boundary effects in pro-
cessing partitioned images. A method has been developed
to ensure that partitioning will not alter the result of the
computation; the details will be covered in a forthcoming
publication.

3 Architectural development

We now describe how transformation techniques from
the Ruby language can be adopted in developing a family
of systolic sorters. These techniques can be regarded as a
systematic generalisation and formalisation of design expe-
rience; they also provide a basis for computer-based tools
(see [12], [13]) for design development and implementa-
tion. A fuller description of Ruby can be found elsewhere
(for instance [6], [9], [10]), and we shall only outline the
five steps in developing a generic description of an archi-
tecture based on insertion sort.

First of all, note that insertion sort can be described by
the function insort a which takes a sorted sequence and
inserts the element a at the appropriate place with respect
to the ordering relation:insort a h i = hai;insort a (hx iˆxs) = if a � xthen ha; x iˆxselse hx iˆinsort a xs�:
So insort 3 h0; 1; 2; 5i = h0; 1; 2; 3; 5i. Here “ˆ” de-
notes an operation for appending two sequences, for in-
stance ha; b; ciˆhd ; ei = ha; b; c; d ; ei. Another function
on sequences that we shall use is apr (append right),
which appends an element to the end of a sequence:apr hha; b; c; di; ei = ha; b; c; d ; ei.

Next, we shall recast the above recursion equations in
an algebraic form so that optimising transformations can
be applied. This is achieved by implementing insort as a
row of leaf cells. In Ruby leaf cells are described by binary
relations, so that a doubling operation can be described byx double 2�x , where x is the domain and 2�x is the range
of the relation double. Note that double can also be used
to describe a divide-by-2 operation, if the range is regarded
as the input.

Before introducing the operator that corresponds to a
row of cells, let us consider how two adjacent circuits can
be put together in series and in parallel. Two circuits Q andR in series is denoted by Q ;R, a composite circuit with Q
and R sharing a hidden compatible interface s (Figure 2a):x (Q ;R) y , 9s: (x Q s) & (s R y);

so x (double;double) 4� x . The “;” operator is known
as relational composition, and can easily be shown to be
associative. Parallel composition of two components Q
and R, denoted by [Q ;R], represents the combination with
no connection between Q and R (Figure 2b),hx ; yi [Q ;R] hu; vi , (x Q u) & (y R v);
so hx ; yi [double; (double;double)] h2�x ; 4�yi. Given
that � is the identity relation, we have the abbreviationsfstR = [R; �], and sndR = [�;R]:Q Rx s y

a. Q ;R Q Rx yu v
b. [Q ;R]R R Ra s1 s2 bx0 x1 x2y0 y1 y2

c. row3 R x yssR
d. �R

Figure 2 Pictures of some Ruby operators.

A cascade of R’s is given by Rn , defined inductively
by the equations R1 = R and Rn+1 = Rn ; R. A row
of components with vertical and horizontal connections
(Figure 2c) can be described by the row operator (note that
#x denotes the number of elements in sequence x),

if #x = #y = N
then ha; x i (rowN R) hy ; bi ,9s: (s0 = a) & (sN = b)

& 8i : 0 � i < N : hsi ; xiiR hyi ; si+1i:
Given operators such as relational composition and row
that encapsulate common patterns of computations, one
can show thatinsort a xs = (rown scell ; apr) ha; xsi
where #xs = n and scell ha; x i = if a � x then ha; x ielse hx ; ai �.

We now come to the third step in developing the systolic
sorters. The row of scells defines its state-transition logic,
and to describe the complete circuit we need a way of
representing latches and feedback loops, and sequential

circuits in general. This is achieved in Ruby by relations
that handle streams, or time sequences, such that the stream
version of double becomes x double y, (8t :2�xt = yt).
It can be shown that the algebraic properties of Ruby are
preserved by lifting relations to work on streams. A latch
is modelled by a relationD whose range stream is one time
unit behind the domain stream, x D y, (8t : xt�1 = yt).
For any R such that D;R = R;D (which is the case, for
instance, when R is combinational), the distributive lawRn ;Dn = (R;D)n holds. Like �, D can be used for any
type of signals, so D; [R;R] = [D;D]; [R;R] and(rown R) ; fstD = rown (R ; fstD): (1)

To describe a circuit with feedback, we use the operator�, given by x �R y,9s: hx ; si R hs; yi (Figure 2d).
Since a state machine with state-transition logic Q can be
represented by � (Q ; fstD), a serial sorter can be obtained
in the same way by adding latches and feedback paths to
the row of combinational sorters rown scell to givesort1 = �((rown scell) ; fstD)= �(rown (scell ; fstD))
by Equation 1. Note that the correct operation of sort1 re-
quires the feedback latches to be initialised with the greatest
element given by the ordering relation.

Right now sort1 is expressed as a single state machine
with a single bank of feedback latches. The fourth step in
the development process is to decompose this state machine
into a cascade of simple state machines, which can then be
pipelined so that the clock speed is independent of the
number of processors. We apply the theorem� (rown R) = (�R)n (2)

for state machine decomposition (Figure 3), whose cor-
rectness is proved in [10], so that sort1 becomes(�(scell ; fstD))n .R R R R R R
Figure 3 Decomposing a large state machine into a cas-
cade of small state machines.

Given that n = km, the final step is to pipeline sort1 by
the theorem Rkm ;Dm = (Rk ;D)m (provided that D;R =

R;D) to givesort2 = ((�(scell ; fstD))k ; D)m ;
since composing one or moreD’s with sort1 only increases
its latency and does not change its behaviour. Notice that
the parameter k controls the degree of pipelining: withk = 1 and m = n, sort2 becomes a fully-pipelined de-
sign, otherwise signal rippling through k scells will occur.
Moreover, sort2 has a latency of m + n = n(k + 1)=k
cycles and requires 2m+n = n(k +2)=k latches; hence a
smaller k results in a faster circuit, but the latency and the
number of latches in the design will increase.

This completes the development of a word-level descrip-
tion of a family of sorters. In the next section, we shall
present the implementation of a fully-pipelined version ofsort2, which consists of a cascade of cells each containing
an scell , a latched feedback path, an input A and a latched
output Max (Figure 4, with latches represented by heavy
dots).

8

8

8

Min

A Max
scell

Figure 4 Repeated unit of the systolic sorter.

4 Bit-level design and implementation

Figure 5 contains the block diagram of a bit-level cell
which can be used to implement an scell with feedback as
shown in Figure 4. Notice that an init wire is introduced
for presetting the latch to a desired value. The design can
be divided into three smaller units: a comparator, a double
multiplexer and an initialisation unit. The correctness of
this refinement step, which relates a word-level description
and its bit-level implementation, is outlined in [11] for the
comparator. Although the CAL circuits shown later were
developed by hand, there are now various compilers that
can be used to automate their production [13].

The i th-bit comparator takes two inputs Ai and Bi , thei th-bit of the two numbers to be compared, and returns the
result Ci+1, whereCi+1 = AiBi +CiAi +CiBi :
The corresponding truth table is as follows:

C

MUX
CMP

init

x

init

A

B

A

Min

Max

C

IUNIT

i

i+1

i

i

i

i

i

Figure 5 Bit-level sorter cell.Ai Bi Ci+1

1 0 1
0 1 0
0 0 Ci
1 1 Ci

IfAi > Bi , Ci+1 will be set to logic one; ifAi < Bi , Ci+1

will be set to logic zero. For the case Ai = Bi , the outputCi+1 will be the same as Ci , the result from the comparison
of the previous bit.

As we form a column of m comparators as shown in
Figure 6 with C0 hardwired to logic one, the output atCm , the most-significant bit, will give the final result of
the comparison: Cm = 1 means A � B and Cm = 0
means A < B . This final result is then broadcast to every
multiplexer unit as the signal x in Figure 5. Figure 7 shows
the corresponding CAL design.

The double multiplexer steers the two input bits Ai andBi to the outputMaxi and Mini according to the input sig-
nal x . When x = 1 (namely A � B), Ai will be connected
to Maxi and Bi connected to Mini . The connection will
be the other way round for the case x = 0. Figure 8 and
Figure 9 contain the truth table and the logic equation along
with the CAL design.

The initialisation unit consists of an or-gate as shown
in Figure 5. Its purpose is to initialise the latch on the
feedback path to the maximum value of the elements to be
sorted, by employing the init signal to preset B0 to Bm�1

to logic one. to close the feedback path from the Mini
output of the double multiplexer to its Bi input.

Putting together the comparator, the double multiplexer
and the initialisation unit as shown in Figure 5, we arrive
at a bit-level basic cell which takes up 6 by 6 CAL cells.
Since all the bit-level cells within the same word share the

A

A

A
B

B

B

C 0

0
0

m-1

Cm

m-2

m-1

m-2

Figure 6 Bit-level comparator structure.

AND

X1.X2’

OR

X1.X2’

OR

A(i)
C(i+1)

C(i)

B(i)

Figure 7 CAL design of a comparator cell.

same init signal, we only need one pair of latches on theinit line for the entire bit-level structure. The final design
in Figure 10 occupies 6 by 3 CAL cells with only two
dedicated to routing. A design without the latches at theMax output will probably require the same number of CAL
cells, and it would have a lower latency but a longer critical
path than our fully-pipelined systolic sorter.

The complete sorter design consists of a pipeline of
latched scells, based on the repeated unit shown in Figure 4.
The more repeated units we have, the longer the pipeline
and the longer the sequence the design can sort. So the
final task is to fit a maximum number of repeated units
onto the CHS2x4 board with the input and output properly
wired to the I/O bus, keeping the length of all the wires
to a minimum. Figure 10 shows the board layout with
38 repeated units for a design which can sort sequences
containing up to 39 elements. Note that the cells on the
upper-half of the design are a reflected version of the one

B

A

Min

Max

x

i

ii

ix = 0 ! A < Bx = 1 ! A � Bx Maxi Mini
0 Bi Ai
1 Ai Bi

Figure 8 The double multiplexer design.

AND

OR

X1.X2’

AND

X1.X2’

OR

Max(i)
 x

A(i)

Min(i)

B(i)

Figure 9 The CAL design of the double multiplexer.

shown at the top of Figure 10.
This design has been further optimised by adopting a

scheme, similar to the use of tag bits in the Splash 2 system
[3], which enables the continuous processing of a sequence
of elements of arbitrary length. The input data pass through
the hardware sorter once and emerge as a stream of sorted
blocks, each containing 39 elements.

5 Host software and performance evaluation

The software to drive the CHS2x4 board consists of a se-
ries of calls to the interface library supplied by Algotronix.
It first resets the board to clear all previous programming
information for the cells as well as for the internal regis-
ters. It then programs the board with the configuration file
associated with the design. Next, the elements to be sorted
are stored in the on-board memory. After initialisation, the
memory counter is set to point to the address of the first

DC

AND

OR

X1.X2’

AND

X1.X2’

OR

DC

OR

AND

DC’

X1.X2’

OR

X1.X2’

OR

DC’

C(i+1) xin

xoutC(i)

A(i)
stin

stout

Max(i)

DC’ DC DC’ DC DC’ DCDC’ DCDC’ DCDC’ DCDC’ DCDC’ DCDC’ DCDC’ DC DC’ DC DC’ DC DC’ DC DC’ DCDC’ DC DC’ DC DC’ DC DC’ DC

DC’DCDC’DCDC’DCDC’DC DC’DCDC’DCDC’DC DC’DC DC’DC DC’DCDC’DCDC’DC DC’DC DC’DC DC’DCDC’DCDC’DC DC’DC DC’DC

11 11111111111111111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1AND

DC’

DC’

DC’

DC’

DC’

DC’

DC’

DC’

DC

DC

DC

DC

DC

DC

DC

DC

in[0]

in[1]

in[2]

in[3]

in[4]

in[5]

out[7]

out[6]

out[5]

out[4]

out[3]

out[2]

out[1]

out[0]

in[6]

in[7]

Figure 10 Top, optimised unit cell design; bottom, the board layout. Every small shaded box in the diagram represents a
unit cell. The dash lines indicate the chip boundary.

input data. The computation loop can now begin, with data
circulating between the FPGAs and the on-board memory.
When completed, the output data can be collected from the
on-board memory. The host processor then computes the
final answer by combining the sorted sequences from the
coprocessor. Figure 11 summarises the operation.

This implementation, hsort, is evaluated and com-
pared with other algorithms that have been implemented in
software for sorting 65400 7-bit random numbers. (One of
the bits in the byte-wide channel between the FPGAs and
the on-board memory is used as a control signal – hence
7-bit data – but it would be straightforward to generate
this control signal using some of the FPGAs). First, Ta-
ble 1 compares the time required for sorting 1677 sequences
each containing 39 7-bit numbers, using the insertion sorter
in hsort and an insertion sort program running on the
host. The timing results are obtained by using the ftime
command in Microsoft C library, which is assumed to be
accurate to within 0.1 second. The variation in speed of the
hardware sorter in different hosts is too small to be mea-

sured accurately; the speed of transferring data between the
on-board memory and the FPGAs is estimated to be around
0.65 megabytes per second. The gain in speed over the
software sorter ranges from 12 times on a 486-based ma-
chine, to 233 times on a 286-based machine. These timing
results, however, do not include the time required to merge
the sorted sequences nor, in case of the hardware sorter, the
time required for transferring data between the PC and the
memory on the CHS2x4 board.

Next, Table 2 summarises the proportion of time for
hardware sorting and for merging the sorted sequences.
Note that the timing results do not include the time for
configuring the CAL chips on the CHS2x4 board. The table
confirms that the time for merging dominates the sorting
process, and this time decreases with a faster machine. In
other words, faster machines spend a larger proportion of
their time on sorting in hardware, which is consistent with
the results shown in Table 1.

Table 3 consists of an analysis of chsort, which is
the same as hsort except that the time for configuring

input sequence to be sorted

partition into subsequences of length 39

apply hardware sorting to each subsequence

software merging

software merging

software merging

sorted sequence

sorted subsequences

sorted

subsequences

of increasing

length

Figure 11 Implementing “divide” and “merge” in software and “conquer” in hardware.

Table 1 A comparison of the time required, in seconds,
for sorting 1677 sequences each containing 39 7-bit num-
bers, using insertion sort in software and in hardware.

host software hardware
sort sort

286 turbo off 23.3 0.1
286 turbo on 11.1 0.1

386 turbo off 15.4 0.1
386 turbo on 5.9 0.1

486 turbo off 3.6 0.1
486 turbo on 1.2 0.1

the eight FPGAs is included. The table shows that the
faster machines spend a larger proportion of their time on
configuring the FPGAs.

Finally, Table 4 compares the performance of hsort
and chsort with qsort, a quicksort procedure [15],
msort, a mergesort program, qsortlib, the “qsort”
routine from Microsoft C library, and dsort, a linear sort-

ing algorithm based on distributed counting [16]. qsort
demonstrates its superiority by beating hsort for the
slower machines, although hsort wins by 20% for the
faster hosts. msort employs a non-recursive merging
procedure similar to the one used in hsort – this shows
that the hardware sorter speeds up the sorting process by
up to 30%. Since in hsort the software merging re-
quires dlog2 (65400=39)e = 11 passes over the sorted sub-
sequences, it is an order of magnitude slower than the linear
time dsort algorithm; however, for a sequence of n m-
bit numbers, dsort requires an array of 2m variables withlog n-bits each, so its use is restricted to sorting long se-
quences of relatively small numbers. In contrast, hsort
would be more effective for sorting relatively short se-
quences of large numbers. The byte-wide interface between
the FPGAs and the on-board memory of the CHS2x4 sys-
tem, however, complicates the implementation of sorters
for large numbers.

To summarise, from these tables it is apparent that there
are three major performance bottlenecks in the current
hsort implementation, excluding the time required for
configuring the FPGAs. Two of them are related to the
interface between the hardware coprocessor and the host
processor: the time to load and unload the on-board mem-
ory, and the slow software-controlled interface between the
FPGA array and the on-board memory. The third, and the
most severe bottleneck, is the time required for merging
the sorted sequences in software. Some suggestions for
reducing the effects of these bottlenecks will be described
in the next section.

Table 2 An analysis of hardware-accelerated sorting of 65400 7-bit numbers, showing the relative amount of time spent
on sorting with the FPGAs, on data transfer between the on-board memory and the PC, and on merging the sorted sequences
by the host.

host hsort hardware data software
(seconds) sort transfer merge

286 turbo off 60.3 0.2% 7.6% 92.2%
286 turbo on 28.7 0.2% 7.6% 92.2%

386 turbo off 24.2 0.3% 10% 89.7%
386 turbo on 9.5 0.7% 10% 89.3%

486 turbo off 7.7 1.5% 16.4% 82.1%
486 turbo on 2.1 3.2% 15.9% 80.9%

Table 3 Effect of configuration time on hardware accelerated sorting of 65400 7-bit numbers.

host chsort hardware data software FPGA
(seconds) sort transfer merge configuration

286 turbo off 77.0 0.1% 5.9% 72.1% 21.8%
286 turbo on 37.1 0.2% 5.9% 71.3% 22.7%

386 turbo off 36.7 0.2% 7.6% 68.0% 24.2%
386 turbo on 14.6 0.5% 7.5% 67.2% 24.7%

486 turbo off 11.4 0.8% 7.7% 64.4% 27.1%
486 turbo on 3.6 2.3% 11.2% 57.3% 29.2%

Table 4 A comparison of the time required – in seconds – for various implementations to sort 65400 7-bit numbers; the
quantities in bracket are the slowdown factors relative to hsort.

host hsort chsort qsort msort qsortlib dsort

286 turbo off 60.3 (1) 77.0 (1.3) 53.7 (0.9) 80.2 (1.3) 545.6 (9.0) 3.3 (0.05)
286 turbo on 28.7 (1) 37.1 (1.3) 24.4 (0.9) 38.7 (1.3) 262.6 (9.1) 1.5 (0.05)

386 turbo off 24.2 (1) 36.7 (1.5) 30.0 (1.2) 28.5 (1.2) 378.4 (15.6) 1.8 (0.07)
386 turbo on 9.5 (1) 14.6 (1.5) 11.5 (1.2) 10.9 (1.1) 161.1 (17.0) 0.7 (0.07)

486 turbo off 7.7 (1) 11.4 (1.5) 9.5 (1.2) 9.2 (1.2) 125.0 (16.2) 0.5 (0.06)
486 turbo on 2.1 (1) 3.6 (1.7) 2.6 (1.2) 2.2 (1.0) 43.3 (20.6) 0.2 (0.10)

hsort: hardware-accelerated sorting with merging performed in software;
chsort: same as hsort but includes the time for configuring the FPGAs;
qsort: quicksort;
msort: mergesort;

qsortlib: “qsort” routine in Microsoft C library;
dsort: sorting program based on distributed counting.

6 Concluding remarks

We have discussed a method of partitioning divide-and-
conquer algorithms and illustrated how it can be imple-
mented on a commercially available FPGA-based hard-
ware platform. The deployment of this method for other
applications such as image processing is currently being
investigated. Our experience confirms that it is reasonably
straightforward to prototype hardware designs using FPGA
technology: part of the detailed design and evaluation work
of the pipelined sorter was carried out as part of a 200-hour
undergraduate project.

While experimental results demonstrate the viability of
our approach, a hardware accelerator can only remain com-
petitive if it performs at least an order of magnitude faster
than the equivalent software rival. From analysing the criti-
cal paths in our design using data from the manufacturer, we
estimate that the hardware sorter is capable of running at a
maximum speed of 2.5 MHz; further pipelining at bit-level
can deliver another six-fold improvement. One way of ex-
ploiting this potential is to speed up the interface between
the FPGA array and the memory on the coprocessor board,
for instance by clocking the FPGAs at a higher speed with
interrupt-driven data transfer between the coprocessor and

the host processor. This enhancement will allow the host
processor to run concurrently with the coprocessor; how-
ever, some hardware modifications to the CHS2x4 board
will be necessary. Other hardware alterations that should
improve performance include widening the width of input
and output ports, increasing the amount of the on-board
memory and allowing it to be addressed directly from the
host processor.

A more effective implementation of the “divide by soft-
ware and conquer by hardware” methodology for sorting
long sequences will involve implementing the merging pro-
cess in hardware, because that is what dominates the pro-
cessing time and what needs to be conquered. Since the
merging process is largely sequential and requires non-
linear access to the on-board memory, it will be inefficient
to carry out in the current version of the CHS2x4 sys-
tem. It should be possible to use our occam compiler [14]
to speed up the merging process on a HARP1 board un-
der development at Oxford, which contains a Xilinx FPGA
tightly-coupled to a transputer. For other applications, soft-
ware may still be adequate for data partitioning and merg-
ing: some preliminary results suggest that partitioning and
merging data in software for an edge detector, for instance,
occupies less than 10% of the total processing time.

It should be noted that hardware-assisted processing is
probably not shown to full advantage in this case study, be-
cause microprocessors are already fairly good at algorithms
such as sorting which are memory-bandwidth limited; so
we can anticipate some larger speedups with algorithms
exhibiting a larger computation/communication ratio.

The use of Ruby for developing and implementing hard-
ware designs has been encouraging, and will become in-
creasingly important in the future. In particular, a Ruby
description can be parametrised in various ways for gener-
ating designs of different degrees of pipelining or seriali-
sation [9]. We are also exploring methods for integrating
in our development process the parallel language occam
[14], which offers the prospect of allowing the combined
hardware and software implementation to be described and
verified in a uniform framework. Furthermore, the use of
occam will facilitate executing the hardware unit concur-
rently with the host processor.

Acknowledgements

Thanks to Tony Hoare and Richard Stamper for com-
ments on an earlier draft. The support of Henry Lau,
M.P. Luk, Bill McColl, Teddy Wu, Cedric Yiu, Rank Xerox
(UK) Limited, Oxford Parallel Applications Centre, Esprit
OMI/MAP and OMI/HORN projects, Scottish Enterprise
and Algotronix Limited is gratefully acknowledged.

References

[1] Algotronix Ltd, CHS2x4 Custom Computer User
Manual, 1992.

[2] P. Bertin, D. Roncin and J. Vuillemin, “Introduction
to programmable active memories,” in Systolic Ar-
ray Processors, J.V. McCanny, J. McWhirter and
E.E. Swartzlander Jr. (eds.), Prentice Hall, 1989,
pp. 301–309.

[3] D.A. Buell, “Sorting on Splash 2,” Technical Report
SRC–TR–92–078, SRC, Maryland, September 1992.

[4] B. Fagin and J.G. Watt, “FPGA and rapid prototyp-
ing technology use in a special-purpose computer for
molecular genetics,” Proc. ICCD, 1992, pp. 496–501.

[5] M. Gokhale et. al., “Building and using a highly
parallel programmable logic array,” IEEE Computer,
vol. 24, 1991, pp. 81–89.

[6] G. Jones and M. Sheeran, “Circuit design in Ruby,” in
Formal Methods for VLSI Design, J. Staunstrup (ed.),
North-Holland, 1990, pp. 13–70.

[7] T. Kean and J. Gray, “Configurable hardware: two
case studies of micro-grain computation,” in Sys-
tolic Array Processors, J.V. McCanny, J. McWhirter
and E.E. Swartzlander Jr. (eds.), Prentice Hall, 1989,
pp. 310–319.

[8] S.Y. Kung, VLSI Array Processors, Prentice Hall,
1988.

[9] W. Luk, “Systematic serialisation of array-based ar-
chitectures,” Integration, the VLSI Journal, Vol. 14,
No. 3, February 1993, pp. 333-360.

[10] W. Luk and G. Brown, “A systolic LRU processor
and its top-down development,” Science of Computer
Programming, vol. 15, no. 2–3, 1990, pp. 217–233.

[11] W. Luk and G. Jones, “The derivation of regular
synchronous circuits,” in Proc. International Con-
ference on Systolic Arrays, K. Bromley, S. Y. Kung
and E. Swartzlander (eds.), IEEE Computer Society
Press, 1988, pp. 305–314.

[12] W. Luk, G. Jones and M. Sheeran, “Computer-based
tools for regular array design,” in Systolic Array Pro-
cessors, J.V. McCanny, J. McWhirter and E.E. Swart-
zlander Jr. (eds.), Prentice Hall, 1989, pp. 589–598.

[13] W. Luk and I. Page, “Parameterising designs for FP-
GAs,” in FPGAs, W. Moore and W. Luk (eds.), Abing-
don EE&CS Books, 1991, pp. 284–295.

[14] I. Page and W. Luk, “Compiling occam into FPGAs,”
in FPGAs, W. Moore and W. Luk (eds.), Abingdon
EE&CS Books, 1991, pp. 271–283.

[15] W.H. Press, B.P. Flannery, S.A. Teukolsky and
W.T. Vetterling, Numerical Recipes in C, Cambridge
University Press, 1988.

[16] R. Sedgewick, Algorithms, Second Edition, Addison
Wesley, 1988.

