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Abstract

This paper presents a paradigm for the design of
multiple wordlength parallel processing systems for
DSP applications, based on varying the wordlength and
scaling of each signal in a DSP block diagram. A
technique for estimating the observable effects of trun-
cation and roundoff error is illustrated, and used to
form the basis of an optimization algorithm to auto-
mate the design of such multiple wordlength systems.
Results from implementation on a reconfigurable com-
puting platform show that significant logic usage sav-
ings and increased clock rates can be obtained by cus-
tomizing the datapath precision to the algorithm ac-
cording to the techniques described in this paper. On
selected DSP benchmarks, we obtain up to 45% area
reduction and up to 39% speed increase over standard
design techniques.

1 Introduction

Multiple wordlength or multiple precision algo-
rithms have recently become a flourishing area of re-
search. The move away from a single arithmetic com-
putational unit towards forms of parallel processing
has shown that the required precision of a calcula-
tion is an important dimension in designing fast, low-
power, and area-efficient processors [1]. In FPGAs this
is a particularly important trend, since the designer
has the freedom to construct datapaths with precision
customized for each algorithm loaded into the FPGA.

This paper explores and examines the multiple
wordlength approach for digital signal processing
(DSP) applications. We propose a paradigm based on
varying signal scaling and precision between parallel
processors implemented in an FPGA. It is shown that
the fixed-point quantization effects of this approach
can be estimated, how they are estimated, and how
the design process can be automated from an initial
infinite-precision behavioural specification.

The synthesis technique presented is a lossy syn-
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Figure 1: A Simple Block Diagram

thesis approach. This term is used to denote that,
while the behaviour of the synthesized system is not
identical to that of the algorithm specification (due
to fixed-point quantization effects), nevertheless the
error can be specified and controlled by the user.

The ideas presented have been implemented within
the Synoptix high-level synthesis system [2] which,
given a Simulink [3] block diagram and user-specified
bounds on roundoff noise for each of the outputs, will
provide an area-optimized DSP algorithm implemen-
tation in a hardware description language. An exam-
ple block diagram used for specification is shown in
Fig. 1.

Synoptix works by exploiting the differing proper-
ties of different paths between signals in the block dia-
gram and outputs. Any given signal can be the input
to many different blocks, and therefore its bit-width
will impact significantly on the area consumed by each
of those blocks. In addition, between the signal and
each output there exists a system transfer function [4]
that will scale any roundoff error injected at that sig-
nal. These are two independent effects, and their in-
dependence allows Synoptix to optimize the structure
by assigning longer wordlengths to those signals whose
area-impact is low and whose noise-impact is high,
and by assigning shorter wordlengths to those signals
whose area-impact is high and whose noise-impact is
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low. The aim of the optimization tool is to minimize
the implementation area of the filter, while meeting
the user-specified constraints. Our approach is en-
tirely analytical in nature, and therefore neither de-
pends on an appropriate user-specified input data set,
nor requires lengthy simulation runs to determine the
extent of finite-wordlength effects.

The main contributions of this paper are therefore:
a description and analysis of the multiple wordlength
approach to designing DSP systems, a definition and
analysis of ‘well-conditioned’ multiple wordlength sys-
tems and their use in predicting fixed-point error, and
a demonstration of the advantages of the multiple
wordlength approach on several benchmarks. While
simplified descriptions of our approach have been re-
ported elsewhere [2, 5], here we include an in-depth
treatment of the optimization procedure, the noise
model, and the results from our implementation.

This paper has the following structure.  Sec-
tion 2 reviews some of the other work in the area
of wordlength specification and determination. Sec-
tion 3 describes the proposed multiple-wordlength im-
plementation style, together with transformations and
optimizations on multiple wordlength structures. Sec-
tion 4 presents some results from the optimizations,
before Section 5 concludes the paper.

2 Background

The effects of using finite register length in fixed-
point systems have been studied for some time. Op-
penheim and Weinstein [4] and Liu [6] provide stan-
dard models for quantization errors and error prop-
agation through linear time-invariant (LTT) systems.
This early work tended to assume a fixed-wordlength
computational machine, which leads to the assump-
tion of a single uniform signal width. FPGAs give us
the freedom to design special purpose hardware to im-
plement DSP functions, with the datapath wordlength
shaped to fit the application. In [7] alternative noise
models are presented, more appropriate to structures
with non-uniform signal widths.

There has been significant recent research into mul-
tiple precision implementations. This work can be
broadly classified into three categories: correctness
preserving transformations [1, 8], techniques for trad-
ing off truncation / roundoff error with area [5, 9,
10, 11, 12, 13], and high-level synthesis for multiple
wordlength algorithms [14, 15, 16].

Correctness preserving transformations aim to re-
duce the wordlengths in computations to the mini-

mum possible while preserving the behaviour speci-
fied in the original fixed-point algorithm description.
Stephenson et al. [1] have proposed a technique based
on compiler-passes involving data-flow analysis, where
the precision information is carried by the data-flow.
They propose propagating known information on data
ranges both forward and backward through a data flow
graph. The authors then compare a silicon compi-
lation [17] of the original specification to one of the
wordlength-minimized specification, showing a signif-
icant area reduction. This work has the advantage of
being applicable to algorithms containing loop-carried
dependencies, although the results can be pessimistic
when compared to our approach due to the general na-
ture of the loops modeled. Benedetti et al. [8] propose
a similar approach based on interval analysis, limited
to systems containing no feedback. These transforma-
tion based approaches can easily be incorporated into
a high-level synthesis [18] data-flow.

A more general framework for solving the
wordlength determination problem revolves around
the idea we describe as lossy synthesis. This is the
approach that correctness need not be preserved in
the strict sense, but the resulting behaviour must not
differ from the original by more than a user-defined
amount. The applicability of lossy synthesis is clearly
dependent on an appropriate definition of error in be-
haviour, and a metric for its quantification. In the
present paper, we restrict the class of algorithms to
linear time-invariant (LTT) discrete time systems [19],
an area that allows us to define error in terms of signal
to quantization noise ratio (SNR).

Most of the work on addressing the problem of trad-
ing quantization error with area has considered the
issue from a software profiling perspective [9, 11, 12].
These approaches typically use operator overloading in
object-oriented programming to maintain both an ‘ac-
curate’ (usually double precision floating-point) and
a fixed-point representation of each signal simultane-
ously. After simulation with a user-specified input
data set, the range of each signal can be estimated
and so the scaling can be decided. By comparison
between the accurate and fixed-point versions of the
outputs, empirical signal distortion statistics can be
calculated for a given set of signal parameters.

A somewhat different approach is taken by [10, 13],
where simulation results are used in combination with
‘format propagation’ and/or user interaction. These
techniques use simple analytical methods, such as de-
termining the maximum value of an addition from
the independent maxima of its two inputs, in or-
der to propagate simulation data through the algo-



rithm specification without losing information. These
systems require less simulation overhead than those
in [9, 11], as simulation is typically used only for a
subset of signals in the specification. However format
propagation can be a highly pessimistic approach: for
example the two inputs to the adder may never reach
their respective maxima during the same iteration,
due to correlation between the two inputs. In addition
feedback loops cause significant problems for these ap-
proaches, typically requiring user intervention. In con-
trast, our approach uses such format propagation only
for determining the ‘natural’ wordlength of the result
of each atomic computation. We then allow for a trun-
cation or rounding of each signal before it forms the in-
put to further operations. We can therefore elegantly
deal with both correlation and feedback.

While the simulation-based approaches allow the
use of nonlinear and time-varying components, the
quality of the resulting SNR estimates are highly de-
pendent on the input data sets used for simulation, or
the user help given. In addition, long run-times are
necessary for the simulations that form the basis of
the optimization routines [11]. In contrast, we restrict
the systems of interest to linear time-invariant discrete
time systems which allow us to use an analytic frame-
work for wordlength optimization incorporating both
recursive (i.e. feedback) and non-recursive structures.

3 Multiple Wordlength

The multiple wordlength implementation style can
best be introduced by comparison to more traditional
fixed-point and floating-point implementations. DSP
processors typically use fixed-point representations, as
this leads to area and power efficient implementations,
often as well as higher throughput than floating-point.
In FPGAs, it is well known that a fixed-point imple-
mentation is generally more efficient than a floating
point implementation for most DSP algorithms with
low dynamic range [20]. A traditional fixed-point im-
plementation is illustrated in Fig. 2(a). Each sig-
nal j in the block diagram representing a recursive
DSP data-flow is annotated with a tuple (n;, p;) show-
ing the wordlength n; and scaling p; of the signal.
Fig. 2(d) shows the meaning of these two parameters:
n; is the number of bits in the representation of the
signal (excluding the sign bit), and p; is the displace-
ment of the binary point from the LSB side of the
sign bit towards word LSB. In a traditional fixed-point
implementation, all signals have the same wordlength
and scaling, although shift operations are often incor-
porated in order to provide an element of scaling con-
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Figure 2: The Multiple-Wordlength Paradigm: (a)
fixed-point DSP, (b) Floating Point, (c) Multiple
Wordlength, (d) Signal Parameters: ‘s’ indicates the
sign bit

trol [11]. Fig. 2(b) shows a standard floating-point
implementation where the scaling of each signal is a
function of time.

A single uniform system wordlength is common
to both the traditional implementation styles. This
is a result of implementation on single, or multiple,
pre-designed fixed point arithmetic units. FPGAs
can help us overcome this restriction for two reasons.
Firstly, by allowing the parallelization of the algorithm
so that different operations can be performed in physi-
cally distinct computational units. Secondly, by allow-
ing the customization (and re-customization) of these
computational units, shaping the precision of the dat-
apath to the requirements of the algorithm. Together
these freedoms point to an alternative implementation
style shown in Fig. 2(c). This multiple wordlength im-
plementation style inherits the speed, area, and power
advantages of traditional fixed-point implementations
since the computation is fixed-point with respect to
each individual computational unit. However by po-
tentially allowing each signal in the original specifi-
cation to be encoded by binary words with different
scaling and wordlength, the degrees of freedom in de-
sign are significantly increased.

During the design stage, each wordlength can be
chosen individually to minimize logic usage while sat-
isfying roundoff or truncation error. Similarly, each
binary point position can be chosen individually to
minimize logic usage while satisfying overflow or sat-
uration error. Clearly if the new degrees of freedom
in design are to be used appropriately it is necessary
to have a good model of the lossy synthesis process:
a quantification of the distance between the original
specification and its implementation is required in er-
ror terms. The remainder of Section 3 describes how
to estimate this, and how to optimize the wordlengths
accordingly.



Table 1: Propagation of wordlengths (n‘]l.', pj) =
(naapa) op (nbapb)

Operation Effect

Multiplication | p}; = pa + ps
n?’ = Ng + Ny

Addition P = max(pq,pp) + 1
n‘]l.’ = max(ng, np + Pa — Pb)—
min(0,p, —pp) + 1

3.1 Format Propagation

If each wordlength and scaling is specified inde-
pendently, it means that there can be implied LSB-
side width reduction (truncation or rounding) and/or
MSB-side width reduction (inverse sign-extension) at
each signal. Assuming that MSB-side width reduction
involves no error (which can be ensured through us-
ing transfer-function based I; scaling [5]), we calculate
the expected error injected at each signal and how this
propagates to the output. For simplicity of implemen-
tation, we assume truncation is the chosen method of
reducing wordlength at the LSB-side. In what fol-
lows, we assume that the wordlength and scaling of
each signal has been pre-specified (for example by the
optimization algorithm described in Section 3.3).

We first propagate the wordlength values and scal-
ings from the inputs of each operator to its output, as
shown in Table 1, where addition and multiplication
are described. Together with branching and delays,
these operations are sufficient to implement any lin-
ear time-invariant system. These wordlength values
are then adjusted according to the known scaling of
the output signal. If the desired binary point loca-
tion at signal j is p;, whereas the propagated value
derived is p} (> pj), this corresponds to an MSB-
side width-reduction. We then make the adjustment
nd « ni" — (pj — p;) where n!" is the propagated
wordlength value, as illustrated in Fig. 3. The ‘¢’
superscript indicates that this is a wordlength before
quantization (truncation or rounding). This analysis
allows us to efficiently make use of correlation informa-
tion derived from a transfer function based scaling, for
example the two inputs to an adder may never reach
their peaks simultaneously. This is an example of a
higher level ‘don’t-care condition’ than that normally
considered by synthesis tools.

We now define a well-conditioned wordlength-
annotated block diagram to be one where the

wordlength n; for each signal j obeys n; < n?,

Figure 3: Wordlength and Scaling adjustment

where n}l is calculated as above. During wordlength

optimization, as described in Section 3.3 below, ill-
conditioned block diagrams could result. An ill-
conditioned block diagram can always be transformed
into an equivalent well-conditioned form in the fol-
lowing iterative manner. For each signal j such that
n; > nj, we set n;z) ¢ nj. After this correction
has been made for all violating signals, the propaga-
tion process described above is repeated to obtain new
ng(Z) values, which are then in turn checked for con-
ditioning. This process is repeated, obtaining ng(’)
values from n{'™" through propagation, and assign-

j
ing ngz) to the value of n‘;(z*l). Since this process only
results in reductions in successive n; values, it is clear
from Table 1 that the process will terminate in a well-
formed structure, where for some &, n§-k+1) = ng.k) for
all signals j. Recursive structures may require more

than one iteration for termination.
3.2 Noise Model

The noise modeling process assumes a well-
conditioned wordlength-annotated block diagram. We
linearize the truncation process by replacing each
truncation by an addition with an error signal, as illus-
trated in Fig. 4 [6]. Fig. 4(a) shows the specified (in-
finite precision) block diagram, illustrating data flow
between three operations, ol, 02 and 03. Fig. 4(b)
shows the implemented circuit, with wordlengths and
quantization shown explicitly. In Fig. 4(c) the quan-
tization blocks are replaced by additions for modeling
purposes.

We assume quantization is possible at each signal
J in the block diagram (Fig. 4). Where a signal is
truncated, a noise source with variance 0]2- is con-
structed. These sources are assumed to be uncorre-
lated with each other and with themselves at non-

zero time shifts [6]. However the noise model does not
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Figure 4: Truncation/Roundoff Model

follow the standard continuous rectangular distribu-
tion suggested by [6] since if the quantization involves
the truncation of only a few bits, a discrete probabil-
ity density function would provide a better approxi-
mation [7]. Thus if a signal with binary point p is
truncated from m; to mo bits in a two’s complement
representation, the error variance injected at that sig-
nal is given by Eqn. 1 [7]. This value is derived from
the assumption that each of the combinations of the
low-end truncated bits is equally likely, an assumption
that holds true in practice if the signals have sufficient
dynamic range over that bit-width [19].

2 i 2p9—2n2 _ 9—2n1

0j =7 22 (2 2 ) (1)

Although we are now in a position to calculate the
expected error variance injected at any signal within
the structure, the user is unlikely to be worried about
such information. The critical information from the
user’s perspective is the error variance at the outputs
of the system. We therefore propagate these injected
errors to each output in order to estimate their effect
on overall system noise-performance. This is the stage
of processing where the linearity and time-invariance
of the system becomes essential. It is known that for a
multiple-input, multiple-output LTI system with un-
correlated inputs I each of variance o7, the output
k € K has variance given by Eqn. 2. Here A\;; is a
scaling factor which can be determined easily through
an Ly transfer function-based analysis [5]. This can
clearly be applied to the error-prediction problem,
where there are as many error inputs as signals in the
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Figure 5: Noise estimation - example

original system specification.

op =Y ko] (2)
icl
As an example of error noise prediction, consider
the block diagram shown in Fig. 5 (27! represents a
unit-sample delay). Let us set the input wordlength
to 16 bits, with a peak input value of 1.0 and the
coefficient wordlength to 8 bits. Let us further set
each of the binary point positions and wordlengths for
each of the signals labelled 0 to 5 to the values shown
in Table 2 (p values have been chosen to match the
theoretical peak signal value shown, which have been
calculated through an [; scaling knowing the trans-
fer function from the input to each signal). Using
wordlength propagation, n? values can be derived as
described, from which variance values are calculated
for each individual noise input Eqn. 1. The A val-
ues are derived through an L» scaling by knowing the
transfer function from each additional noise input to
the output. The transfer functions used to calculate [y
and L, scalings are shown in Table 2 using z-transform
notation [19]. Using Eqn. 2 we get a total predicted
error variance of 1.0274e — 07.
The ability to predict the output error variance for
a given set of wordlengths allows us to formulate an
optimization, constrained by output error variance.
The following explains this optimization in detail.

3.3 Wordlength Optimization

Given a block diagram annotated with binary point
positions for each signal, the wordlength optimizer de-
fines a wordlength n; for each signal j, referred to
collectively in this section as the vector n, with one
element for each signal. Let Ej be the user-specified
maximum allowable error variance on output k € K,
at which the estimated quantization error variance for
wordlengths n is o7 (n) (calculated as shown in Sec-
tion 3.2). Then given a logic usage estimator func-
tion Ag(n), the problem may be defined as in Eqn. 3,



Table 2: Noise estimation example - signal parameters
(‘Transfer function’ abbreviated to ‘T.F.’)

Signal | Peak | p | n | n? o’ A
0 1.000 | 1| 8| 16 | 5.0862e-06 | 0.0101
1 1.111 | 1| 8| 12 | 5.0664e-06 | 0.0101
2 0.111 | -3 | 15 | 15 0 | 1.0101
3 0.111 | -3 | 15 | 15 0 | 1.0000
4 0.111 | -3 | 8 | 15 | 1.9867¢-08 | 0.0101
5 0.111 | -3 | 8| 8 0 | 0.0101
Signal | T.F. from Input | T.F. to Output

0 1 17(?..112_1
1 1 0.1
T—0.1z-1 T=0.1z-1

9 0.1 i
=017 T—0.1z 1

3 10121 1
-1
4 17(?..112:_1 12.01.2:12_1
5 0.1z7" 0.1
T—0.1z1 T-0.121

where Z1 is the set of positive integers.

Minimize Ag(n) subject to
VieJ: n;€Z* (3)
Vke K: oi(n)<E;

In our synthesis scheme we use a dedicated resource
binding [18], so Ag(n) can be calculated as the sum
of individual area estimates for each library element.
We have developed both a library of parameterizable
arithmetic units and area models for these units, for
implementation in Altera Flex10k FPGAs [21] in order
to use the synthesized system on the Sonic reconfig-
urable computing platform [22].

This optimization is a Mixed-Integer Nonlinear
Programming problem (MINP), and is complicated by
the fact that neither the objective function nor the
constraints are necessarily monotonic in any n; [23].
However it has been shown that for more traditional
uniform wordlength structures (Vj € J : n; =
u), or(n) does decrease monotonically with system
wordlength v [23]. This allows us to construct an op-
timal uniform wordlength structure through the use
of a binary search to find the smallest u such that all
constraints are satisfied. This uniform structure then
forms the starting point for our heuristic optimization
procedure.

The heuristic procedure is illustrated in Fig. 6. Af-
ter finding the optimal uniform wordlength w, this
value is scaled up by a factor (k = 2 is sufficient for our
benchmark set). This is because the main optimiza-
tion loop only reduces signal wordlengths, so by an

Algorithm WLopt
Input: Block diagram, scaling factor k
Output: Optimized wordlength vector n
w < minimum uniform wordlength satisfying
error constraints (binary search)
n; < ku for all j
reduce to a well-conditioned structure (Section 3.1)
do
currentcost < Ag(n)
foreach signal j do
W< n
bestmin < currentcost
minval < minimum value of Ag(w)
for w; € [0,n;] such that
error constraints are satisfied
if( minval < bestmin ) do
bestj < j
bestmin < minval
end
end
if( bestmin < currentcost )
hestj <~ Mhestj ~ 1
while( bestmin < currentcost )

Figure 6: The Wordlength Optimization Heuristic

initial scaling £ > 1 wordlengths are allowed to take
on values greater than u. At this point that the struc-
ture may become ill-conditioned, requiring reduction
to a well-conditioned structure, as described in Sec-
tion 3.1. This then forms a starting point from which
one signal wordlength is reduced by one bit each iter-
ation. The signal wordlength to reduce is decided in
each iteration by reducing all signal wordlengths until
they violate an output noise constraint. At this point
there is likely to have been some pay-off in reduced
area, and the signal whose width reduction provided
the largest pay-off is chosen.

Although this is a greedy algorithm, both the con-
straints and the objective function play a role in de-
termining the direction of movement towards the so-
lution. As a result, this algorithm is less dependent on
local information than a pure steepest-descent search.
Results from the synthesis of real circuits using this
algorithm are presented in Section 4.
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Figure 7: Synoptix Design Flow

4 Results

Synoptix, a complete synthesis system incorporat-
ing the algorithms in Section 3, has been developed
for implementation of multiple wordlength systems in
FPGAs. The input to the Synoptix is a Simulink block
diagram, and the output is a structural description in
VHDL or AHDL. FPGA vendor tools are then used
to perform the low-level logic synthesis, placement and
routing of the designs. The design-flow for implemen-
tation on the Sonic platform [22] is illustrated in Fig. 7,
with the Sonic-specific parts shaded.

The system has been tested on several benchmark
circuits, including finite impulse response (FIR) and
infinite impulse response (IIR) filters, a discrete cosine
transform (DCT), a polyphase filter bank (PFB), and
an RGB to YCrCb convertor.

Shown in Fig. 8 is a graph of resource usage (mea-
sured in Altera Flex10k logic cells [21]) against spec-
ified error-power, which is representative in terms of
the general shape of the plots achieved. The design
is a simple second order (biquadratic) IIR digital fil-
ter. Both the multiple wordlength design and the
optimized uniform wordlength structure are shown.
The plot of area for a uniform wordlength decreases
in steep steps. This is because there is a sudden
change when the next-lowest wordlength becomes fea-
sible with respect to the error constraints. This is not
the case for the optimized multiple wordlength struc-
tures, since there are many more variables and hence
the range of achievable error powers is much broader.
Also the heuristic line lies consistently below the uni-
form line (by 2 to 15%), showing a consistent area
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—<— optimized multiple wordlength
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Figure 8: Circuit Area against Specified Error Power
for an IIR Biquadratic Filter

saving for this design.

Table 3 illustrates some further results from larger
benchmark circuits. Both the number of logic cells
(LCs) and maximum clock frequency are given. Each
of these results corresponds to a single point on the
area-error power tradeoff curve for the circuit, placed
and routed in an Altera Flex10k70RC240-3 device
(as used in the Sonic [22] platform), except where
otherwise stated. The FIR filter is a 126-tap linear
phase low-pass Direct Form II [24] structure, sug-
gested by [25] as a representative DSP design. The
DCT is an 8-point, 1-dimensional decimation in time
structure from [26] which has also been suggested as
a benchmark by [25]. Two versions of this benchmark
were synthesized, one (DCT!) with equal error toler-
ance on all outputs, and the other (DCT?) with re-
quired signal to noise ratio (SNR) reducing by 3dB
per DCT coefficient, so that low frequency coefficients
are less noisy than high-frequency ones. The IIR fil-
ter is of 4th order, as used by [27] and is of inter-
est since it has a recursive (feedback) structure. The
polyphase filter bank (PFB) is the design given in [28]
for evaluation of the Streams-C compiler. The RGB to
YCrCb is of the form suggested by the ITU [29], and
allows some rounding error in the Cr and Cb outputs
whereas the Y output is error-free. This is of partic-
ular interest since the multiple wordlength approach
can clearly be used to customize the datapath in order
to achieve these differential specifications. All these
circuits were synthesized twice, once using an optimal



Table 3: Lossy Synthesis Results

Design Uniform wl Multiple wl
#LCS fcllc width #LCS fcllc
(MHz) | (bits) (MHz)
FIRT 6125 | 29.15 16 | 3356 | 36.23
DCT** 1394 | 12.95 13 | 1311 13.67
DCT?* 1367 | 13.03 12 | 1164 | 13.53
IIR 701 9.57 12 623 9.32
PFB 321 | 30.03 15 273 | 31.34
RGB 438 | 11.58 18 272 16.15

* implemented on Flex10k70GC503-3
t implemented on Flex10k200SRC240-1

uniform wordlength structure and once using the mul-
tiple wordlength structure generated by the Synoptix
tool. The DCT designs were synthesized on a device
with a larger number of I/O pins, due to the I/O-
limited nature of the designs, whereas the FIR filter
was synthesized on a device with a significantly larger
logic capacity.

It should be noted that even for the uniform
wordlength structures, Synoptix was used to automat-
ically insert power-of-two scaling [30], a good design
practice in DSP design. Also note that for both uni-
form and multiple wordlength structures, these cir-
cuits represent a completely unpipelined implementa-
tion of the specification to aid direct comparison of
maximum clock rate f. reported.

Table 3 illustrates that area reductions of between
6% and 45% (mean 22%) have been achieved by us-
ing the multiple-wordlength approach described in this
paper. These area reductions have been accompanied
by a speedup in maximum clock frequency between
-3% and 39% (mean 12%), even though the estimated
speed is not currently considered as part of our op-
timization (see Section 3.3). Interestingly, the only
benchmark to have been slowed down slightly as a re-
sult of the optimization is the IIR filter. This is due to
the increase of some signal wordlengths on the critical
path around the feedback loops in this filter. Impor-
tantly, the largest area reductions and speedups have
occurred in both the FIR filter, which is the largest de-
sign shown, and the RGB to YCrCb convertor, which
has a structure ideally suited to multiple wordlengths
since the error free Y is calculated first, from which
Cr and Cb are derived [29].

With the exception of the IIR filter, all benchmarks
were also synthesized with a specification of zero er-

Table 4: Lossless synthesis results

Design Multiple wl
#LCs feik
FIR' 11110 f
DCT* 1530 12.77
PFB 332 38.31
RGB-YCrCb 547 11.99
* implemented on Flex10k70GC503-3
t design too large for Flex10k200 device

ror. This is a degenerate case of our algorithm cor-
responding to lossless synthesis, and has been per-
formed for comparison with other lossless approaches.
(Note that the IIR filter cannot be synthesized in a
lossless way due to the feedback.) Table 4 illustrates
these results. Note that the FIR result for area is
only an estimate reported by the synthesis tools since
it was unable to be placed in the largest device sup-
ported by MaxPluslII, and for the same reason there
is no clock frequency result for this benchmark un-
der lossless synthesis. The most important fact to be
gleaned from these results is that the correctness pre-
serving transformation approach to high-level synthe-
sis of DSP structures from floating-point specifications
(see Section 2) is insufficient by itself to achieve re-
sults matching or improving on traditional DSP design
techniques, when some output roundoff error can be
tolerated. For aslong as output error is not considered
as a design variable by high-level synthesis systems,
design specification languages must explicitly consider
bit-width or sub-optimal designs will result.

5 Conclusion

This paper has introduced the design approach be-
hind the multiple wordlength paradigm. It has been
demonstrated that the multiple wordlength approach
provides an elegant way of customizing data-flow in-
tensive designs for efficient implementations in recon-
figurable hardware. A technique has been presented
for the synthesis and optimization of such multiple
wordlength systems, and results show that it is desir-
able to use such optimizations on practical benchmark
circuits.

We believe that it is time for high-level synthesis
to start considering the design axis of error, alongside
the traditional axes of area, latency, throughput and
power. Error is a design parameter that current de-



sign practice leaves to a higher level of design, before
implementation in a hardware description language.
By considering error at the synthesis stage, we believe
it is possible to achieve significant improvements.

We are currently extending our optimizations to
certain nonlinear algorithms, and looking at the im-
pact of resource sharing on multiple wordlength struc-
tures. Future work should consider in more detail the
effect of multiple wordlength structures on design la-
tency and throughput, and quantify the power-saving
implications of this work.
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