Optimising designs by transposition

Wayne Luk*

The purpose of this paper is fourfold: first, to describe some observations about how array-
based designs can be optimised by transposition — a method of rearranging components and
their interconnections; second, to provide concise parametric representations of such designs;
third, to present simple equations that correspond to correctness-preserving transformations
of these parametric representations; and finally, to suggest quantitative measures of design
trade-offs involved in this kind of transformation.

Motivation

Consider the two designs in Figure 1. Notice that despite the structural differences of the
circuits, the relative positions of the external connections are the same. This is achieved by
the interleaving wires at the top and bottom of Design B. Transposition is the name for this
kind of interleaving and also for the subsequent structure of components, since the rear-
rangement is similar to transposing matrices. It is clear that the functional behaviour (but
not timing characteristics) of the two designs is indistinguishable; we shall show later how
this situation can be expressed mathematically as a correctness-preserving transformation.

hoHhA1 A2 fio fin fiot—

— Jo,o HH Jo,1 H fo2

— fo,0 fon fo,2

Design A Design B

Figure 1: An example of transposing designs.

*Programming Research Group, Oxford University Computing Laboratory, 11 Keble Road, Oxford, Eng-
land OX1 3QD; wayne@prg.ozford.ac.uk

2 Optimising designs by transposition

Why are these designs interesting? In our experience Design A is a generic pattern that
arises frequently in the development of circuits. For instance in developing an arithmetic and
logic unit, it is more convenient to specify separately the arithmetic and logic operations:
fo,0, Jo,1 and fp 2 may represent full adders that process interleaved representations of integers,
and fi0,fi,1 and f; 2 may perform a specific logic operation, depending on the horizontal
input, on their vertical inputs. Figure 2(a) shows a typical configuration in which the
outputs of the full adders and the logic circuits are interleaved — transposed — before feeding
into an array of multiplexers that select either output. It is, however, more advantageous
to perform the transposition at the outset using the transformation described in Figure 1,
since we would then be able to form a single array of composite cells each consisting of a
full adder, a logic circuit and a multiplexer as shown in Figure 2(b). It is the aim of the
circuit designer to use as few types of cell as possible in order to reduce the design and
validation effort, because attention can be focused on optimising and testing the basic units
which can then be replicated with confidence.

— A A A

Figure 2: Two implementations of an ALU. A, L and M correspond respectively to a full
adder, a logic circuit, and a multiplexer.

Another situation in which Design B in Figure 1 offers an improvement over Design
A is as follows. Suppose that every component in Design A is latched. However, instead
of depending on the propagation delay of the components, the clock speed of the system
may be restricted by the propagation delay associated with the two long horizontal wires.
In Design B the components are more evenly distributed and the problem of propagation
delay is transferred to the wires implementing the transpositions. We shall see later the
circumstances in which these peripheral transpositions can be eliminated to produce an
efficient layout.

A further benefit of transposing components can be derived from altering the aspect ratio
of a design. Given that one can overlay a wire on a component and that the connections
of a component can be shifted as long as their direction and order are maintained, the
configuration in Figure 3(a) can be implemented as described in Figure 3(b) or Figure 3(c).
Hence if every component in Figure 1 has the same height h and the same width w, and

Luk 3

ignoring the contribution of the peripheral interleaving wires, then Design B may have an
aspect ratio of either 2h x 3w or h X 6w. Design A is not as flexible; the same assumptions
will result in an aspect ratio of h X 6w.

| |
(a) (b) (c)

Figure 3: Implementing transposition.

So much for motivation. The rest of the paper will describe a framework for expressing
transposition parametrically, and will present a catalogue of such transformations together
with quantitative measures of the trade-offs involved.

Notation

The formalism we use is based on Sheeran’s relational framework and the author’s hetero-
geneous combinators. The background and the details of this approach have been described
elsewhere (see [2], [3]), and only the definitions and concepts relevant to our discussion will
be introduced here.

A design will be described by a binary relation of the form z f y def P(z,y) where z,y
represent the interface signals and belong to dom(f) and rng(f) (domain and range of
f) respectively, and P is a predicate describing the intended behaviour. For example, an
inverter can be specified as z inv y def p = —1.

The converse f ! of a relation f is defined by z (f 1) y def y f z, and the identity relation
def

is given by z id y = x = y. If f is a function, then f z represents the value of f for the
argument z.

Objects in our notation are either atoms (such as numbers or relations) or tuples of
objects: for instance the object (0,(1,2)) is a 2-tuple containing the number 0 and the
tuple (1,2). A tuple is an ordered collection of elements, with the empty tuple denoted by

(). Tuples are concatenated by <’ (pronounced ‘append’), so that
(a)(b,c,d) = (a, b, c)(d) = {a,b,c,d).

Given that z is a tuple, #z represents the number of elements in it, and z; (where 0 < i <
#x) is its i-th element. Let us call a tuple of tuples a two-level tuple, a tuple of tuples of

tuples a three-level tuple and so on. If z is a tuple with two or more levels, then z; ; def (zi);.
Some operations on tuples are given below:

T Tyy1 2 def 2, (select n-th z, 0 < n < #z),

(z,y) swap z ¥ 2= (y,z), (swap components of 2-tuple),

4 Optimising designs by transposition

ziran z Vi, ji0<i< #2,0<) < #2. (transpose z, given that

Hr, = F2)N (25 = %45 z is a tuple of tuples).
]7 7]

For example, tran ((1,2,3),(4,5,6)) = ((1,4),(2,5), (3,6)). Notice that tran is only defined
for rectangular tuples — tuples in which all sub-tuples have the same length.

A rectangular circuit with connections on every side is modelled by a relation that
relates 2-tuples, with the components in the domain corresponding to signals for the west
and north side and those in the range corresponding to signals for the south and east side.
In general, composite signals are represented as tuples with the position of a particular
signal corresponding to its relative position, and with its structure — the grouping of signals
— reflecting the logical organisation of adjacent signals.

Given a circuit f with connections on all four sides, we can use the generic reverse
function recrev which recursively reverses a tuple and all its component tuples

recreve ¥ 2 if 2 = () orif z is an atom,

def

recrev ((x) ws) (recrev xs) (recrev z) otherwise,

to define fY and fM which denote respectively the reflection of f in a vertical and in a
horizontal axis, and f¥7 which denotes the reflection of f both vertically and horizontally:

(z,y) fV (a',y") X (y, recrev y) f (recrev o', z),
(z,y) [T (2" y) X (recrev z,2') f (y, recrev y'),

(z,y) Y7y def (recrev y', recrev z') f (recrev y, recrev z).

To deal with sequential circuits an expression is considered as relating a stream (an
infinite tuple of data) in its domain to a stream in its range. In most cases, such as in
the absence of conditionals, the same algebraic theorems can be applied to expressions
representing both combinational and sequential systems [1].

Combinators

Combinators are higher-order functions that capture common patterns of computation as
parametrised expressions. These patterns can represent behaviour, in which case the be-
haviour of a composite device is expressed in terms of the behaviour of its components;
or they can represent the spatial organisation of a circuit, in which case they describe the
connection of components to form the composite device. The following binary combinators
are adapted from Ruby [2] to define various ways that two components can be connected
together:

r(fi9)z < 3y (efy)Alygz)
(o) (fl) (s y) X (efa") A (ygy)
(a, (b,) (f # 9) {(p,))& TFs.(a,b) [(p,s)A(s,¢)g(q,r)
({a,0),c)(f+) (p. () X Fs.(a,s)f (p,q) A (b,c)g(s,T)

Since (f £ g)"t = f71 # ¢!, we only need to work out the properties of either beside or
below.

We shall use the abbreviations fst f f f | id, sndf def ;g || f, fsth f def r 1 swap,
sndh f def swap H [, fstv f def [¥ swap, sndv f def swap F f, f\g def g Y f:g and f\g def

parallel composition),
beside),
below).

o~~~

relational composition),

Luk 5

Figure 4: Relational and parallel composition.

c
b c
b g r
a f °ly r s
a f q
p q
p

Figure 5: Beside and below.

g '\swap;f;g. These abbreviations have interesting properties like fstf;fstg = fst(f;g),
fsth(sndvf) = sndv(fsthf), (f\g)\A = f\(g;h), sndf = (fstf)\swap, and sndf~1!;g;fstf =
g\(fstf). Note that prefix combinators have a higher precedence than infix ones, and
that relational composition has the lowest precedence. The combinators \, \\ have a lower
precedence than all other binary combinators except relational composition.

One can check that in general none of the above binary combinators is commutative, and
that only relational composition is associative. For instance, since ((z,y), z) and (z, (y, 2))
are distinct tuples, (f || ¢) || h # f || (¢ ||). We now introduce a class of prefix combinators,
called heterogeneous combinators, each of which takes a tuple of components and returns a
binary relation corresponding to the composite circuit; and the components that are wired
together can be different from one another. For instance, the parallel composition of three
distinct components can be expressed as (|| (f,g,h)) which relates signals of the form
(z,y,z). Given that #f = #z = #y = N, the four common flavours of heterogeneous
combinators are described below:

a(9 f)b = ds.(sp=a) A (sn=0) AVi:0< i< N.s;fisit1 (het. chain),

Jo h f2 I3 5 (for fisfor J3)

Figure 6: Heterogeneous chain.

Optimising designs by transposition

|| <f07f17f27f3>

Figure 7: Heterogeneous map.

+H <f07f17f27f3>

Jo

Figure 8: Heterogeneous row.

(het. map),
(het. row),

(£ 1) by
s b) A (sw=a) ANVi:0<i<N.(x,si+1)fi (si,yi) (het. column).

Given W € { 5,0, +H :I: } and 0 < N < #f, we shall adopt the abbreviation

U Winlo<i< N,

<N

The following combinator will be used to describe a rectangular grid of heterogeneous com-

ponents:
def
" o = F
i,j<M,N i<M

For many applications the generality of heterogeneous combinators is not required. If
f does not depend on i, then the following homogeneous combinators [2] can be used to

%Jﬁ)

J<N

Luk 7

describe arrays of identical components.

e sy (chain), (1)
<N

s f €S (map), (2)
<N

rowy f € 7 (row), (3)
1< N

coly f & T f (column), (4)
1< N

gridy y f def ol (rowy f) (rectangular grid). (5)

The subscripts associated with these combinators correspond to the size of the arrays, often
omitted when they can be deduced from context.

Properties of transposition

Let us look at some properties of tran that will prove useful. If we write (2;]0 < i < #=z)
as (z;|i € I) where I is the set of subscripts {i|0 < i < #=z}, then the previous definition
of tran can be rewritten as

tran ((z;j|j e J)|liel) = ((z;liel)|je]). (6)

This shows that transposing a tuple with two or more levels corresponds to permuting the
positions of the two subscript generators ¢ € I and 5 € J.

From Equation 6 we can conclude that transposing an expression twice leaves it un-
changed:

tran® = idy, (7)

since permuting the positions of the subscript generators ¢ € I and j € J twice will return
the original expression. Here id, is the identity relation on n-level rectangular tuples.
Equation 7 also shows that {ran=! = iran.

Now consider the effect of the function ({ran; o tran)® on tuples with three or more
levels:

((tran; oc tran)®) ({{z;; 1 | k € K)

jedyliel)

(o tran ; (tran; o tran)®) (({(z; ;1 |k € K)Y|i € I)|j € J)
((tran; o tran)?) ({((zi 1 |i € I) |k € K)|j € J)

(< tran; (tran; < tran)) ({({(zijr|i € I)|j € J) |k € K)
(

(

{

(tran; o tran)) (({(zijr|j € J)|i € I) |k € K)
o tran) (((zijx|j € J) |k € K)
((zij k[k€ K)

iel)

JeJylie),

so we obtain
(tran; o tran)® = ids. (8)

8 Optimising designs by transposition

Notice that at each step of the above derivation, the positions of two of the subscript
generators are permuted. One can generalise this result for an M-level tuple where M > N
by applying a cyclic permutation to the first N + 1 subscript generators, so that

(tran; o« tran; < tran; ... ; N1 tmn)N"'l = idyy1.
In other words,
N+1
(9 ! tmn) = idNt1.
<N

With N = 1 we obtain Equation 7, and with N = 2 we obtain Equation 8.

Next, we shall present three ways of eliminating tran from an expression. The purpose is
to remove unnecessary transpositions which are wasteful of area, or to make the description
more uniform so that further optimisations can be applied.

Theorems with preconditions

The first method of eliminating tran involves using theorems with preconditions. For ex-
ample, with the precondition h;g = id, it can be shown that

5 (gifiih) = 9;(9 fi);lu

<N 1< N

+H (fstg;fi;sndh) = fstg; (—H— fl) ;snd i,

<N <N

H (gllgsfigsh|h) xg || xg; F fijioch | o«h,

1,j<M,N 1,j<M,N

since the ¢’s and A’s within the array cancel one another. Instances of these theorems
include
(g:73m)" = g3 /V 5k,
row(fstg; f;sndh) = fstg;rowf;sndh,
grid(g [l g; /5 k([h) = xgllxg;gridf;och | oh.

Now we can use the result obtained in the last section: the above theorems will be applicable
for ¢ = tran and h = tran, or ¢ = (tran; xiran) and h = (iran; octran)?, and so on. In
this way transpositions in the wiring between adjacent cells can be eliminated.

Array of wiring cells

The second method of eliminating {ran involves developing an array of wiring cells that
corresponds to an expression involving tran. For instance, given that

zforky oy = (z,z) (duplication),
(2,as) apl y def) = (x) s (append left),
(zs,z) apr y def = zs™(z) (append right),
(z)as,y)shlu ¥ u = (z,257(y)) (shift left),
(2,25 (y)) shr u def = ((z)'zs,y) (shift right),

Luk 9

it can be shown that

fork ; (apr_l; 1) || (apl_l; Tp); tran = apl™!; row (snd fork; shr); w1,
L —; Ir - 1, ;— - 1, Ir Bk rowy (snd fork; shr)

j_

Figure 9: A row of wiring cells.

The right-hand side of the above equation is in the form of a row (Figure 9) and can be
optimised further, such as combining its components with those of adjacent arrays. Other
examples include

(f |l g \ tran)\sndswap = (sndvf) H (fstvg),
fllg\ tran = (fstvf) # (sndvg).

Duplication and truncation

A further possibility of eliminating {ran arises when signals are being duplicated or dis-
carded. For instance, given the function dupy which duplicates its argument N times,

zdupy y ¥ (H#y=N)A(Vi:0<i< N.y =z),
it can be shown that
dupy ; tran = o dupy.
Similarly, for rectangular tuples of length less than or equal to ¢, we have

lran; ™, = ;.

Transposition theorems

Transposition theorems belong to one of several classes of theorems useful for circuit op-
timisation [4]. They relate circuits interleaved in different ways. In this section we give a
number of transposing theorems that have been found useful in developing designs. The-
orems involving columns can be derived from the corresponding theorems for rows, since
col f = (row (f~1))71.

Linear structures will be discussed first. The theorems obtained will then be extended
to cover rectangular structures.

Linear arrays

First, let us consider a linear array that can be described as a map of maps. The components
of the array can be transposed if the domain and the range signals are transposed accordingly

10 Optimising designs by transposition

(Figure 10):

| (| fm) = |l (| fm‘) \ tran. (9)
<M \j<N J<N \i<M

Joo || foa || Jo,2 fiollfinllhe Jool|lfip Joi || fin Jo2 || fi2

I Il /i I Il fij | \tran
<M \j<N J<N <M

Figure 10: A theorem for transposing a map of maps (M =2, N = 3).

A common special case of this theorem is

«x(fllg) = (xf] xg)\ tran.

Next, we consider a collection of rows displaced horizontally and vertically from each other.
They can be combined into a single row with the displacement transferred to the com-
ponents; this usually results in a more compact layout as described in the introductory
section:

Il (—H— fz‘,j) \ tran = +H (Il fl-ﬁj\tmn) \\ fst tran. (10)

<M j<N j<N <M

An example of the circuits represented by this equation, with M = 2 and N = 3, is given
in Figure 1.
Special cases of Equation 10 include

x(f # ¢g) \ tran = (xf\tran) # (xg\ tran) \| fst tran,
(rowf || rowg) \ tran = row(f | g \ tran) \ fst tran.

Luk 11

Rectangular arrays

The theorem for transposing linear arrays can be extended to deal with rectangular arrays:

[l (:|:|: fk,i,j) \ tran = :|:|: (H fk,z-,j\tmn) \ (tran || tran). (11)

k<K \ij<M,N ij<M,N \k<K
Special cases of this theorem include

x (gridf)\tran = grid(xf\tran) \ (tran || tran),
(gridf || gridg) \ tran = grid(f || g\ tran) \ (tran || tran).

Distributing components in arrays with bends

In this section we present some theorems for reasoning about arrays with bends in them.
The idea is to distribute the components as evenly as possible throughout the network. The
circuit bend is a piece of wire that bends backwards:

(z,y) bend z def p =y,

Note that and y can themselves be tuples. In such cases cross-overs are needed to maintain
the order of the signals (Figure 11). z is a dummy signal that corresponds to an unused
connection.

|
|
|
|
z
|
|
|
|

Figure 11: A vertical instance of the circuit bend.

We shall start by looking at how components can be distributed in linear arrays with
a single bend. The results will then be extended to include linear and rectangular arrays
with multiple bends.

Linear arrays with a single bend

A bend can be added to a chain of N components (Figure 12):

x(: fz) y = (z,y) (fst s fi; bend) z.
i<N i<N

12 Optimising designs by transposition

t— o h — L /B

(z,y) (fst S fi; bend) z

<N

<N

Figure 12: Adding a vertical bend to a chain (N = 4).

We can now move some of the components from the lower branch to the upper branch
(Figure 13):

fst(S i 9 gi) ; bend = (9 fl) I (9 g;,l_l-_1> ; bend
<N <N <N <N

= 9 (fi ll gnti_y); bend. (12)
<N
] gl—l | go—l
— o h — %9 — N — o —1 N
(=] o ° . _1 .
fst(S h 3 gz.) bend _ 5 I giti); bend
i<N i<N <N

Figure 13: Transforming a chain with a vertical bend (N = 2).

For homogeneous arrays Equation 12 becomes
fst (f¥:9™)stend = (F || g71)"5 bend.

Similarly, a bend can be added to a component with connections on every side:

(z,y) [(u,v) = ((z,v),y) (fstvf; sndbend; m1) u.

One can move the component to the upper branch provided that it is reflected vertically,

fstv f ; sndbend = (sndvfY)\ (fst recrev) ; snd bend.

Luk 13
From this, it is easy to derive an equation which introduces transposition to a circuit with
two components:

fstv(f # ¢) ; sndbend = (f| ¢¥ \ tran) \ fst(sndrecrev) ; sndbend.
If both components are themselves rows of N components, then we can move half of the

components from the lower branch to the upper branch and transpose the resulting circuit
(Figure 14):

fstv (H fi #+ +H gi) ; snd bend

<N <N

= ((H fi || +H g}\};_i_l) \ tmn) \\ fst (sndrecrev) ; snd bend

<N <N
= H (fillg%_i_y \ tran)\ fst transrev ; snd bend, (13)
<N
where
transrev % tran ; snd recrev.

If the two arrays are homogeneous then Equation 13 becomes

fstv (rowf 4 rowg);sndbend = row(f || gV \ tran) \ fst transrev ; snd bend.

Linear arrays with multiple bends

We now explore how multiple bends can be introduced in linear arrays. First, observe that
a bend can be twisted to form a zig-zag piece of wire containing three bends:

bend = snd(my'; shl\\ (snd bend) ; m) ; bend

This process can be continued so that a single bend can be twisted to form a piece of wire
containing an odd number of bends:

bend = snd(m;'; (coly shl) \\ snd(xybend); m1); bend.

In the same vein one can add 2N — 1 bends to a chain of 2N components by the following
theorem:

fst (9 fl) ; bend = sndbendsy ; fst (fst 9 fz) \ apl; xybend
1<2N 1<2N
where

sndbendsy %' snd (my'; fst (xy_1bend™') 5 coly_q shl) ; shr; apl.

Optimising designs by transposition

fstv (H fi #+ +H gi) ; snd bend

<N <N

H (fi |l gX_;_; \ tran) \\ fst transrev ; snd bend
<N

Figure 14: Transforming a row with a vertical bend (N = 3).

Luk 15

I
J2
i
— o/ h /LB o
fst(3 ﬁ-) ; bend = sndbendsy ; || (fai ”fQ;-IH);OCNbend
1<2N i<N

Figure 15: Adding multiple bends to a chain (N = 2).

We then move some components from the bottom branch onto the other branches (Fig-
ure 15):

fst(9 fl) ; bend = sndbendsy; || (fa Hfiil);oc]\rbend. (14)
1<2N <N

The same procedure can be applied to a row of components (Figure 16):

fstv (H (fai +}—f2i+1)) :sndbend = fst sndbendsy : @y ; snd x y bend
<N

where

by &f (| (fai | f;f_l_l\tmn)\tmn) \\ fst oc(sndrecrev). (15)

<N
The above two theorems can be specialised to deal with homogeneous arrays:

fst f2V : bend
= sndbendsy ; <y (f || f71); xnbend,

fstv (rowy (f 4 f)) ; snd bend
= fstsndbendsy ; (o (f || f¥ \ tran) \ tran)\ fst x(sndrecrev) ; snd xbendy .

16 Optimising designs by transposition

¢

Jo

fst sndbendsy ; (Il (fai || Y \ tran) \ tran) \\ fst x(sndrecrev) ; snd o y bend
<N

Figure 16: Adding multiple bends to a row of components (N = 2).

Rectangular arrays with multiple bends

In this section we extend the results for linear arrays to cover rectangular arrays. First, let
us state two theorems for rearranging vertical bends in rectangular arrays:

fstv (:|:|: fij H :|:|: gz-,j) ; snd bend

1,j<M,N 1,j<M,N
= fsttran; 3 (fstvfi;) # F£ (fstvg;);snd(oxbend) (16)
1,j<M,N 1,j<M,N

= fstiran; = (fi; || ng_j_l \ tran) \\ fst transrev ; snd (xbend) (17)
i,y <M,N

where transrev ! tran ; snd recrev as before. Fquation 16 corresponds to implementing

the feedback paths as internal wiring cells, and Equation 17 corresponds to a transposi-
tion forming composite cells each consisting of an f;; and a reflected version of g; n_;_1
(Figure 17).

Again these can be specialised for homogeneous grids, for example:

fstv (gridf 4 gridg); snd bend
= fsttran; grid (f || g¥ \ tran) \\ fst transrev ; snd (xbend).

Luk

] f1,0 - f1,1 — f172 —d1,0+— 91,1 — 91,2
| | | | | |
] f0,0] f0,1 T f0,2 — 90,0 — 90,1 |— 90,2

| | | | | |
fstv (# fi; H# # gm-) ; snd bend

ij<M,N ij<M,N

91,2 glv,l glv,o]

X fio fin fi2
98),2 98),1 98},0]

foo fon fo,2

_ fstiran; 3 (fij || QXN—j—l \ tran) \\ fst transrev ; snd (xbend)
ij<M,N

Figure 17: Rectangular arrays with multiple vertical bends (M =2, N = 3).

18 Optimising designs by transposition

Next, consider a grid consisting of four heterogeneous arrays:

i j<M,N ij<M,N i j<M,N ij<M,N

gridd (p,q,r,s) def (# pi; H # qz])i(# ri; # Si,j)'

A rectangular array with vertical and horizontal bends (the top diagram of Figure 19) can

be described by
griddbends (p,q,r,s) def fsth (fstv(grid4 (p, q,r,s))); bend || bend.

The first optimisation, as before, is to implement the feedback paths as wiring cells within
the array. This is captured by the following theorem:

griddbends (p,q,r,s) = map2tran; gridd (2 p, Qq, Qr, Qs); map2bend (18)

where
Qf ¥ (fsth(fstv [),
1,j<M,N
map2tran = (tran; < tran) || (tran; x tran),

map2bend ' (xbend || xbend) || (xbend | xbend).

However, there are still long combinational paths in the circuit which can be eliminated by
a further rearrangement of components. Before doing that, let us define the combinator
representing the wiring pattern that will be required (Figure 18):

transwap (a,b,c,d) ¥ ((sndha || sndhb)\ tran) F ((fsthe || fsthd)\ tran).

Figure 18: transwap (a, b, c, d).

Luk

— 70,0 —{ 70,1 - S0,0 —{ S0,1

— Po,0 —{ Po,1 — 40,0 —{ 90,1

fsth (fstv(grid4 (p,q,r,s))); bend || bend

70,0 To,1

90,1 90,0

_ . H VH .oV .
= maprevs ; :|:|: (tmnswap (P —ic1 s M1 N—j—15 Tiris 3i,N—j—1>) : mapbend?2
1, <M,N

Figure 19: Rectangular arrays with vertical and horizontal bends (M =1, N = 2).

20 Optimising designs by transposition

A useful result concerning transwap is
fstv (fsth 3t ((a,b),(c,d))); bend || bend = revs; transwap (a™, bV, ¢, dV) ; parbend?2,
where

revs % (tran;fst (recrev || recrev)) || (tran;snd (recrev || recrev)),

parbend2 ' (bend || bend) || (bend || bend).

Using this we can obtain a theorem that produces a more even distribution of components
for grid4bends (p, q,r,s), an instance of which is depicted in Figure 19:

griddbends (p,q,r,s)

_ . H VH oY .
= maprevs; # (tmnswap <pM_Z-_17j, AV i1 N—j—15Tisjs SZ-7N_]<_1>) :

1, <M,N
mapbend? (19)
where
maprevs (tran; fst o recrev; o« tran ; tran) || (tran; snd « recrev; « tran; tran),

mapbend2 ' (bend || bend) || x(bend || bend).

These theorems can be specialised for homogeneous networks as well; for instance one
can show that

fstv (fsth (gridy 5 (gridy; v f))) ; bend || bend

= maprevs ; gridy, y (transwap (F7, Y7L 1Y) s mapbend?.

Trade-off analysis

This section suggests some quantitative measures of the trade-offs involved in the trans-
formations discussed in the preceding sections. As explained in the introductory section,
transposition usually results in a more uniform distribution of components in the array at
the expense of increasing the complexity of the interface. In the following estimation of size
and performance the contribution of the interface will not be included since it is usually
application- or implementation-dependent. Hence the reader must check for the particular
situation whether the improvement brought by the transformation is offset by the increased
complexity of the interface.

Table 1 summarises the effects of various transposition strategies introduced earlier. The
calculation is based on the simplified case in which all components have the same aspect
ratio h X w. We also assume, as explained in the introductory section, that wires can be
overlaid on components in assessing the alteration of aspect ratio, and that all components
are latched in estimating the reduction of long combinational paths.

Luk

21

Table 1: Summary of trade-offs in transposition strategies, showing the features of
the designs represented by the left- and the right-hand side of a given equation in

the text.
Equation LHS RHS LHS RHS
aspect ratio aspect ratio longest path longest path
9 h X MNw h x MNw 0 hor 0
or Mh x Nw
10 h X MNw h x MNw h or Nw h or w
or Mh x Nw
11 KMh x KNw KMh x Nw (K —1)Mh (K —1)h
or Mh x KNw or (K —1)Nw or (K — 1w
14 h X 2Nw 2Nh x w 2Nw 0
15 h x 2Nw 2Nh x w 2Nw (2N — 1)h
16 Mh x 2Nw Mh x 2Nw (M —1)h+2Nw 2Nw
17 Mh x 2Nw Mh x 2Nw (M —1)h +2Nw h
or 2Mh x Nw or w
18 2Mh x 2Nw 2Mh x 2Nw 2(M — 1)h + 2Nw 2Mh
or 2Mh + 2(N — 1w or 2Nw
19 IMh x 2Nw AMhx Nw 2(M — 1)h + 2Nw 4h
or Mh x 4Nw or 2Mh 4+ 2(N — 1)w or 4w

22 Optimising designs by transposition

Concluding remarks

We have developed a number of techniques for optimising array-based designs by component
transposition. The major innovations include the description of properties of tran that are
useful for design optimisation and the collection of theorems for transforming expressions
with tran and bend. Let us summarise the main features of our work and examine its design
implications.

Summary

A principal challenge in providing a theory for transforming designs is to find useful de-
sign abstractions. We have identified the parametrised building blocks tran and bend and
showed how they correspond to common ways of interconnecting components. These generic
building blocks allow concise descriptions of complex wiring patterns.

The use of tran and bend also enables us to follow a simple equational style of presenting
transformations. Several schemes for transposing components of regular array circuits have
been discussed. Although the more refined versions require a higher degree of sophistication
in interface arrangements, they can still be captured succinctly using the appropriate combi-
nators and primitives. These transformations form a valuable part of a coherent framework
for developing and optimising designs (see [2], [3], [4], [6], [7]).

Design implications

The increase in performance brought by transposing components comes mainly from local-
ising interconnections by wiring cells. The elimination of long wires reduces the area and
power required for a circuit. We have also indicated how further improvements can be ob-
tained by wiring over the computational blocks, a technique which is eased by the adoption
of multi-layer interconnections in some CMOS technologies. An advantage of our approach
is that the transformations preserve the regularity of the architecture. This simplifies both
the implementation of regular array circuits and the comparison of alternative designs.

Our work, however, is not restricted to custom integrated circuit designs; for instance,
transposition can also be applied to vary the array dimensions of programmable cellular
structures in order to maximise cell utilisation.

The introduction of bends provides a further opportunity for meeting design constraints,
such as satisfying requirements for an array to conform to a given aspect ratio or for the
input and output ports to be arranged in a specific manner. In particular, our work pro-
vides a possible optimisation for systolic implementations involving long feedback paths [5].
The optimised design can be achieved with little additional effort as the transformations
only involve the reflection of components. A more complicated interface may be required,
however, although this may not be an issue if the data come in the right format or if the
resulting increase in performance justifies the complication.

Further work is needed in three areas. First, a deeper understanding of the scope and the
value of transposition requires the application of this method to circuits of greater complex-
ity than those discussed in this paper. Second, it is important to study how transposition
fits in with other techniques — such as pipelining — in order to provide an overall strategy
for optimising designs. Third, the implementation of transposition should be facilitated by
appropriate computer-based tools which are compatible with other circuit design aids and
cell libraries.

Luk 23

Acknowledgements. [thank Geraint Jones for contributing the bottom array in Figure 19
and for providing useful suggestions. I also thank Michael Jampel, Mary Sheeran and
the referees of this paper for their comments. The support of the UK Alvey Programme
(Project ARCH 013), the Croucher Foundation and Rank Xerox (UK) Limited is gratefully

acknowledged.

References

[1]

[6]

[7]

G. Jones and M. Sheeran, Timeless truths about sequential circuits, in S. K. Tewks-
bury, B. W. Dickinson and S. C. Schwartz (eds.), Concurrent computations: algorithms,
architectures and technology, pp. 245-259, Plenum Press, 1988.

G. Jones and M. Sheeran, Circuit design in Ruby, in J. Staunstrup (ed.), Formal
methods for VLSI design, North-Holland, 1990.

W. Luk, Specifying and developing regular heterogeneous designs, in L. Claesen (ed.),
Formal VLSI specification and synthesis, pp. 391-409, North-Holland, 1990.

W. Luk and G. Jones, The derivation of reqular synchronous circuits, in K. Bromley,
S. Y. Kung and E. Swartzlander (eds.), Proceedings of International Conference on
systolic arrays, pp. 305-314, IEEE Computer Society Press, 1988.

J. Moreno and T. Lang, On partitioning the Faddeev algorithm, in K. Bromley,
S. Y. Kung and E. Swartzlander (eds.), Proceedings of International Conference on
systolic arrays, pp. 125-134, IEEE Computer Society Press, 1988.

L. Rossen, HOL formalisation of Ruby, Technical Report ID-TR 1989-61, Department
of Computer Science, Technical University of Denmark, 1989.

S. Singh, An application of non-standard interpretation: testability, in L. Claesen (ed.),
Formal VLSI correctness verification, pp. 235244, North-Holland, 1990.

