Producing design diagrams from declarative descriptions

Shaori Guo
Computing Laboratory, Oxford University, Parks Road, Oxford OX1 3QD, UK

Wayne Luk
Department of Computing, Imperial College, London SWT7 2BZ, UK

ABSTRACT

The declarative language Ruby provides a coherent framework for representing and developing designs. Sketch-
ing diagrams for Ruby programs by hand is, however, time-consuming and error-prone. This paper describes a
design sketcher which automates the production of a diagram from a Ruby description.

1 INTRODUCTION

Text-based languages, such as VHDL,3 are becoming increasingly popular for developing designs. Their
popularity is mainly due to their facilities for parametrising designs, and it is a great bonus if both behaviour and
structure can be expressed in a single notation. Moreover, pictorial representations such as circuit schematics can
be tedious to create and to modify.

Providing visual aid in hardware design is, nevertheless, important. Circuit diagrams, when appropriately
drawn, make explicit the basic structure and size of components, allowing designers to obtain rapidly an overview
of a design and to locate specific parts on which they can focus. There have been attempts in developing schematics
with generic modules,® but these packages are usually confined to device-specific products.

This paper presents an approach for automatically producing design diagrams from a
parametrised description in the Ruby language. Ruby is declarative: it consists of a coherent framework for
representing designs as relations, and generic patterns of composing designs as functions. It has been used in
developing a wide range of word-level and bit-level circuits including signal processing architectures? and butterfly
networks,* and it has also been used in producing implementations partly in hardware and partly in software.!?

Many users of Ruby, particularly the beginners, find diagrams an invaluable means of comprehending Ruby
designs and providing intuitions for their optimisation and verification. However, sketching diagrams for Ruby
programs by hand is time-consuming and error-prone. We report in this paper a method and the associated tool
for sketching a Ruby design. Our sketching tool has been produced in a research project on developing a unified

system for simulating, transforming, analysing and compiling declarative descriptions.®710

There are, of course, many possible layouts for a given Ruby expression. A useful design sketcher should
produce layouts that are succinct, regular, and easily understood. To meet these requirements, we have developed
a sketching scheme which exploits the structure of the source program to guide its layout. The scheme allows
varying component size, so that connection positions can be adapted to align the interconnecting wires either to
the horizontal or to the vertical. This minimises jogs and improves comprehensibility.

2 RUBY

Ruby is a language for describing and reasoning about designs. The background and the details of Ruby have
been described elsewhere,*® and only an outline will be included here.

A design is represented by a binary relation of the form z R y, where z, y represent the interface and belong
respectively to the domain and the range of R. For instance, a squaring operation can be described by (z sq y) <
(y = 2?). Other examples include: (z,y) add 2 (2 = 2+y), (z, y) maz 2 (2 = mazimum(z, y)), (z,y) min 2&
(z = minimum(z, y)). There are also wiring primitives for selecting or regrouping components of composite
data, zidy<= (z = y), z fork (y,2) (e =y Az =2z2),{z,y) m 2 (z = 2), (z,y) ™ 2 < (y = z). Complex
designs in Ruby can be formed by composing simpler designs. For instance, two components ¢ and R with a
compatible interface can be put together by the (;) operator to form the composite design @ ; R (Figure la):
£(Q ; R)y<(3s : (2Qs)A(sRy)). The 3 symbol means that, unlike z and y, s is not an interface of the
composite and cannot be observed.

As an example, z (sq ; fork)y < y = (22, 22). We shall describe the repeated composition of n copies of Q
by Q" s0 sq* = sq ;s¢ ;sq ;sq.

If there are no connections between @ and R, the composite design is represented by parallel composition
[Q, R], where (zq, 21) [@, R] (¥, ¥1) < (20 @ yo) A (21 R y1). Figure 1b and Figure lc show two ways of laying out
[@, R]. Note that, for example, (5,2) (fork ; [min, maz])y < (y = (minimum(5,2), mazimum(5,2)) = (2, 5)).

o Ty
rn— R —N ‘ ‘ s
z— Q 2 R —y Q R t— R —1Y
o o S
a. Q; R b. [@, R] (horiz.) ¢. [@, R] (vert.) d. loop R

Figure 1: Some Ruby operators

To deal with sequential designs, a relation in Ruby can be considered to relate an infinite sequence of data
in its domain to another infinite sequence in its range; elements in these infinite sequences can be regarded as
the values appearing at an interface at successive clock cycles. Given that Vi denotes “for all values of ¢”, the
squarer can be described by z sqy < (V¢ : 2 = y;). A latch can be modelled by a delay relation D, given by
rDy oVt =1y

Latches are also used in serial designs to prevent unbuffered loops. A design R containing an internal feedback
path s can be modelled by the loop operator loop (Figure 1d): z (loop R) y < (3s : {(z,s) R (s, y)).

3 OVERVIEW OF THE DESIGN SKETCHER

In this section we present an overview of our design sketcher, using an insertion sorter® as an example. The
Ruby description of our insertion sorter is as follows:

N = 4. (1)

B B B B

L L L L

[e] [e] [e] O

] c N c N c N c B
K K K K
a. A sketch of block b. A sketch of sorterl
c. A sketch of sorter2
Figure 2: Sketches of some Ruby expressions

cell = fork ; [min; D, maz]. (2)
block = loop cell ; D. (3)
sorterl = ({block}(BLOCK))". (4)
sorter2 = block". (5)

The insertion sorter is implemented as a linear array of comparators (expression 5), and the length of the array is
4 (expression 1). Each comparator has two components: maz for finding the maximum of two numbers and min
for finding their minimum (expression 2). It has a feedback path where the minimum value is fed back, while the
maximum value is output to the next cell (expression 3).

Currently the output of our design sketcher can be produced in INTRpX format, but it would not be difficult
to provide other backends. The design sketcher includes facilities for drawing particular parts of a circuit and
for producing layouts to a specified level of detail. For example, we can draw the particular part, block, as in
Figure 2a. To avoid showing the internal structure of block in the diagram of the insertion sorter, we use a
pair of curly braces in the Ruby expression (see expression 4) to indicate which part of the picture (in this case
block) should be hidden. The right curly brace is followed by a pair of parentheses which enclose the name of the
encapsulated part. Figure 2b is the output of our design sketcher for Ruby expression 4, which encapsulates the

details of block.

Figure 2c¢ is produced by expression 5, and it shows every detail of the insertion sorter; in other words, it is a
flattened version of Figure 2b.

The design sketcher is written in the language SML.!* There is a parser for converting expressions in concrete

Hadd Hadd — Hadd — Hadd — Hadd —

dir = HH dir=VvV dir = XX dir = HX dir=VX
Hadd | —{Hadd | |Hadd | | Hadd
dir =XV dir = XH dir=VH dir =HV

Figure 3: Nine possible layouts of a half-adder

syntax to the corresponding internal representations in abstract syntax. Other main modules of the design
sketcher include: a type checker based on the unification algorithm; a mode manager which decides the level of
detail the layout should be drawn, according to the source Ruby expression; a placer which produces a hierarchical
placement of the layout; a sizer which adds dimensions and connection points to the description of primitive cells;
a router which ensures that the connections between adjacent cells are joined together properly and, an output
generator, which takes the result from the router and generates pictures in formats such as IATpX.

The next section outlines the correspondence between a Ruby expression and its pictorial representation.

4 APPROACH

A design is represented as a rectangular block with connections on its four sides. A convention is required for
assigning the domain and range data of a relation to each side of the block. The following convention is chosen:
the domain data will be mapped onto the western or northern side, while the range data will be mapped onto
the southern or eastern side.

Following this convention, a relation with its domain in the form of a two-tuple can be drawn as a block with
some of 1ts wires on the western side and some on the northern side, or all of them on either the western or the
northern side. Similarly, a relation with its range in the form of two-tuple can be drawn as a block with some of
its wires on the southern side and some on the eastern side, or all of them on either the southern or the eastern
side. One can show that, for a relation with both its domain and range in the form of a two-tuple, there are nine
possible layouts.

As an example, let us look at the possible layouts of a half-adder, which has two inputs and the sum and
carry outputs. In Figure 3, the value of dir for each layout of Hadd indicates the way its domain and range are
drawn, and there are nine possibilities given by HH, VV, XX, XV, XH, HX, VX, VH, HV. Each value of
dir takes two characters: the first specifies the directional mode of the domain, while the second specifies that of
the range. H means that all the connections will be drawn horizontally and V means vertical connections, and
X means that both horizontal and vertical connections will be produced.

After the value of dir is determined, we check the compatibility of the interfaces between connected compo-
nents. Since polymorphism is allowed in the domain and range of some Ruby primitives such as fork, a simple
structure comparison is insufficient. Instead we apply a general unification algorithm to determine the most
general substitution for the domain and range components, so that the interface constraints can be satisfied.

The placement and routing stages of our design sketcher are reasonably efficient because we exploit the
structure of Ruby programs for placement; also the size of a block can be varied to minimise the number of jogs
in the layout. This allows the rapid generation of placed and routed diagrams, although the user may not be able
to control the size of components. The following describes our techniques in greater detail.

5 SPECIFICATION OF THE DESIGN SKETCHER

First, we introduce some notations which will be used in our specification. Typical parameters of a diagram
consist of its dimensions, interface, and the name of the corresponding relation. To manipulate the domain and
range of a Ruby expression, the functions Dom and Rng are used to map a Ruby expression to its domain and
range: so Dom R and Rng R represent respectively the domain and range of R. The projection functions ITI; and
I, extract the first and the second element of a pair, so given that the domain of R is a pair, then II; (Dom R)
will return its first element. It will also be useful to define the function dom and rng which return the domain and
range component of dir; for instance, dom(VX) = V and ran(VX) = X. To deal with the dimensions of a block,
we define a function £ which maps a picture P to a pair (L P, L P) such that £, P and £p P are respectively
the width and height of P. For instance, given a picture R with width of 3 units and height of 4 units, £,, R=3
and L, R = 4. To deal with interface, we define a function Z which maps a picture P to a four-tuple (N P, £ P,
W P, 8 P), so that N P represents the north interface of P, £ P the east interface, W P the west interface and
S P the south interface. To illustrate our approach, we shall derive the layout for combinational primitives and
for sequential composition.

5.1 Sketching combinational primitives

The pictorial representation of a Ruby expression is determined by its context. However, it is useful to have
a default directional mode when there is no explicit context, and a library of layouts is provided in the default
mode for the combinational primitives in Ruby. The context of a diagram typically contains information such as
the directional mode in which it is drawn.

If we represent the diagram of a Ruby expression by enclosing it with double square brackets, the placement
of a Ruby combinational primitive R can be described by

[Rlz;, = Atom(di, name)

where dir is the directional mode in which the picture would be drawn, Atom indicates that the picture describes
a Ruby primitive, and name is the name for R. Information about the dimensions and the interfaces is captured
by di = (dimension, interface), where

dimension = (width, height)
= L[R]air ‘
= (,Cw HR]]dir;'Ch HR]]diT)
interface = Z[R]ar

(north_interface, east_interface, west_interface, south_interface)
= (n, e, w, s)

The values of n, e, w and s can be obtained by inspecting Figure 3. Consider the cases dir = VV or VX or
VH: the entire domain of R will be mapped onto the northern side of the block. If dom(dir) = X, then only the
second component of the domain will be mapped onto the northern side. Hence n = Dom R if dom(dir) = V, or
n = Iy (Dom R) if dom(dir) = X, otherwise n = ¢. Here ¢ signifies that there are no connections. The values
of e, w and s can be obtained in a similar way: for example, e = Rng R if ran(dir) = H, or e = II; (Rng R) if
ran(dir) = X, otherwise, e = ¢.

As an example, consider laying out the component maz which takes two numbers and produces the larger of
the two. Given that Dom maz=(z,y) and Rng maz = z, the diagram for maz (Figure 4a) is given by

[maz]ar = Atom(di, “maz”)
where
di = (dimension, interface)
dimension = (width, height)
(width, height) = (Ly [ma:v]]dm Ly [maz]air)
interface = (n, e,

Given that dir = HH, we have: n = ¢, ¢ = Rngmaz = z, w = Dom maz = (z,y), and s = ¢.
5.2 Sketching sequential composition

Given that the range of A is compatible with the domain of B, the placement of a sequential composition (A4 ; B)
can be described by

[A; Blaiy = Beside (di, [A],, ., [B], ») if (dir# VV)
= Below (di, [B],, [Alyv) if (dir=VV)

Here the case involving Beside indicates that the composite picture is made up of two sub-pictures lying side by
side. The left sub-picture is [A] dir! and the right sub-picture is [B] gir’ The alternative placement, specified by
Below, indicates that [A] is placed on the top of [B] .

The values of dir' and dir' are determined according to the following equations:

dom(dir'y = dom(dir),
ran(dir’”) = ran(dir),
dom(dir") = ran(dir'").

For instance if dir = XV, then dir' = XH and dir' = HV .

Let di = (dimension, interface) and Maz be a function that returns the larger of a pair of numbers. We have

dimension = (width, height)

L([A 5 Blair)

(Lo ([A5 Blair), Ln ([A 5 Blair))

(Maz(Lw [A],, 1 Low [BY,,) Lo [A],, ++ o+ Ch [B], »), if (dir=VV)
(Lw [AD,, + Luw [B];, »+ B, Maz(Lh [A],, +,Cn [B], ~)), otherwise

m
—a st | T2 B
1y b 4 -
a. [maz] - yy b 715 mol gir= i

Figure 4: Sketches of the Ruby primitive maz and sequential composition of m; and

where « and 3 are respectively the vertical and the horizontal extensions of the connections between A and B.

interface = (N [A; Blair, £ [A ; Blair, W [A ; Blair, S [A ; Blair)
(n, e, w, s)

where n = Dom A if dom(dir) = V,or n = Iy (Dom A) if dom(dir) = X, otherwise n = ¢.

This follows from the rule that dom(dir’) = dom(dir). The values of e, w and s can be derived in a similar
way:

e = TRng B if ran(dir) =
= Iy (Rng B) if ran(dir) =X
= ¢ otherwise

w = Dom A if dom(dir) =
= Iy (Dom A) if dom(dir) =
= ¢ otherwise

s = Rng B if ran(dir) =V
= II; (Rng B) if ran(dir) =X
= ¢ otherwise

As an example, consider laying out w1 ; m3. Given that dir = HH and di = (dimension, interface),

[m1 ; m2lair = Beside(di, [m1] gy, [72] 5py)

dimension = (width, height)

L ([m1; molgg)

(Lo ([m1 5 7] gg), Lo ([m1 5 2] py)

(Lo [mlyy + Lo [m2lypy + o, Maz(Lh [71] gy, Cn [72]yar)
interface = (/V |I'Tl ; T2]]dzr) £ |I'Tl) T2]]dzr; W |I’Tl) T2]]dzr; S |I'Tl ; T2]]dzr
(n, s)

To determine n, e, w and s, let Dom m = ((z1,22),y), Rng 72 = 22 and dir = HH (Figure 4b): we get n =
¢, e = Rngmy = 22, w = Domm = ({z1,22),y) and s = ¢.

6 FUTURE WORK

An extension of the Ruby design sketcher is to use it to guide the placement and routing of components in
design synthesis; the result may then be passed to a low-level hardware compiler such as the OAL system® or
other automatic place-and-route tools. Much of our current effort has been concentrated on the framework for
mapping Ruby programs into layouts, and we have not explored optimisations of the mapping scheme. There are
many possibilities of extending the design sketcher, such as including a mechanism — deterministic or otherwise
— for selecting an appropriate strategy to optimally layout each expression in the Ruby program, or allowing the
user to guide the layout by annotating the Ruby description.

On the theoretical side, it may be possible to recast our approach in a categorical setting.! Further work relat-
ing the design sketcher to source transformations*®
with many useful laws for optimising designs.

will also be useful, since Ruby offers an algebraic framework

7 ACKNOWLEDGEMENTS

Thanks to members of the Oxford University Hardware Compilation Group for discussions and suggestions.
The support of ESPRIT OMI/HORN (P7249) project, Oxford Parallel Applications Centre and Xilinx Develop-
ment Corporation is gratefully acknowledged. The first author thanks the Sino-British Friendship Scholarships
(SBFSS) Foundation for their support.

8 REFERENCES

[1] C. Brown and G. Hutton, “Categories, allegories and circuit design”, in IEEE Symp. on Logic in Computer
Science, July 1994.

[2] S. Guo, W. Luk and P. Probert, “Developing parallel architectures for range and image sensors”, in
Proc. IEEFE Int. Conf. on Robotics and Automation, IEEE Computer Society Press, 1994, pp. 2205-2210.

[3] IEEE Standard VHDL Language Reference Manual, TEEE Std 1076-1987, New York, 1988.

[4] G. Jones and M. Sheeran, “Circuit design in Ruby”, in Formal Methods for VLSI Design, J. Staunstrup
(ed.), North-Holland, 1990, pp. 13-70.

[5] S.H. Kelem and J.P. Seidel, “Shortening the design cycle for programmable logic devices”, IEEE Design and
Test of Computers, December 1992, pp. 40-50.

[6] W. Luk, G. Jones and M. Sheeran, “Computer-based tools for regular array design”, in Systolic Array
Processors, J. McCanny, J. McWhirter and E. Swartzlander (eds.), Prentice-Hall International, 1989, pp. 589-
598.

[7] W. Luk, “Analysing parametrised designs by non-standard interpretation”, in Proc. Int. Conf. on
Application-Specific Array Processors, S.Y. Kung, E. Swartzlander, J.A.B. Fortes and K.W. Przytula (eds.),
IEEE Computer Society Press, 1990, pp. 133-144.

[8] W. Luk and I. Page, “Parameterising designs for FPGAs”, in FPGAs, W. Moore and W. Luk (eds.), Abingdon
EE&CS Books, 1991, pp. 284-295.

[9] W. Luk, V. Lok and I. Page, “Hardware acceleration of divide-and-conquer paradigms: a case study”, in
Proc. IEEE Workshop on FPGAs for Custom Computing Machines, D.A. Buell and K.L. Pocek (eds.), IEEE
Computer Society Press, 1993, pp. 192-201.

[10] W. Luk, T. Cheung, Q. Miller and G. Hutton, Simulating and Compiling Designs using Rebecca, Technical
Report, Oxford University Computing Laboratory, September 1993.

[11] L.C. Paulson, ML for the Working Programmer, Cambridge University Press, 1991.

[12] W. Luk and T. Wu, “Towards a declarative framework for hardware-software codesign”, in Proc. Third
International Workshop on Hardware/Software Codesign, IEEE Computer Society Press, 1994, pp. 181-188.

