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Abstract. Binomial filters are simple and efficient structures based on the binomial coefficients for implementing
Gaussian filtering. They do not require multipliers and can therefore be implemented efficiently in programmable
hardware. There are many possible variations of the basic binomial filter structure, and they provide a wide range
of space-time trade-offs; a number of these designs have been captured in a parametrised form and their features
are compared. This technique can be used for multi-dimensional filtering, provided that the filter is separable.
The numerical performance of binomial filters, and their implementation using field-programmable devices for an
image processing application, are also discussed.
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1. Introduction

Gaussian filtering is probably the most common form
of linear filtering. To overcome the problem of choos-
ing filter coefficients against a set of conflicting con-
straints, we review an approximation of the Gaussian
based on the binomial coefficients which results in a
simple, accurate and flexible architecture. This de-
sign, called a binomial filter, does not require mul-
tiplications, thus allowing large filters to be easily
implemented in current programmable hardware tech-
nologies, such as Field Programmable Gate Arrays
(FPGAs). Moreover, its regular structure facilitates
implementation in custom VLSI, and transformations
[1],[2],[3] can be applied to produce systolic versions
with high performance. It is feasible that such filters
can be implemented alongside other hardware, such as
programmable DSP chips, at little additional cost.

It is well known that, where applicable, sepa-
rating a multi-dimensional filter into a cascade of
one-dimensional filters significantly reduces the num-
ber of computations required to implement the filter
[4],[5],[6]. In our case, given that L is the size of the
filter and M is the number of dimensions of convolu-

tion, the use of separated binomial methods results in
a reduction from LON multiplications and LPNRQTS addi-
tions per data point required by conventional methods
to M5UVLWQXS�Y additions and no multiplications. This
advantage enables both software and hardware imple-
mentations to gain up to two orders of magnitude im-
provement in speed over conventional methods.

Some of the basic ideas behind the binomial fil-
ter are well known and have been discussed by other
researchers. For instance, Canny ([6], p. 77) men-
tioned the binomial approximation of a Gaussian but
did not consider the possibility of a parallel imple-
mentation, while David et. al. [7] described techniques
similar to ours for implementing a given transfer func-
tion, rather than studying Gaussian filtering in partic-
ular. Chehikian and Crowley [8] and Nishihara [4]
discussed binomial approximations of Gaussians and
developed various instances of a binomial filter. Wells
[5] presented a method of cascading simple filters for
computing Gaussian filters and pyramids. The pur-
pose of our work is to provide a coherent account of
the numerical properties and architectural variations
for the binomial filter, as well as its implementations
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in FPGA technology and its application in X-ray image
processing.

An overview of this paper is as follows. Section 2
outlines the requirements for a good filter implemen-
tation in hardware, while Section 3 introduces the ba-
sic binomial filter structure and explores its numerical
properties. Section 4 describes various word-level and
bit-level architectures for the binomial filter, and out-
lines how some of these designs can be captured in
a parametrised form to facilitate their synthesis. Sec-
tion 5 covers an example application involving field-
programmable devices in an X-ray based defect detec-
tion system. Finally, concluding remarks are presented
in Section 6.

2. Requirements

One of the most useful sets of linear convolutions is
the family of functions based on the Gaussian function.
From this function it is possible to derive low-pass,
high-pass and band-pass filtering, and many forms of
edge detection. The one-dimensional Gaussian func-
tion (centred on [E\^] ) is given by:_ UV[�YK\ S` Zba;cOd�e�f g Q [�hZbc hji (1)

where
c

is the standard deviation. This function pos-
sesses several useful qualities. For instance, it is a
good low-pass filter since its smooth shape does not
lead to ‘ringing’ in the output signal, and because the
filter may have a cut-off point determined simply by
choice of the standard deviation,

c
. The sampled func-

tion is then truncated to a fixed number of coefficients,U Z�kml S*Y , about a central point. One can rearrange the
discrete convolution to give:n U!oVY;p _ U!oVY3\ qrs�t�u q

n U!o3Qwv�Y _ U�v�Y
For hardware implementation one often needs to

convert _ into a function of integers or fixed-point
values; this is particularly necessary when field-
programmable devices are used, as their silicon re-
sources are limited and floating-point operations are
usually too large for them. These conversions nat-
urally introduce deviations from ideal filtering. The
factors for accurate filtering can be summarised as fol-
lows:

x A sufficient number of coefficients should be used
to suppress stop-band ripples. For an 8-bit system,
our numerical experiments showed that functions
should be truncated at greater than

Z!y z
c
to obtain a

low cut-off frequency.x A large number of bits should be used to repre-
sent the coefficients to maintain a good degree of
numerical accuracy.

However, the requirements for an efficient hardware
implementation are:x The number of arithmetic operations, particularly

multipliers, should be minimised because they re-
quire a large number of gates; this is particu-
larly important for implementations based on field-
programmable devices. Hence we should use as
few coefficients as possible.x As few bits as possible should be used, as the num-
ber of gates required in data-paths and arithmetic
operations is proportional to the number of bits.
This implies that we should use as small integer
coefficients as possible.x It would be nice to have the sum of the coefficients
to be a power of two, so that bit shifts can be used
to normalise the result of a convolution, rather than
large division circuits.x The architecture should be simple and regular to
simplify implementation and to achieve high per-
formance.

The result of all of these conflicting requirements
is that no perfect solution can be found, and that in
general coefficients are hand chosen. However, an in-
teresting method for deriving suitable coefficients can
be obtained by considering the properties of a Gaus-
sian.

3. Binomial Filter: Analysis

Let us motivate the development of the basic binomial
filter. The central-limit theorem [10] states that, if a
function is ‘humped’ at the origin, then repeated con-
volution with itself causes its shape to tend to that of
the Gaussian; in other words, given thatn U!{�Y}|�~RQ^��{ hb� as ��{���|�] �
thenn�� p n h pK���*��p n N \ n N |�� d�e�f g Q {�h� i � as MP|��
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Reversing this principle, reasonable approxima-
tions to the Gaussian can be obtained by convolving a
simple function with itself the desired number of times.
If we take a discrete pulse (1,1) which satisfies the re-
quirements of the central-limit theorem and convolve
it with itself, we obtain a sequence of coefficient sets:n��

= 1n �
= 1 1n h = 1 2 1n��
= 1 3 3 1n��
= 1 4 6 4 1n��
= 1 5 10 10 5 1n��
= 1 6 15 20 15 6 1

...

It is clear that the table above is Pascal’s triangle,
a tabulation of the binomial coefficients. These form
an increasingly good approximation to the Gaussian as
more terms are added. Since they are integers, there
is no need to worry about rounding errors, and the
sum of the coefficients in each set is a power of two
(it doubles at each iteration, starting from one). The
basic binomial filter structure can be derived from the
polynomial U�S l�� u � Y N
which produces the binomial coefficients. This for-
mula can also be regarded as a description of a cascade
of hardware units, each containing an adder and a latch
– the latter for implementing the

�ju �
term. Figure 1

shows an example of a binomial filter for M =4, with
coefficients (1,4,6,4,1). In this diagram, as in all others
in this paper, latches are shown as triangles with lines
through them. Note that this structure is very sim-
ple and regular; if it provides a close approximation
of the Gaussian, then it would satisfy admirably our
requirements outlined earlier.

The quality of the approximation is shown in Fig-
ure 2, a plot of the RMS error for each set of coefficients
compared against a Gaussian of the same variance; it
is clear that the error is reduced to a very small value
for large filters. The first zero of such a filter lies at the
maximum signal frequency, and as a result there are
no pass-band ripples present in the Fourier transform.
The absence of truncation effects is shown in Figure 3,
which shows the frequency response of

n5�
to
n � �

. We
can also derive first and second differential coefficients

from the same source, by simply taking the discrete
differential of the coefficients already calculated:� U n;� Y = -1 1� U n � Y = -1 0 1� U n h�Y = -1 -1 1 1� U n5� Y = -1 -2 0 2 1� U n � Y = -1 -3 -2 2 3 1� U n;� Y = -1 -4 -5 0 5 4 1

...

or the second differentials for use in the Laplacian:� h'U n;� Y = 1 -2 1� h'U n � Y = 1 -1 -1 1� h'U n h.Y = 1 0 -2 0 1� h'U n5� Y = 1 1 -2 -2 1 1� h'U n � Y = 1 2 -1 -4 -1 2 1
...

Similarly it is possible to form an approximation
starting from a four-point set of coefficients UVS � S � S � S�Y .
This too satisfies the central-limit theorem, but has two
zeroes in the frequency range of the system which leads
to ripples in the stop-band. However, as can be seen
from Figure 4, repeated convolution with UVS � S�Y for
more than eight times suppresses the stop-band ripples
to below the Q��j���'� dynamic range of an 8-bit sys-
tem. The advantage of such four-point filters can be
seen in Figure 5, which shows the frequency response
of two-point and four-point filters for MP\�� . The cut-
off frequency for the four-point filter is considerably
lower, without any ripples penetrating the 8-bit dy-
namic range in the stop-band. Such four-point filters
are also normalisable by a power of two, and hence do
not lose the benefits of the two-point filters. If very
large filter sizes are required, it would become practi-
cal to use 8-point filters possessing a low cut-off point.
These filters would have to be convolved with (1,1)
many times to suppress the stop-band ripples.

4. Architectures for Binomial Filters

The efficiency for a given hardware architecture de-
pends on many factors, including:x Size — the number of gates and latches required to

implement a given filter.x Speed — the maximum clock rate for a given cir-
cuit, normally as a function of latency and its critical
path.
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x Flexibility — the breadth of choice the architecture
gives in terms of choice of coefficients.x Routability — a measure of the number and length
of connections between gates and latches required
to implement a given filter.

We find that, in general, these parameters can be
traded off against one another to obtain a range of
designs that achieve a given result.

In the following we shall first describe various
word-level and bit-level binomial filter implementa-
tions. A comparison of the design trade-offs of dif-
ferent binomial filter architectures and other methods
will then be provided. Next, we shall present a concise
way of representing binomial filter designs, which also
facilitates their automatic implementation in hardware.

4.1. Binomial Convolver Designs

Pipelines may be built from the components shown in
Figure 6 to perform all of the binomial convolutions
discussed so far. Buffered versions of the blocks re-
quire more latches but reduce the critical path to an
adder or a subtractor. These circuit blocks are ideal
for implementing binomial approximation to Gaussian
filtering in a very small amount of circuitry.

There are, of course, many further variants on such
designs. These variants can be produced by trading off
speed against hardware size, or by trading off paral-
lelism in designs using retiming and serialisation tech-
niques discussed in [1], [2] and [3]. These techniques
can be applied at both the word-level and the bit-level.

For instance, one can retime the word-level design
in Figure 1 such that each repeating unit becomes the
one shown in Figure 6(b). Clearly the retimed design
can be operated at a higher clock frequency than the
original, since the critical path includes one adder delay
instead of four. However one has to wait for four clock
cycles to obtain the first output, and the additional reg-
isters increase the size and power consumption of the
design. In reality the degree of pipelining will be con-
trolled carefully in order to obtain the optimal balance
between speed, area and power consumption [2].

It is also possible to retime bit-level components.
As an example, one stage of a fully-pipelined binomial
filter is shown in Figure 7. Another version, pipelined
by every two by two bit-level cells, is shown in Fig-
ure 8.

If there is insufficient hardware to implement a filter
of a given size, serialisation techniques such as LPGS
(Locally Parallel Globally Sequential) and LSGP (Lo-
cally Sequential Globally Parallel) transformations can
be applied to trade off speed against size [3]. Figure 9
shows an LPGS-serial version of the design in Figure 1
that requires only two adders and some multiplexing
hardware to control the feedback process. However,
the serial implementation adopts a less efficient in-
put/output scheme: an extra cycle must be inserted
between successive input samples, and results are pro-
duced every other cycle. Again one needs to control the
degree of serialisation (probably in conjunction with
other techniques such as retiming) to achieve the opti-
mal design for a given application. Other approaches
for constructing large Gaussian filters can be found,
for instance, in [4].

Nothing has been said so far about normalisation,
which is necessary if the output data is to be the same
number of bits wide as the input. Each binomial stage
increases the size of the data by one bit from input to
output. The input data may be normalised by dropping
a number of least significant bits, which is likely to in-
troduce very large errors into the output, and in partic-
ular may lead to a large steady-state error. The results
may be normalised to give the greatest accuracy, but
this requires an additional bit in the calculation for ev-
ery stage of the filter, and introduces some redundant
circuitry at the input of the pipeline. Alternatively,
each stage may be made normalising by dropping the
least significant bit from the result of the addition. This
makes each stage only the width of the data, with no re-
dundancy. This leads to slight inaccuracy, as dropping
a bit at each stage inherently rounds down the result,
leading to a slight loss of amplitude. One solution is
to make some stages round up and others round down,
which appears to largely compensate for this effect.

We can often separate a multi-dimensional filter into
a cascade of one-dimensional filters. This method of-
fers a very simple and cheap way of building multi-
dimensional filters. For instance, a two-dimensional
convolution can be implemented by convolving the
data in one direction, followed by convolving the re-
sult in the other direction. It may be necessary to
include additional line delays between successive fil-
ter stages in one of the directions – an example can
be found in [4]. If data are stored in SRAM, one can
build address generators to read the image column by
column for the vertical convolution.
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4.2. Comparison of Convolver Architectures

An estimation of hardware reduction in implementing
multi-dimensional convolution using separated bino-
mial methods has been provided in Section 1; Section 5
covers examples of using two-dimensional binomial
filters (implemented as cascades of one-dimensional
filters) in image processing. Here we compares differ-
ent methods of implementing multi-dimensional con-
volution.

As one can observe from the coefficient sets de-
veloped earlier, and also because linear-phase finite-
impulse response filters are desirable, the coefficients
are normally symmetric or anti-symmetric. To this
end, an � coefficient convolution requires U�� l S�Y�� Z
multiplications (Figure 10) [1], [11]. Other architec-
tures exist to improve on any one of the values, but
always at the cost of another.

Table 1 summarises the architectures that we dis-
cussed. The values listed are for general forms of each
convolver. The top four are un-pipelined, using the
simplest architectures. For instance, Figure 10 is an
example of a symmetric filter which corresponds to the
description with � =1 and � =9 in the third row from
the top of Table 1; Figure 1 is an example of a binomial
filter described by the fourth row in Table 1 with � =1
and � =5.

The binomial architecture is clearly superior be-
cause it requires no multiplications. As discussed in
Section 4.1, when completely unpipelined it can have
a longer critical path than some of the other architec-
tures, but this can be controlled by the use of pipelining.
When fully pipelined down to the bit-level, it has a very
short critical path of a single fulladder, at the expense
of an increase in the number of latches and latency cy-
cles. Overall, if the limitation of using only binomial
coefficients is acceptable, a multi-dimensional bino-
mial convolver requires significantly less hardware to
achieve a particular speed at the expense of multiple
memory access. This makes implementations of useful
large filters practical in programmable hardware.

4.3. Parametrised Description

Implementation of the architectures introduced ear-
lier has been achieved using hardware compilation
techniques to generate circuit netlist information in a
device-specific format, such as Xilinx XNF [12], or in

a device-independent form, such as VHDL. The result
can then be optimised and transferred to one or more
FPGAs.

One way of capturing designs is to use the Rebecca
compiler [13] to produce hardware from Ruby, a lan-
guage of functions and relations. This language is
particularly powerful at expressing circuit blocks, and
at composing them in various patterns appropriate for
the design of systolic arrays. Details about Ruby can be
found elsewhere [2],[3],[14]; here we shall introduce
the use of Ruby for describing binomial filters.

A design is represented in Ruby by a binary relation
of the form { �¢¡ where { and ¡ belong respectively
to the domain and range of � . For instance, an adder
can be described by the relation£ { � ¡D¤¥�
�
�¦U!{ l ¡DY
and a component for replicating its domain datum is
given by { n*§ [ k £ { � {�¤
Ruby has various operators for capturing common pat-
terns of computations: for instance ¨ª©�� denotes the
composite circuit with ¨ connected to � (Figure 11a)
provided that ¨ and � have a compatible interface.
Hence {«U n*§ [ k ©¬�
�b�jY¥U�{ l {�Y
Parallel composition, on the other hand, describes a
composite design with independent components (Fig-
ure 11b). For instance, given �­\ n�§ [ k ©��b�
� , then£ { � ¡D¤¥®¯� � U!�°©G�±Y�² £ Z { � ��¡j¤ y

Similarly, there are constructs in Ruby for iterative
structures formed by repeating the binary composi-
tions. Examples include �IN , which denotes M copies of� assembled together to form a cascade (Figure 12a),
and ³ N � , which represents a triangular-shaped array
of components (Figure 12c).

To deal with sequential designs, a relation in Ruby
can be considered to relate an infinite sequence of data
in its domain to another infinite sequence in its range.
Hence given that �´\�U n*§ [ k ©¬�b�
�jY �
we have£ ����� � {�µ u � � {*µ � ����� ¤T� £ �*��� � U Z {�µ u � Y � U Z {�µ�Y � ���*� ¤
A latch can be described by the relation ¶ , given by£ �*��� � { µ u � � { µ � �*��� ¤·¶ £ �*��� � { µ u h � { µ u � � �*��� ¤
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Formal definitions of these and other components, as
well as their algebraic properties, can be found in [2],
[3] and [14].

We have used Ruby in representing binomial filter
blocks. Given that ¸ is the identity relation such that{P¸}{ , a parametrised

Zjk
-point smoothing filter block,

which contains a
n*§ [ k , a cascade of

k
latches and an

adder, is given byn �
� q \ n*§ [ k ©K®#¸ � ¶ q ²E©��b�
�
The simplest convolver block, shown in Figure 6(a),
can then be described by

n �
� � , while the 4-point filter
block shown in Figure 6(e) can be described by

n �
� h .
The buffered version of

n �b� q is given byn �
� � q \ n �
� q ©5¶
so that the designs in Figure 6(b) and (f) are repre-
sented by

n �b� ��� and
n �b� � h . Differential blocks can be

obtained by replacing the adder �
�b� with a subtractor¹.º � , so n � ¹ � q \ n*§ [ k ©K®#¸ � ¶ q ²E© ¹.º � ©5¶
A complete filter can be built using these blocks.

For instance, given
k \«S and MP\�� ,�%n Nb» q \¼U n �
� � q Y N © n � ¹ � q

produces a pipelined first-differential binomial filter
with coefficientsU�Q½S � Qm¾ � Q Z � Z � ¾ � S.Y y
Ruby descriptions shown above can be simulated,anal-
ysed and compiled into hardware using the Rebecca
system [13].

We have also used the OAL language, a version
of Ruby specialised for the Algotronix (now Xilinx)
FPGA, to develop bit-level designs [15]. Each CAL
cell has an input and an output at each of its four sides,
and a function block in the centre which can imple-
ment a designated two-input logic function or operate
as a latch. An input can be programmed to connect
to one or more output ports or to the function unit. A
CAL cell can hence be used to perform processing and
routing simultaneously. Figure 13 shows a CAL cell
with its northerly output connected to its easterly in-
put, and its easterly output, emerging from the centre,

is the Boolean conjunction of its westerly and northerly
inputs.

Using this architecture, we generate a fulladder in a
3 ¿ 2 array of cells, and the

n*§ [ k and delay required by
the binomial structure can be included using a further
1 ¿ 2 array. Input and carry pipelining requires 1 ¿ 2
and 3 ¿ 1 arrays of cells respectively. An example of a
filter constructed using such blocks, is shown in Fig-
ure 14. This is a partially-pipelined, four-stage, 24-bit
filter, with the data flowing from right to left. It is
implemented in an array of 20 ¿ 49 CAL cells, with the
bottom row providing zeroes at the input of the carry
circuits.

5. Performance Assessment

A potential industrial application for large size, fast
Gaussian filtering is in X-ray based defect detection for
food and other production line items. At present the
system, used by one of our industrial sponsors, deals
with X-ray images delivered to a dedicated image pro-
cessing board, Sharp GPB-1, by an image intensifier /
CCD camera or a solid state detector system.

There are two types of defects which are difficult to
detect: small high-density defects such as metal, and
large low-density defects such as plastic. These de-
fects show up respectively as small dark points and re-
gions of low intensity, on a background of non-uniform
product variation, packaging and noise. The best pro-
cessing technique was found empirically to be a form
of band-pass filtering, followed by thresholding and
some binary morphology. The band-pass filter isolates
low-density defects in the manner of a second differ-
ential edge detector, and high-density defects as sharp
variations from the local mean.

The band-pass filtering is done by differencing a
slightly smoothed image with a heavily smoothed im-
age, the heavily smoothed image being formed by
seven convolutions of a 3 ¿ 3 smoothing filter. The
resulting filter size is 15 ¿ 15. The impulse response of
the original Gaussian-based filter, and that of the sep-
arated binomial filter designed using MATLAB, are
shown in Figure 15. The result of applying the new
filter to a typical X-Ray image is shown in Figure 16.

A prototype version has been implemented on the
HARP system [16], which integrates a T805 transputer,
4Mbyte DRAM, a Xilinx 3195 FPGA chip with two
local banks of 32K by 16-bit SRAM, and a 100MHz
variable clock frequency synthesizer on an industry-
standard TRAM module. The speed of the FPGA
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depends on the critical path of the logic that it im-
plements, and it can be varied using the frequency
synthesizer. Our current experimental setup deals with
real-time video rather than X-ray images: the HARP
board takes its input from a CCD camera and sends
its result to a video display. Using this system, we
have been able to demonstrate that our binomial filter
implementation is capable of running at video rate.

Several binomial filters have also been implemented
using the CHS2 ¿ 4 FPGA-basedsystem [17]. This sys-
tem contains eight CAL1024 FPGA chips arranged in
a two by four array, giving 8192 user-programmable
cells. A S*¾·¿ÀS*¾ pixel Gaussian smoothing filter has
been implemented in a PC containing a CHS2 ¿ 4 sys-
tem as unseparated software, separated software, bi-
nomial software and binomial hardware to compare
performance and check the results of the different im-
plementations. The software is written in Microsoft C
and timed on an Intel 486DX33 based computer.

The speed of the different implementations is shown
in Figure 17,excluding the downloading and uploading
times for the hardware implementation. It is notable
that the S�¾ ¿´S*¾ filter used by no means represents
the limit of the CHS board; it is perfectly capable of
implementing filters upto Á
]Â¿TÁ
] pixels. This design
is partially pipelined, having a critical path of around
200 nanoseconds, giving a maximum running speed of
5 MHz. This is far above the actual clocking speed
of approximately 180 KHz, which is due to the way
the board is clocked in software by the host PC. An
external clocking scheme would thus allow a speed-up
factor of around thirty over the timings shown.

The filter given can also be quite easily fully
pipelined, giving a maximum speed of 30 to 50(+)
MHz, though at the cost of increasing latency. This
would give a factor of around 150 increase in speed
over the times shown. The graph of Figure 18 shows
these projected speed increases against the Sharp VLSI
image processing system. If in future a CAL FPGA is
capable of accommodating an 128 ¿ 128 array of logic
blocks, one can then implement on a single chip a
fully pipelined, 42-bit

Z �·¿ Z � filter at a pixel rate of
the order of 30 to 100 Mpixels/s, with enhanced ac-
curacy by adopting fixed-point number representation.
This is one to two orders of magnitude improvement
on the performance of current VLSI image process-
ing systems such as the Sharp GPB-1, and it comes
with a reduction in size and an increase in flexibility.
For instance, for the X-ray application it may be pos-

sible to dynamically reconfigure the FPGAs to carry
out band-pass filtering, thresholding and morphologi-
cal operations on the same hardware.

6. Concluding Remarks

To summarise, there are two main achievements of this
work. First, we review a binomial approximation to
the Gaussian, and show how this architecture offers
a simple, accurate and readily extensible solution sat-
isfying the requirements described in Section 2. The
use of binomial filters provides a convolution method
which has been shown to require considerably fewer
arithmetic operations, by virtue of not requiring mul-
tiplications. The resulting architecture is compact and
efficient, and is readily parametrisable for a range of
trade-offs in time, space and numerical accuracy.

Second, these filters have been implemented both
in software and in several FPGA-based platforms. For
instance, several Ruby descriptions have been imple-
mented in Algotronix CAL FPGAs, and the results
of the implementations have been verified against the
same algorithm in software. Timing of the hard-
ware shows that, even when being clocked at around
180kHz, a speed far below its maximum capability,
it still out-performs software running on a reasonably
powerful desktop computer. Our experiments confirm
that the increase in speed achieved by using separated
filters, binomial coefficients and the efficient binomial
architecture can be several orders of magnitude over
conventional techniques, combined with a dramatic re-
duction in hardware size.

There are several areas for further research, some
of which are in progress. One of our current pro-
grammable hardware platforms, the CHS2 ¿ 4 [17], op-
erates in a stand-alone format, with long delays in the
downloading of images for processing and in retriev-
ing the results. These delays often offset the advantage
gained from the efficient filtering technique. In order
for the filters to be of practical use, the programmable
hardware should be integrated into the system where it
is to be used, for example as a programmable coproces-
sor for existing image processing hardware. Although
this has been achieved to some extent in our HARP sys-
tem [16] for video-rate image processing, further work
is required to provide a solution for systems involving
stored data.

At present generating these filters for the targets
shown in this paper requires an in-depth understand-
ing of a wide variety of tools. We are exploring the
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development of design aids which, given a user spec-
ification of a filter, will automate the parametrisation,
code generation and hardware compilation steps. It is
also desirable for such tools to support data partitioning
[18], hardware/software codesign [19] and, where ap-
propriate, exploitation of dynamic reconfiguration of
reprogrammable FPGAs. This would make the design
system very flexible and appealing to non-specialists
and experts alike, particularly if an integrated system,
as described in the preceding paragraph, is available.

The main application for the filters described here
has been presented as image processing, but they are
likely to have considerable uses elsewhere. High speed
linear noise removal for real-time sensors [11] and
short-term memory elements for temporal neural net-
works [20], are two other examples of areas in which
these filters can offer a significant advantage over con-
ventional methods.
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Fig. 14. Binomial filter implemented in CAL cells.
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Memory ê -bit ê -bit Critical
Architecture accesses multipliers adders Latches Latency path

Unseparated S �«ë �«ë:Q´S — — —

General separated � � ��Q´S �ìê ��QíSZ v'îKï*ð µ l U!��Q´S*Y!v�ñ ë.ë
Symmetric separated � � l SZ � U���Q´S*Y�ê ��QíSZ v îKï�ð µ l U�� l S�Y�v ñ ë.ë � Z
Binomial separated � ] ��Q´S U���Q´S*Y�ê ��QíSZ U!��Q´S*Y!v ñ ë.ë

Word-level
pipelined binomial

� ] ��Q´S Z U��òQ­S*Y�ê ¾�U���Q´S*YZ v�ñ ë�ë
Fully pipelined

binomial
� ] ��Q´S ó Z � ê l êìh ¾j� lÀZ êôQ zZ v6õ ñ ë�ë

Notes:öô÷
is the number of coefficients used in the convolution.öôø
is the number of bits used to compute the convolution, and is assumed constant (that is, each computational element normalises its

output).ö Í is the number of dimensions of convolution.öúù ñ ë.ë , ù î}ï*ð µ and

ù õ ñ ë.ë are respectively the combinational delay of an adder, a multiplier and a fulladder. Wire delays are ignored in the
estimation of critical path.ö
Latency is defined to be the number of cycles between a number being input and its reaching the centre of a set of coefficients.ö
For the unseparated filter, the number of latches and the latency is dependent upon the dimensions of the input data.ö
The exact number of latches for a fully pipelined binomial architecture is

ø:ûÞü × ÷ øþý ÷ ý ÿ�ø ü &
.

Table 1. Comparison of architectures.


