Retargeting a Hardware Compiler Proof

using Protocol Converters

Geoffrey Brown*

Abstract

We show how to retarget the correctness proof
of a hardware compiler generating two-phase delay-
insensitive circuits to a compiler generating four-phase
speed-independent circuits. We use protocol convert-
ers to convert the specifications of our compiler’s two-
phase circuit elements into equivalent specifications for
four-phase elements. The processes of converting the
specifications and verifying their implementations are
automated.

1 Introduction

Large asynchronous circuits are difficult to design
by hand, so it is desirable to provide a compilation
scheme which assures the correct production of such
circuits. We have previously developed and verified a
compiler from Joy, an occam-like language, to delay-
insensitive circuits [WBB92, Bro91]. Most of the cor-
rectness proof involved showing that the output of
the compiler — a netlist of components communicat-
ing via two-phase handshake protocols — is behav-
iorally equivalent to the original program. Showing
that each of the handshake components was correctly
implemented in terms of primitive circuit elements was
done using automatic tools.

In this paper, we show how to use our specifications
of the two-phase handshake components targeted by
our compiler to generate a set of equivalent specifi-
cations for components which use four-phase hand-
shake protocols. We compose our two-phase specifi-
cations with protocol converters to obtain specifica-
tions for the equivalent four-phase components. We
then check that our four-phase implementations sat-
isfy their specifications. In practice there are many
choices in the design of the protocol converters which

*School of Electrical Engineering, Cornell University, Ithaca,
NY, USA 14853; gbrown@ee.cornell.edu

tProgramming Research Group, Oxford University Comput-
ing Laboratory, Wolfson Building, Parks Road, Oxford, Eng-
land OX1 3QD; Wayne.Luk@prg.oxford.ac.uk

$School of Electrical Engineering, Cornell University, Ithaca,
NY, USA 14853; jwo@ee.cornell.edu

Wayne Luk!

John O’Leary?

lead to significantly different four-phase implementa-
tions of our Joy compiler. Rather than consider all
the options for converting our compiler, we take as
our challenge the task of developing a set of proto-
col converters which yield a four-phase compiler that
is roughly equivalent to one developed by Burns and
Martin [BM88]. The principal differences are due to
differences in the source languages.

Two automated tools were used to obtain the four-
phase specifications and validate their implementa-
tions. The first, developed by Dill [Dil89], is purpose-
built for verifying asynchronous circuits. The second
tool, known as FDR, was developed by Formal Sys-
tems (Europe) Limited [For93] and checks refinement
in the failures-divergence model of CSP. FDR is able
to detect certain types of misbehavior (deadlock and
livelock) which are not detected by Dill’s tool, and fa-
cilitates the link with other CSP-based proofs for our
compiler.

Proving a hardware compilation scheme correct is
a substantial undertaking. Our approach is attrac-
tive because it allows an existing correctness proof (for
compilation to two-phase circuits) to be reused for the
four-phase compiler. Most of the additional proofs re-
quired in retargeting the compiler can be carried out
by the automatic tools. Since the protocol converters
that we use are implementable, our work also facili-
tates the verification of systems containing both two-
phase and four-phase circuits which interact with one
another through protocol converters.

Previously, Smith and Zwarico have verified the
compiler of Burns and Martin for a subset of the input
language [SZ92]. Their proof was performed by verify-
ing a set of refinement rules from the input language to
target circuits. Our technique is somewhat different —
we verify the compilation algorithm to an abstract in-
termediate form and then hardware implementations
of that intermediate form. van Berkel has developed
and verified a compiler from a similar language to a
similar intermediate form [vB92]. The principal dif-
ference between the source languages is that his does

not support guarded choice.

The remainder of this paper is organized as follows.
Section 2 summarizes the source language for our com-
piler. Section 3 considers some issues which arise in
the development of a suitable set of protocol convert-
ers. We illustrate our technique by generating a four-
phase specification and implementation of a sequential
composition element. Because space is limited, we do
not describe the conversion of every element; a com-
plete account is given in [BLO94]. Section 4 is devoted
to an extended example: the specification and imple-
mentation of a module realizing channel communica-
tion. Channels proved to be the most difficult part of
the retargeting effort, chiefly because our two-phase
specification is delay-insensitive, while Martin gives
a highly optimized four-phase implementation which
is speed-independent but not delay-insensitive. We
present some concluding remarks and suggestions for
further work in Section 5.

2 Joy and Its Compiler

We consider, as a source language, a variant of oc-
cam which we refer to as Joy. We assume a set VID
of variable identifiers and a set CID of channel identi-

fiers, and let v € VID, ¢ € CID, C C CID. Joy then

has the following syntax:

(boolean expression)

B = false | true | v | -B | BAB | BVB
(process)
P == skip |stop | v:=B | ¢ | P;P |

Pllc P | ifGfi | do BG od
(guarded process)

G == B—P|B&?—=P|G|G
Boolean guarded process

g
BG = B—P | BG|BG

Boolean expressions are composed of the constants
false and true, variable identifiers, and the negation,
conjunction, and disjunction operators. A brief expla-
nation of the process terms is as follows.

skip terminates, leaving the values of vari-
ables unchanged.

stop deadlocks.

v := B assigns the value of expression B to
variable v. We stipulate that B may
not contain a reference to v.

c! awaits synchronization on channel c.
We refer to ¢! as a send; synchroniza-
tion occurs when a receive — ¢7 — is
evaluated as part of a guard expres-
sion in another process.

Py; Py the sequential composition of P
and Ps.

the parallel composition of P
and Ps, with communications be-
tween them along the channels
in C; these communications are
concealed.

attempts to execute the guarded
process G until it succeeds;
repeatedly executes the boolean
guarded process BG until it fails.

Py ||¢ Pq

if G

do BG od

There are two composite guarded command state-
ments — if and do. if corresponds to occam’s PRI-
ALT - the command repeatedly attempts to execute
its guarded command set until such an attempt suc-
ceeds. The primitive guarded process B — P is exe-
cutable when the boolean guard expression B is true;
its execution succeeds when P completes execution.
Execution of B — P (read as “B then P”) fails when
B is false. The behavior of B & ¢?— P is similar;
c? succeeds if another process executes the matching
communication command c¢!. We require that ¢? be
evaluated only if B’s value is true. Two guarded pro-
cesses may be composed to yield a third using |, the
“else” operator. In the guarded process G| G2 we
require that Gz be executed only if execution of Gy
fails. The composite process succeeds if either G or
G5 succeeds, and fails if G7, G2 both fail. do repeat-
edly evaluates its boolean guarded command set until
execution fails.

Since evaluation of ¢7 as part of a guard expression
potentially has a side effect — completion of synchro-
nization — we allow, at most, one receive per guard
expression. Other syntactic restrictions include the
condition that input and output channels used by con-
current processes must be disjoint, and that parallel
processes may not share any variables. For simplicity
only boolean operators are given in the above syntax;
it is possible to extend Joy to include, for instance,
integer operations.

Our Joy compiler was inspired by the work of van
Berkel and others at Philips Research [NvBRS88], by
Martin [Mar86], and by Brunvand and Sproull [BS89].
Each syntactic unit of the source language is mapped
to a corresponding hardware component; these com-
ponents communicate using two-phase handshake pro-
tocols. Each basic module has one or more ports, or
bundles of signals. Some signals in each bundle trig-
ger the execution of the module or its neighbors; other
signals indicate the completion of execution.

The simplest handshake interface is the control in-
terface, consisting of request and acknowledgement

signals. On a port p we denote the request and ac-
knowledgement signals p, and pg, by convention. Ex-
ecution of a process P with port p is triggered by
receipt of an event on p,; P produces an output event
on p, to notify the requester that execution has com-
pleted. The physical interpretation of events is as volt-
age transitions (either low to high or high to low).

For example, a module implementing the skip pro-
cess has a single control interface. It does nothing but
issue an acknowledgement s, after receiving a request
sr, and is specified by the following state machine. If
two-phase signalling were used, Skip could be realized
by a single wire.

Skip @.o)

As another example, consider the module imple-
menting sequential composition — P; ¢ — which has
three control interfaces. Once triggered by an event
on sy, Seq starts the first process by issuing a request
on p,. When the first process signals completion by an
event on p,, the second process is started by an event
on ¢r. Completion of the second process (¢,) leads to
termination of the sequence (s4). A two-phase version
of Seq can be implemented using three wires.

S
Sr Sa 0 - o S, 8,

b

'p, 7. © @O——B D, q,

In addition to this simple control interface, more
complex protocols are needed for passing data among
handshake components. Boolean data are encoded on
two wires, conventionally denoted by and b; for a port
b. The read interface is used in expression and guard
evaluation. For an expression B with port b, evalu-
ation is triggered by receipt of an event on b, from
A, and terminates with an event on either by or by
depending upon the value of the expression. There
is also a write interface used to assign values to vari-
ables: assignment to variable V begins with receipt

of an event on either vy or »; from U; completion is
signaled by an event on v,.

3 From Two-phase to Four-phase
Specifications

In this section we show how to use our specifi-
cations for two-phase modules to automatically gen-
erate specifications for “equivalent” four-phase mod-
ules in a manner which guarantees that our correct-
ness proof for the two-phase compiler is valid for the
four-phase compiler. Our technique is to develop a
set of converters which translate between two-phase
and four-phase handshake protocols. The specification
for a four-phase component is generated by adding
protocol converters to all the handshake interfaces of
the corresponding two-phase component. The proto-
col converters have the property that a matched pair
of them (2 — 4 , 4 — 2) behave like a bundle of
wires, provided that the components connected by the
converters obey the handshake protocol. By defini-
tion, the behavior of a delay-insensitive circuit is not
changed by introducing additional wires (delays) into
the circuit. Thus, a circuit created by combining four-
phase components is equivalent to one created from
two-phase components with converters added to each
handshake port, and thus is equivalent to a circuit
composed of just the two-phase components.

The figure below illustrates our method. Suppose P
and @ specify delay-insensitive elements communicat-
ing over a pair of wires using a two-phase handshake
protocol. We introduce the protocol converters 2 — 4
and 4 — 2 — these converters communicate with each
other using the four-phase protocol, but the pair of
them behave like a bundle of wires and are therefore
transparent to P and . The combined behavior of
P and 2 — 4 is P’, the four-phase counterpart of P;
similarly, @ and 4 — 2 combine to yield Q’.

p
P;
v
y Q;
Q

The design of suitable converters is complicated
by the additional freedom allowed by the four-phase
protocol which is not present in the two-phase pro-
tocol. Consider the waveforms associated with two-

phase and four-phase handshaking over a simple two-
wire interface.

2-req 4-req

L

We say that the two-phase protocol is idle before
the req transition and after the subsequent ack transi-
tion. A handshake is initiated when the req transition
occurs and is completed when the subsequent ack tran-
sition occurs. For the four-phase protocol, the terms
initiated and idle are similar, but when is the hand-
shake completed?

One answer would be after the second ack tran-
sition. This conservative interpretation has the ad-
vantage that it makes it easy to detect when a circuit
consisting of many communicating components is idle.
This is important when accesses over multiple inter-
faces to a component (e.g. a channel) must be mutu-
ally exclusive. We have chosen this interpretation for
control interfaces as it is consistent with Burns’ and
Martin’s compiler.

Another answer would be to say the communica-
tion is completed after the first ack (it is clear that
after the first ack the two partners have agreed to
synchronize) but that there is some additional work
which must be done to return the interface to an idle
state. This interpretation is useful for value-passing
interfaces — it is desirable to use the value returned
as soon as it is available. We refer to interfaces of
this type as quick return interfaces, and we choose
this interpretation for most read interfaces and all
write interfaces, again for consistency with Burns’ and
Martin’s compiler. As we shall see in section 4, the
quick return interface is not appropriate in evaluating
guarded commands: an extra type of read interface is
required which adopts the conservative interpretation
for “true” acknowledgements and the quick return in-
terpretation for “false” acknowledgements.

In discussing the various converters we use the fol-
lowing naming convention. Protocol converters have
two ports: one port obeys a two-phase protocol and
one obeys a four-phase protocol. Additionally, one of
the ports has its request line as an input (we call this
a passive port) and one port has its request line as
an output (we call this an active port). In naming
protocol converters, the type of the passive port will
be listed first and the type of the active port second.
For example, 2-4 has a (two-wire) passive two-phase
port and an active four-phase port. For value pass-

2-ack 4-ack

ing converters we will indicate the source of the value
by adding the symbol val to either the passive or ac-
tive port as appropriate. For example, 2val-4 is a
converter in which the value to be passed is supplied
at the passive two-phase port. The six basic types
of converters are thus 2-4, 4-2, 2val-4, 4val-2,
2-4val, and 4-2val. Later, we will add 2-4val-qr0,
a converter with quick return in the case of “false”
acknowledgement only.

A guiding principle has been to restrict the spec-
ifications of protocol converters as little as possible.
Since we are using converters to generate specifica-
tions for four-phase components, using less restrictive
protocol converters leads to less restrictive four-phase
specifications, and therefore allows more freedom in
choosing a four-phase implementation.

3.1 Two-wire Converters

We begin by discussing the two-wire converters 2-4
and 4-2. For the two-wire four-phase protocol, recall
that the handshake is completed only when the second
ack has occurred. The converter 2-4 accepts a transi-
tion on input 2req, completes a four-phase handshake
on output 4req and input 4ack, and produces a tran-
sition on output 2ack.

2req 2ack 4req
l 2req 4ack
2-4
l 2ack

4req 4ack 4ack

The 2-4 converter is the simplest which we shall
present. The design of the 4-2 converter is somewhat
more subtle. A handshake is initiated by a transi-
tion on 4req. Since a full four-phase handshake re-
quires two transitions on 4req and 4ack, the converter
may respond with 4ack before it has even initiated a
transition on 2req! This is an instance of our princi-
ple that converters should not be unduly restrictive:
given our definition for “completed”, we need only
require that the initiating (completing) transition of
the four-phase handshake precede (follow) that of the
two-phase handshake. Note also that in the state di-
agram for the 4-2 converter, the transitions on the
leading diagonals are identical (either 2req or 2ack),
and similarly for the transitions on the trailing diag-
onals (either 4req or 4ack). This symmetry helps in
understanding how the converter works.

4r eq

4 dack
r]ﬁ Tac 4ack 2req
4req2req 4ack 2ack
4-2 ®
2req 4req 2ack 4ack
Vo
2req 2ack 2ack 4req

4ack

In order to ensure that the use of converters does
not affect the behavior of the system, we must verify
that the behavior of two converters connected back to
back with wires between them is not detectable to the
communicating two-phase components. In particular,
we must check that the connection 2-4, 4-2 behaves
correctly. The strongest possible requirement is for
this pair of components to behave like a pair of wires.
Fortunately, a weaker requirement suffices. Since we
are restricting connected components to obeying the
handshake protocol, we need only require that a pair
of converters connecting an active port a to a passive
port p have the following behavior:

a- ack

a-req p-req
@
We were able to show this using the FDR tool and
Dill’s tool.

3.2 Sequential Composition

We now derive a four-phase specification and imple-
mentation for one of our simpler components, which
implements sequential composition. In developing
our four-phase implementation, we make use of the
D-element to enforce sequencing [Mar86]. The D-
element has the following state table:

b <«— l«—d

The four-phase specification is obtained by compos-
ing the two-phase specification (Seq below) with con-
verters for four-phase handshake protocols. The state
diagram of the composite is also shown.

.
N

.
N

As used above, the D-element enforces that the se-
quential composition element performs the following
sequence of actions:

SryPryPay Sas Sry Pry Pay 4rs 4ay 4rs 4a Say - - -

These transitions appear as darker arrows in the state
diagram of the four-phase sequential composition el-
ement. This component is identical to that used in
Martin’s compiler [Mar86]. In contrast, van Berkel
[vB92] implements sequential composition with an el-
ement performing the sequence

SryPryPayPryPay 9r; 4as Sas Sry 4r; 4a; Say - - -

Both groups have recognized and exploited the fact
that the only requirements of the sequential composi-
tion component are that the first transition of a cycle
be s,, the last transition be s,, and that the handshake
with P be completed before the handshake with @ is
begun. As the diagram shows, the four-phase specifi-
cation we generated is sufficiently general that either
Martin’s or van Berkel’s implementation would be per-
mitted.

4 Channels

Processes executing in parallel can interact by syn-
chronized communication over named channels, which
our compiler implements by handshaking. Our two-
phase compiler generates circuits which are “truly”
delay-insensitive. By this we mean that we build our
circuits using a small set of primitive delay insensi-
tive components, and make no assumptions about wire

delays. While it is possible to implement four-phase
channels in a truly delay-insensitive fashion, here we
present a speed-independent solution which is similar
to that used by Burns and Martin.

We shall begin by explaining the channels and call-
modules used by our two-phase compiler. Next, we
will introduce the protocol converters needed to obtain
the four-phase specification. These converters incor-
porate assumptions about the environment in which
four-phase implementations may be placed, and al-
low us to perform aggressive optimization. Finally, we
shall show how to derive a four-phase, multi-receiver,
multi-sender channel which is similar to that gener-
ated by Burns and Martin’s compiler.

4.1 Two-Phase Channels

Communication channels have a control interface at
the sending end and a read interface at the receiving
end. A sender, in executing c!, requests synchroniza-
tion by generating an event on s, and awaits an event
on s, signaling that synchronization has taken place.
A receiver, executing c¢?, tests a sender’s readiness to
communicate by generating an event on r.. An ac-
knowledgement on r; means that synchronization has
occurred; otherwise an acknowledgement on ry is re-
turned. The sending and receiving ends of the channel
synchronize on the internal event z.

r

l T T Receiver

Sender

Chan

A noteworthy feature of this specification is that
the channel may ignore the sender’s request for syn-
chronization — after r,, the receiver may be in state 1
and be willing to cooperate with the sender on z, or in
state 3 and refuse z. This is necessary for the specifica-
tion to be delay-insensitive: a delay-insensitive circuit
which has its interface buffered (delaying the arrival
of input and output events) must be indistinguishable
from the unbuffered circuit. As a further consequence
of delay insensitivity, new synchronization requests on
r, may be received by the channel before completion of
a previous handshake with the sender, and vice versa.
Of course a satisfactory implementation of the chan-
nel should be fair, in the sense that if the sender is
continually ready to perform z and the receiver is in-
finitely often in states 1 or 3, then z will eventually

be taken. We will not consider fairness in this paper.

Our model of a channel is slightly different from
that of Burns and Martin since we do not separate
the “probe”! from synchronization. This is equivalent
to performing the probe and immediately following
the probe by a synchronization request. Our compiler
does not support value passing channels; however, this
can be simulated by using a separate synchronization
channel for value. The circuits used by Burns and
Martin are (roughly) implemented in this way; how-
ever, they allow a single synchronization event to pass
values in both directions simultaneously.

It may be the case that synchronization on a chan-
nel is required at several different points in the pro-
gram. Consider the simple program “c!; ¢!”: since
the send interface to channels is delay-insensitive, the
acknowledgements must be properly routed back to
the requester. The send interface of a channel is shared
among multiple senders by means of the Call module:

b
a |Call
c

Similarly, the receive interface of a channel may be
shared among multiple receivers using the RCall mod-
ule:

Call

Further senders and receivers can be served by hav-
ing a number of Call or RCall modules connected to-
gether in the form of a tree.

4.2 Protocol Converters

In this section we present a set of three-wire con-
verters for read interfaces. The two-wire converters
discussed in section 3.1 were quite conservative — the
four-phase handshake was completed only after the
second ack transition. However, with value passing

1The probe is an operation developed by Martin which al-
lows a process to test whether a matching process is ready to
communicate

interfaces it is convenient to be able to use a value as
soon as it is available. Thus, for the read interface, one
of the converters is of the quick return type: the two-
phase handshake is completed immediately after the
value is passed via the first acknowledgement, even if
the handshake interface has not returned to the idle
state.

The 2-4val converter receives a request from the
two-phase component, forwards it to the four-phase
component, waits for 4-ack0 or 4-ackl, returns
2-ack0 or 2-ackl as appropriate, and then completes
the four-phase handshake. Notice that any subsequent
request on the two-phase port is held until the four-
phase handshake is complete.

4req —| le— 2req
4ack0 —*| 2- 4val — 2ack0
4ackl —* —> 2ackl
4req 2ackO 4ack0 4ackl 2ackl 4req

4ack0 2ack0 4req 2req

2ack0 4ack0 2req 4req

2req 4req 2ackl 4ackl

4req 2req 4ackl 2ackl
4ackl 2req

\E)

2req 4ack0 4req 4req

The 4-2val component is unlike the 4-2 compo-
nent in that it cannot return an acknowledgement to
the four-phase interface until the handshake with the
two-phase interface is complete. This is because it
must wait to receive either 2-ack0 or 2-ack1 in order
to choose between 4-ack0 and 4-acki.

4ackl

@ ®

l T T 4r eq 4req 4req

4-2val 0

4ack0

4req 4ack0 4ackl

l T T 4ack0 2req 4ackl
2req 2ack0 2ack1l 3 é 6
2ackO 2ackl

The pair of converters 2-4val and 4-2val con-
nected back-to-back are transparent, provided they
are inserted between components obeying the two-
phase handshake protocol.

A Special Case

Our two-phase compiler generates shared resources,
such as variables and channels, by building trees of
“call-modules” which are essentially delay-insensitive
multiplexors and de-multiplexors. In contrast, Burns

and Martin implement variables and channels which
may have an arbitrary number of ports. To obtain ef-
ficient implementations, however, they make compro-
mises to delay-insensitivity by using large isochronic
regions — regions in which wire delays are assumed to
be negligible — and assuming that certain mutual ex-
clusion properties hold. If a write port of a variable
is active, all other ports must be idle; for channels, at
most one send and one receive port may be active at
any time.

The protocol converters presented in the previous
sections are sufficient to derive most of the four-phase
building blocks necessary to transform our two-phase
compiler. For the components which perform guard
evaluation, unfortunately, we need an additional con-
verter to ensure that the mutual exclusion properties
are not violated. To understand where the difficulty
arises, consider the component which corresponds to
— (asin B — P).

Then operates as follows. When a request a, is
received, Then requests the evaluation of B by issuing
b,.. The result of the evaluation determines whether
the process P will be executed. If by is returned, the
guard evaluation has “failed” and Then returns qg
to its caller. If b; is returned, the guard evaluation
has “succeeded” and Then initiates execution of the
process P by issuing p,. Then returns a; to its caller
after P has signalled completion by p,.

In an attempt to obtain a four-phase specification
of Then, we might attach protocol converters:

Suppose the handshake proceeds as follows. A re-
quest is made at the port a for the guarded command
B — P to be executed. A request is issued at b for
evaluation of the guard expression B, and a “true”
acknowledgement is returned. Because 2-4val is a
quick return converter, the two-phase Then receives a
“true” acknowledgement before the four-phase hand-
shake at b is completed. Then is then able to initiate
execution of P, leading to a problem: P might assign
to a variable present in the guard expression B, but
the read port of that variable may not be idle. This vi-
olates the mutual exclusion property that Burns’ and
Martin’s compiler requires.

The solution to this problem is to introduce an al-
ternative converter for read interfaces — 2-4val-qr0
— which uses a mixed interpretation of completion.
A “false” response means that the evaluation of the
guard is complete and hence evaluation of the guarded
process is complete; a “true” response only means that
the evaluation of the guard is complete, not that the
corresponding process has executed. The simple con-
verters which we have presented do not admit this
distinction. The new converter 2-4val-qr0 is simi-
lar to the 2-4val component presented in the previ-
ous section, except that it allows quick return only in
the case in which a “false” is returned. The two con-
verters 4-2val and 2-4val-qrO0 are transparent when
connected back to back.

2req —| ————4req

2ackQ<—— 2-4val -qr0 «——— 4ack0
2ackl+~— [4ackl

4req 2ackO 4ack0
. 4r eq .
4ack0 2ack0 4req 2req 4ackl 4ackl
2ack0 4ack0 2req 4req 4req 2ackl
2req
2req 4ack0 4req

When we derive the four-phase implementation of
guarded commands we also use this new converter to
introduce contextual information to our proofs. By
considering how a component’s environment interprets
events at its ports (quick-return “false”, conservative
“true” in the case of the four-phase Then) we are able
to obtain an optimized implementation. The speci-
fication and implementation of our four-phase Then
are shown below. The D-element is used to complete
the handshake with the guard when the guard is true
(compare with the implementation of Seq). Note that

the 2-4val-qrO converter is only required for “con-
text”; it does not appear in the implementation.

4.3 Four-Phase Channels

We begin by presenting the basic channel module
for a single sender and a single receiver. We then de-
rive a speed-independent multi-sender, multi-receiver
channel using the Ceall and RCall modules specified
for the two-phase compiler.

Recall that the Chan module has a read interface
for the receiver and a control interface for the sender.
To derive the specification of the four-phase channel,
we place one of our three-wire converters, 4-2val,
at the receiver’s interface of the two-phase specifica-
tion, and a 4-2 converter at the sender’s interface
(for brevity, we do not show the state diagram of the
four-phase specification). The four-phase implemen-
tation uses a Muller C-element and a synchronizer
[Mar86]. The synchronizer has a one-wire input (to
be synchronized) and a read interface. When it re-
ceives a request on its read interface the synchronizer
examines its input; some time later it issues either
a “true” or “false” acknowledgement depending upon
the value it saw there. The fork marked “=" signifies
an wsochronic region, in which events are assumed to
occur at all points simultaneously. The presence of the
isochronic region distinguishes this implementation as
speed-independent, rather than delay-insensitive.

r . Chan : s

We can derive a two-sender channel by considering
the development of a speed-independent Call module.
We obtain the four-phase specification by using the
appropriate protocol converters. Note that the four-
phase implementation contains an isochronic region.

Similarly, we can derive a two-receiver channel by
considering the RCall module. In this case, however,
it turns out to be efficient to implement the combina-
tion of a RCall and a Chan by duplicating the Chan
module. As with the guarded commands we then need
to consider some information about the context of the
channel. The combination of a four-phase channel and
a RCall module can be implemented as follows:

b
@- 2’;:631 Chan

¢ ” 2 phase 4 phase
2-4val
b Chan |
4 phase =
Z’
c Chan
qr0 [
4 phase

We obtain a multi-sender, multi-receiver channel by
combining and generalizing the two-sender and two-

receiver channels. The channel, shown below, con-
sists of three parts. Each receiver accessing the chan-
nel duplicates the hardware of a single-sender, single-
receiver channel. Each sender’s hardware consists of
a c—element; the sender blocks until synchronization
has occurred. Finally, the shared portion of the chan-
nel is implemented using distributed or-gates.

shared sender

receiver

The channel is speed-independent in the sense that
all inputs from the channel to the receivers and senders
are assumed to form an isochronic region. An ad-
ditional proof is needed to justify compressing the
senders’ call tree into a large isochronic region and
one c-element per sender. This represents a design
tradeoff between safety (relatively small isochronic re-
gions) and efficiency.

5 Discussion

We have described and illustrated a simple method
for developing and verifying alternative implementa-
tions for a hardware compiler. This approach facil-
itates the re-use of existing proofs, and many of the
new proofs can be automated. Our method consists of
three steps. First, we develop protocol converters for
transforming between the protocols used in the exist-
ing and in the new compilation schemes. In the case
of our Joy compiler, seven protocol converters were
required. The second step in our method is to gener-
ate the specifications of the basic modules for the new
compilation scheme from the old ones using protocol
converters; finally, we show that the implementations
of the new compilation scheme satisfy their specifica-
tions. The final two steps are performed by automated
tools.

In developing our four-phase modules, we assumed
certain mutual exclusion properties on access to vari-
ables and channels. The final “loose end” in our proof
is to prove our implementation has these properties.
We can define predicates on the four-phase modules
which capture the state of their handshake interfaces
(e.g. idle) and formulate the required properties as
invariants; these can be proved easily by induction on

the structure of programs. The proof was done by
hand in [BLO94], but could be partially automated
using model-checking techniques.

There are several possibilities for further work. It
would be desirable to extend our derivation to include
other asynchronous design styles, such as the bun-
dled data approach [BS89], or to include clocked im-
plementations [PL91]. We believe that our approach
would simplify the verification of hardware compilers
for occam-like languages, and would provide a mathe-
matical basis for developing implementations consist-
ing of a number of synchronization methods, such as
those proposed by Seitz [Sei80]. If this venture is suc-
cessful, then the next question could be: how to char-
acterize efficient designs adopting mixed synchroniza-
tion protocols?

Acknowledgements

Thanks to Mark Josephs, He Jifeng, and Tony
Hoare for their comments and suggestions. Geoffrey
Brown was supported by NSF grant CCR-9058180 and
matching funds from AT&T. Wayne Luk was sup-
ported by the ESPRIT OMI/HORN (7249) Project.
John O’Leary was supported by NSF grants CCR-
9058180 and CCR-9224575 under a joint ESPRIT-
NSF program, and by a fellowship from Bell-Northern
Research Limited. This work was completed while the
first author was a SERC Visiting Fellow at Oxford
University Computing Laboratory.

References

[BLO94] Geoffrey Brown, Wayne Luk, and John
O’Leary. Retargeting a hardware com-
piler using protocol converters. Tech-
nical Report EE-CEG-94-1, School of

Electrical Engineering, Cornell Univer-
sity, February 1994. Submitted to Formal
Aspects of Computing.

Steven M. Burns and Alain J. Martin.
Synthesis of self-timed circuits by pro-
gram transformation. In Advanced Re-
search in VLSI: Proceedings of the 5th
MIT Conference, pages 35-50, 1988.

[BMSS]

[Bro91] Geoffrey M. Brown. Towards truly delay-
insensitive circuit realizations of process
algebras. In Geraint Jones and Mary
Sheeran, editors, Designing Correct Cir-
cuits, pages 120-131. Springer-Verlag,

1991.

[BS89] Eric Robert F.
Sproull. Translating concurrent communi-

cating programs into delay-insensitive cir-

Brunvand and

[Dil89]

[For93]

[Mar86]

[NVBRSS8S]

[PLY1]

[Sei80]

[SZ92]

[vB92]

[WBB92]

cuits. Technical Report CMU-CS-89-126,
Carnegie-Mellon University, 1989.

David L. Dill. Trace Theory for Auto-
matic Hierarchical Verification of Speed-
Independent Circuits. MIT Press, 1989.

Formal Systems (Europe) Limited. FDR
user manual and tutorial, 1993.

Alain J. Martin. Compiling communicat-
ing processes into delay-insensitive VLSI
circuits. Distributed Computing, 1:226—
234, 1986.

Cees Niessen, C. H. van Berkel, Mar-
tin Rem, and Ronald W. J. J. Saeijs.
VLSI programming and silicon compila-
tion; a novel approach from Philips Re-
search. In International Conference on
Computer Design, pages 150-151. IEEE,
October 1988.

Tan Page and Wayne Luk. Compiling
occam into FPGAs. In W. Moore and
W. Luk, editors, FPGAs, pages 271-
283, Abingdon, England, 1991. Abingdon
EE&CS Books.

Charles L. Seitz. System timing. In
Carver Mead and Lynn Conway, Intro-
duction to VLSI Systems, pages 218-262.
Addison-Wesley, 1980.

Scott F. Smith and Amy E. Zwarico.
Provably correct synthesis of asyn-
chronous circuits. In Jgrgen Staunstrup
and Robin Sharp, editors, 2nd Workshop
on Designing Correct Circuits, Lyngby,
pages 237-260. Elsevier, North-Holland,
1992.

Kees van Berkel. Handshake Circuits:
an Intermediary Between Communicating
Processes and VLSI. PhD thesis, Eind-
hoven University of Technology, 1992.

Sam Weber, Bard Bloom, and Geof-
frey M. Brown. Compiling Joy into sil-
icon. In Advanced Research in VLSI
and Parallel Systems: Proceedings of the
1992 Brown/MIT Conference, pages 79—
98. MIT Press, 1992.

