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Abstract. We present an overview of a prototype system based on a functional
language for developing regular array circuits. The features of a simulator, floorplanner
and expression transformer are discussed and illustrated.

INTRODUCTION

Implementing algorithms on a regular array of processors has many advantages. Be-
sides offering an efficient realisation of parallel structures, regular patterns of inter-
connections also provide an opportunity for simplifying their description and their
development. Various approaches for regular array design have been proposed; exam-
ples include methods based on dependence graphs [5], recurrence equations [14], and
algebraic techniques [16].

This paper presents an overview of a prototype system for regular array develop-
ment. The system is based on uFP [15], a functional language with mechanisms for
abstracting spatial and temporal iteration. These abstractions result in a succinct and
precise notation for specifying designs. Moreover, the explicit representation of vari-
ous forms of spatial iteration simplifies the production of layouts, and the declarative
nature of the language allows designs to be refined by simple equational reasoning.
Our aim is to exploit these features of uFP to provide an integrated set of tools for
capturing, exploring, refining and evaluating regular array designs.

Various versions of the tools have been written in the functional language Orwell
[18], whose simplicity and conciseness make it easy to investigate alternative imple-
mentations. We have prototyped facilities for simulation, floorplanning and expression
transformation; these will be reviewed and demonstrated in the following sections.

THE LANGUAGE

Designs are represented as expressions in pFP, a descendant of the functional language
FP [1]. Objects in uFP are either atoms (such as numbers) or tuples of objects: for
instance the object (0, (1,2)) is a 2-tuple containing the number 0 and the tuple (1,2).
A stream is an infinite tuple of objects which one can regard as the values of a signal at
successive clock cycles. The behaviour of a design is captured by a function that maps
an input stream to an output stream; so Add ((1,2),(3,4),(5,6),...) = (3,7,11,...).
Since one can describe a stream by a function that delivers the stream irrespective of
its argument, the use of streams abstracts time indices from circuit descriptions.



A higher-order function takes one or more functions as argument and returns a
function as result. Combinators are higher-order functions that capture common pat-
terns of computation as parametrised expressions. These patterns can be used to
describe behaviour, in which case the behaviour of a composite device is expressed
in terms of the behaviour of its components; or they can be used to encapsulate the
spatial organisation of a circuit, in which case they describe the wiring together of
components to form the composite device.

Consider first of all the combinator sequential composition, which corresponds to
connecting the input of one component to the output of another:

(F; Gz = G(Fr)

(we use reverse composition to conform with the convention that signals flow from
left to right and also to preserve compatibility with relational description of circuits
[17]). Construction, on the other hand, corresponds to broadcasting the input to each
component of a composite circuit. The output will be a stream of n-tuples where n
is the number of components in the construction. Figure 1 shows possible geometric
interpretation of (I ; G') and [F, G].

F

Figure 1 Sequential composition and construction.

It is not difficult to see that (F'; [G, H])=[(F"; G), (F; H)]. pFP contains a set
of such algebraic theorems, which equate distinct expressions with identical behaviour.
They can be verified by the semantics of pFP [15], but we do not go into the details
here.

A stream of tuples can be manufactured by left- and right-handed append functions

[$, [yov Yi,-- -5 yn—l]] ; AppL = [$7 Yo, Y1,-- -, yn—1]7
[[Z/07Z/17---7yn—1]790] ; AppR = [y07y17"'7yn—17$]7

and one can also select the first or the second of every element of a stream of pairs,

[QC,y], Ell = 7z,
[z,y]; El y.

Their respective inverses, EL,~1 and El,~!, pair every item of a stream with an un-
defined object, so that (EL™" ; EL) = (El,™' ; Ely) = Id where Id is the identity
function: (Id ; z)=(z; Id)=z.

Since pairs of circuits frequently arise, we have

[z,y]; fst I
[z,y]; snd F

[(z;F), y] (apply to first),
[z, (y; F")] (apply to second).



A pair of circuits with orthogonal interconnections can be placed beside or above each
other (Figure 2),

[a,[b,c]]; F—G = [[p,q],r] where [a,b];F = [p,s] and [s,c];G =
[[a,blc]s F|G

|
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[p.[q,r]] where [b,c]; F = [s,r] and [a,s]; G = [p, q].
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Figure 2 Beside and above.

Next, examples of combinators that capture common cases of spatial iteration will be
given (Figure 3). Repeated sequential composition is given by

FO = Id,
Fril = Fyopn

while repeated parallel composition is given by
[20, 1y -« oy Tpe1] 3 XF = (203 F), (213 F), ..o, (215 F)]

(xF is often pronounced as “map F7).
Triangular arrays of latches often arise at the boundaries of pipelined circuits, so
we have the combinators right and left triangle

[20, 215y 2p1] 3 ApF = [960,(961;F),...,(an_l;Fn_l)],
[Z0, 215y @p1]; A F = [(xo;Fn_l),(ycl;Fn_z),...,xn_l].

Horizontal and vertical forms of reduction can be used to implement continued
sums and similar kinds of loops. For example, [0, [2g, 21, 22, .. .]]; /g Add = 5 x;, where
0 is the function that produces a constant zero output. Horizontal and vertical arrays
are generalisation of reduces that provide an immediate output after each iteration.

These circuit forms also obey various theorems which can be used for circuit opti-
misation. For instance, provided that (D;.A) = Id, one can prove by induction that

\gl' = snd(ApD); \u(F;sndD); Appr; ApA. (1)

Such pFP theorems are especially useful for optimising regular array circuits by pipelin-
ing [16].

THE TOOLS

We now provide an overview of the design tools for the notation introduced in the
preceding section. A user interacts with the tools through a command interpreter
which acts as an interface to the main modules and the support facilities. The support
facilities perform a variety of housekeeping functions and convert between external and
internal data representation; the main modules include a simulator, a floorplanner, and
an expression transformer.
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Figure 3 Geometric interpretation of some combinators.

Housekeeping functions

The housekeeping functions include support for maintaining a menu-driven system
and on-line help facilities, for summarising, examining and editing contents of the
databases, and for interfacing the databases to the external file system.

Currently the system contains two databases: one for storing expressions in abstract
syntax, and the other containing geometric information for floorplanning.

Converting between representations

The external representation of ulF'P expressions is in concrete syntax; it is the form
that humans prefer to use. Alternative representations of concrete syntax are used
for symbols not normally found on a typewriter keyboard — so for example ocF' is
represented by @F, F'| G by F \I/ G, and ApF by /\R F.

Tree structures are used in the abstract syntax of pFP. They form the internal
representation which is interpreted and manipulated by the main modules.

There is a parser for converting expressions in concrete syntax to the corresponding
representation in abstract syntax. The two main operations involved are identifying
the type of an expression — for example, whether it is a primitive or a combinator —
and converting infix operators to prefix form. The “unparser” does the opposite: it
converts the internal representation to the external syntax for pretty printing.

Simulator

The simulator is basically a behaviour-interpreter for uFP expressions; it also con-
tains various functions for generating constant or varying streams. Multi-phase clock
systems and n-slow circuits [7] can be simulated by functions interleaving n streams
or selecting every n'* element of a stream; the latter can also be used for selecting
specific cycles of simulation output. Stream functions are implemented by translating
them to object-level functions using the rules in [15] — so for example stream addition
is implemented by mapping integer addition over an infinite tuple of pairs of integers.
The implementation of the simulator has been simplified since Orwell itself allows
higher-order functions and infinite data structures.

Most simulators only accept numeric inputs and produce numeric outputs. For
many problems it is often more instructive to obtain a symbolic description of the
outputs in terms of the inputs. A novel feature of our simulator is its ability to handle
both numeric and symbolic data: this enables the use of the same circuit description



for producing both numeric and symbolic results. Symbolic simulation is especially
useful for locating errors in the circuit description.

Other features of the simulator include the simulation of designs at various levels of
abstraction simultaneously (for instance part of the circuit can be described at word-
level while other parts are represented at bit-level), and output can be produced as
rectangular waveforms for bit-level signals.

Floorplanner

The floorplanner sketches a picture of a design. It takes the same circuit and input
descriptions as those for the simulator. The circuit can be drawn with the input and
output connections aligned to the horizontal, or to the vertical, or to both horizontal
and vertical if the data is in the form of a two-tuple. The size and connection positions
can be supplied by the user and are stored in the relevant database; if not, default
values are used.

There are four components in the floorplanner: a placer, a sizer, a router and an
output generator. The placer produces from the internal representation of the design a
hierarchical description of the layout. The subcircuits are placed according to a set of
rules currently embedded in the code of the placer. Next, the sizer adds the dimensions
and the connection positions to the description of the primitive cells, and the result is
then passed to the router which ensures that the connections between adjacent cells
are joined together properly. The output of the router is fed to an output generator.
Currently, output can be produced in one of the following three formats:

1. a format that can be displayed on an ordinary text terminal and is suitable for
a line printer,

2. a format for a bit-mapped screen using high-resolution graphics,
3. in IATRX [6] format.

The floorplanner also includes facilities for drawing particular parts of a circuit and
for producing layouts to a specified level of detail.

Expression transformer

#FP has many theorems for refining designs. The application of these theorems consti-
tutes a sequence of transformations which can be used for documenting and justifying
design decisions. The expression transformer is an experiment to discover the rudi-
ments of providing mechanical support for this style of development. It interprets
definitions and algebraic theorems as symmetric rewrite rules. These rules are cur-
rently embedded in the code of the transformer. At present the transformation of
expressions is completely user-guided: the user selects a subexpression by a pattern-
matching mechanism, and then specifies the rule to be applied. The system performs
the transformation and reports the substitutions and the assumptions used.

AN EXAMPLE: CONVOLVER DESIGNS

We shall provide a flavour of using the tools by developing some simple designs for
convolution. Given the data stream z, and the coefficient stream [wg...wy_1], a



convolver computes the result stream y such that

Vioye = Z Tt—pn X Wy ¢
0<n<N

We shall need adders, multipliers and latches, which are described respectively by the
predefined primitives Add, Mult and D.

Let us first show how the input signals, w, ; and z¢, can be generated. Of course
one can only simulate or draw a circuit of a particular size; we choose N = 4. In
response to the prompt “>” for a user command, we type

> sims [x,[w0,wl,w2,w3]]

The simulator treats a symbol as a constant function and produces a stream of time-
stamped symbols laid out vertically:

0: <x_0, <w0_0, w1_0, w2_0, w3_0>>
1: <x_1, <w0_1, wi_1, w2_1, w3_1>>
2: <x_2, <w0_2, wi1_2, w2_2, w3_2>>

Output interrupted!

The infinite output stream can be interrupted at any time. Alternatively one can
specify the number of cycles for the simulation. A constant stream of numbers can be
produced in a similar manner. To save typing we define ws = [wO,wl,w2,w3].

Now a straightforward way to implement convolution is to broadcast delayed ver-
sions of z to each w,, forming N products which are then added together. Arbitrar-
ily we choose to use a horizontal array of broadcast cells. Each cell, described by
[ld, Ely; D], passes the pair (2, w;+) downward unaltered and outputs z;_y to the
right. The rightmost z output is disposed of by sequentially composing \ g[Id, El;; D]

> sims [x,ws] ; \H [I4d,E11;D] ; El1

<<x_0, w0_0>, <7, w1_0>, <7, w2_0>, <7, w3_0>>
<<x_1, w0_1>, <x_0, wil_1>, <7, w2_1>, <7, w3_1>>
<<x_2, w0_2>, <x_1, wl1_2>, <x_0, w2_2>, <7, w3_2>>
<<x_3, w0_3>, <x_2, wi1_3>, <x_1, w2_3>, <x_0, w3_3>>
<<x_4, w0_4>, <x_3, wil_4>, <x_2, w2_4>, <x_1, w3_4>>

B W N = O

Output interrupted!

One can sketch this circuit using the floorplanner. The same input signals for the
simulator, which define the size of the array, can be used. The expression placed to
the left of “>>” will be excluded from the picture.

> draw [x,ws] >> \H [Id4,E11;D]

I I I
I I I
+-+ | +-+ | +-+ | +—+

+—+ || ++ || ++ || ++

1 1 1
Vv Vv Vv



A horizontal reduce of multiply-adders, MAdds = /i Mac where Mac = snd Mult; Add,
can then be used to form the result.

> sims [0, [[a,ul,[b,v],[c,x],[d,y]]] ; MAdds

0: ((((a_0 * u_0) + (b_0 * v_0)) + (c_0 * x_0)) + (d_0 * y_0))
1: (((Ca_l * u_1) + (b_1 * v_1)) + (c_1 * x_1)) + (d_1 * y_1))

Output interrupted!
> draw [0,[[a,ul,[b,v], [c,x],[d,y]1]] >> MAdds

[ [ [ [
Vv Vv Vv Vv
+————+ ===+ ===+ +-———+

|Mult| [Mult]| [Mult| [Mult]
O s TR e S S S

I I I I
v v v v
+-——+ ==+ ==+ =+

->|Add|-->|Add|-->|Add|-->|Add|--->
+-——+ ==+ ==+ =+

To put the broadcast circuit and the multiply-adders together, we rewite MAdds in
the form of a horizontal array by applying the theorem called “/H.\H” in the expression
transformer,

> gselect MAdds
MAdds = {/H Mac}
MAdds> apply /H.\H

MAdds = {\H (Mac ; E12"-1) ; El12}
using /H £ -> \H (£;E12°-1);E12 with f = Mac.

(the curly brackets indicate the expression transformed by the theorem). Our first
convolver, Cvl, is formed by placing the broadcast circuit above MAdds. Cvl can be
simplified by combining the two horizontal arrays into one:

> gelect Cvi

cvi = {(\H [Id, E11 ; D1) \|/ (A\H (Mac ; E127-1))}
Cv1> apply \H.\|/

Cvi = {\H ([Id, E11 ; DI \I/ (Mac ; E12"-1))}
using (\H £) \I/ (\H g) -> \H (£ \|/ g)

with £ = [Id, E11 ; D] and g = Mac ; E12°-1.

Hence one can define Cvl = \ g CvCelll where CvCelll = [Id, EL; D] | (Mac; El;™').
> sims [[0,x],ws] ; Cvl ; E12 ; El1

0: ((((x_0 * w0_0) + (7 * w1_0)) + (7 * w2_0)) + (7 * w3_0))

1: ((((x_1 * w0_1) + (x_0 * wi_1)) + (7 * w2_1)) + (7 * w3_1))

2: ((((x_2 *# w0_2) + (x_1 * w1_2)) + (x_0 * w2_2)) + (7 * w3_2))
3: ((((x_3 * w0_3) + (x_2 * w1_3)) + (x_1 * w2_3)) + (x_0 * w3_3))
4: ((((x_4 * w0_4) + (x_3 * w1_4)) + (x_2 * w2_4)) + (x_1 * w3_4))

Output interrupted!



> draw [[0,x],ws] >> Cvl

| +-+ | +-+ | +-+ | +-+
-———+-|->|D|-===+-|->|D|-=—=+-|->|D|——==+-|->|D|-->
L lo+=+ L 4=+ || 4=+ || 4=+
1 I 1 1
| ++ | ++ | ++ | ++
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[Mult | [Mult | [Mult | [Mult |
+————+ +————+ +————+ +————+
I I I I
\' \' \' \'
+———+ +———+ +———+ +———+
->|Add|-----—- >|Add | ------ >|Add | -—----- >|Add | -—----- >
+———+ +———+ +———+ +———+

To make the clock period independent of the array size, one can pipeline Cwvl to
get Cv2 = \g(CvCelll;sndxD). The floorplanner can be used to sketch Cv2 and the
associated skewing circuitry given by snd(AgD).

> draw [[0,x],ws] >> snd /\R D ; Cv2
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I I v
I |+t
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- Vv +-+
S
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| IDI VvV +-+
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|1 +-+ ++ |1 +-+ ++ |1 +-+ ++ || ++ +-+
I I I Il
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Vv Vv Vv Vv
+————+ +————+ +————+ +————+
[Mult | [Mult | [Mult | [Mult |
+————+ +————+ +————+ +————+
I I I I
\' \' \' \'
+———+ +-+ +———+ +-+ +———+ +-+ +———+ +-+
->|Add|-->|D|----- >|Add|-->|D|-—--- >|Add|-->|D|-——-- >|Add|-->|D|-——--- >
+———+ +-+ +———+ +-+ +———+ +-+ +———+ +-+



> sim [[0,x],ws] ; snd /\R D ; Cv2 ; E12 ; El1

R S B N ]

7

((((x_3 * w0_3) + (x_2 * w1_3)) + (x_1 * w2_3)) + (x_0 * w3_3))
((((x_4 * w0_4) + (x_3 * w1_4)) + (x_2 * w2_4)) + (x_1 * w3_4))
((((x_5 * w0_5) + (x_4 * w1_5)) + (x_3 * w2_5)) + (x_2 * w3_5))

© W0 N O U WN RO

Output interrupted!

Notice the use of sim rather than sims suppresses displaying the structure of outputs
containing undefined objects. The simulation suggests that Cv2 is a delayed version
of Cvl, that sndApD; Cv2; Ely; Ely = Cvl; Ely; ElL;DV. Equation (1) can be used to
verify this observation.

The design can be carried down to bit-level by replacing the components and the
signals by their bit-level counterparts. Furthermore, data-conversion functions can be
used to map one form of data representation to another: for instance the function
[0, Id]; /u (fst([1d, 2]; Mult); Add) converts a stream of tuples of bits (most significant
bit first) into a stream of the corresponding unsigned integers. This allows the speci-
fication and simulation of designs containing components described at different levels
of abstraction.

EXPERIENCE AND EXTENSIONS

The tools have been exercised on various word-level and bit-level regular array designs,
including convolvers, rank evaluators [9], multipliers [10], recursive filters [11], sorters
[17], and motion estimators [4, 3]. One of the motion estimator circuits [3] is shortly
due for fabrication. The tools have also been used for undergraduate and graduate
teaching.

Although the current set of tools is intended for experimenting with different ways
of interpreting and manipulating expressions in our notation rather than for use in
a production environment, early designer experience [2] has been encouraging. It is
confirmed that the simplicity and succinctness of our notation enable circuits to be
described very elegantly and quickly with practice, and that the system facilitates the
rapid exploration of choices in designing a circuit to perform a particular function.
Similar benefits have been reported for other hardware development tools [13, 12]
based on functional languages.

Our work has provided a basis for a design environment which enables the cost-
effective production of regular array circuits. Current research is directed towards
enhancing the completeness, effectiveness and robustness of our tools, and extending
them to encompass relational [17] and heterogeneous [8] array descriptions. Other
possible extensions include: improving the interface to designers and to other tools
(such as conventional computer-aided design tools and theorem provers), and the de-
velopment of a comprehensive library of cells and transformation strategies.
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