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Abstract

Monte-Carlo simulations are used in many applications,

such as option pricing and portfolio evaluation. Due to

their high computational load and intrinsic parallelism,

they are ideal candidates for acceleration using reconfig-

urable hardware. However, for maximum efficiency the

hardware configuration must be parametrised to match the

characteristics of both the simulation task and the plat-

form on which it will be executed. This paper presents a

methodology for the automatic implementation of Monte-

Carlo simulations, starting from a high-level mathemati-

cal description of the simulation and resulting in an opti-

mised hardware configuration for a given platform. This

process automatically generates fully-pipelined hardware

for maximum performance; it also maximises thread-level

parallelism by instantiating multiple pipelines to optimise

device utilisation. The configured hardware is used by an

associated software component to execute simulations us-

ing run-time supplied parameters. The proposed method-

ology is demonstrated by five different Monte-Carlo simu-

lations, including log-normal price movements, correlated

asset Value-at-Risk calculation, and price movements un-

der the GARCH model. Our results show that hardware

implementations from our approach, on a Xilinx Virtex-4

XC4VSX55 FPGA at 150 MHz, can run on-average 80 times

faster than software on a 2.66GHz Xeon PC.

1 Introduction

Monte-Carlo simulations are popular in financial appli-

cations, as they are able to value multi-dimensional options

and portfolios without an exponential growth in run-time

and memory use. The simulations are easy to specify math-

ematically, with an obvious translation to sequential code,

and so can be easily implemented in software. However, as
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financial instruments become more complex, it is necessary

to increase the speed of option valuation. Reconfigurable

hardware is one possibility, but it is much harder to trans-

late simulations into pipelined hardware.

This paper presents a methodology for describing and

implementing financial Monte-Carlo simulations in recon-

figurable hardware, allowing a simple mathematical de-

scription to be automatically translated to a fast fully-

pipelined implementation. Our contributions are:

• a framework for precisely specifying simulations using

a mathematical description, allowing a large and im-

portant subset of financial simulations to be described;

• a design-flow for automatically translating mathe-

matical simulation descriptions into high-performance

pipelined hardware implementations;

• an evaluation of the proposed methodology in a Virtex-

4 FPGA, showing that speed-ups of 80 times over soft-

ware can be achieved.

2 Framework for Simulation Paths

In this section we propose a framework for capturing fi-

nancial simulations such as option pricing and portfolio val-

uation. This framework enables the automatic design-flow

presented in Section 3 to be applied, allowing the abstract

specification to be directly compiled into pipelined hard-

ware. Although the framework imposes some restrictions

on the types of simulation path that can be described, we

give a number of examples of random walks and exotic op-

tion valuation paths that can be specified in this manner.

The types of simulation this framework addresses are

those that examine the aggregate properties of the paths of

many independent random walks. These random walks all

start from some common starting state, then a stochastic

transition function is applied until a terminal state is en-

countered, ending the path. A simple example of this type

of simulation is shown in Figure 1, which examines the

behaviour of a one-dimensional random walk that evolves
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Figure 1. Example of path based simulation.

through multiple time-steps. All paths start at the state S0,

but then diverge as time progresses along the horizontal

axis, due to the stochastic nature of the state transition func-

tion. Once the termination condition of T = 5 is reached

the current level of each path is extracted, allowing an esti-

mate of the expected terminal path level to be made. At the

moment this estimate has a large error, but as more paths

are added the estimate will asymptotically approach the true

expected terminal path level.

We now define a way of capturing such simulation paths

using a mathematical description. A simulation is defined

by a tuple (S,E,F, f, t, r, a, S0), which contains:

S : The set of possible path states, including the initial

state. For example, this set is ℜ× ℵ for Figure 1.

E : The set of possible path results, often a sub-tuple of S
with state information such as counters removed.

F : The set of possible accumulated outputs, containing the

overall results of the simulation, such as the price of an

option plus confidence intervals on the price.

f : S 7→ S : A stochastic state transition function that

moves a state forward along a path. The function must

contain at least one reference to a random variable,

otherwise there can only be one possible path.

t : S 7→ {0, 1} : A deterministic termination condition that

indicates whether a state represents the final state in a

path, such as checking whether the state’s time counter

has reached the termination time.

r : S 7→ R : A deterministic function that extracts a result

from the final state of a path. This throws away the

unimportant parts of the state, but might also apply

post-processing as well as simple extraction.

a : {E} 7→ F : An accumulation function that takes a

multi-set (i.e. array or list) of simulation results and

produces the final overall result. This would typically

calculate sample statistics such as mean and variance

for the components of R.

S0 : A fixed initial state, with the requirement that S0 ∈ S.

The elements of a simulation tuple may contain free vari-

ables, which are treated as parameters to the simulation. For

example, an option pricing simulation will typically con-

tain parameters for the volatility and drift of the underly-

ing asset, as well as properties of the option such as the

exercise time. These parameters will be bound either at

compile-time or run-time, depending on the application: a

bank wishing to evaluate overnight Value-at-Risk would use

the same fixed time horizon every night, so it might bind the

time horizon parameter at compile-time.

The most complex and important part of the simulation

tuple is the state transition function f . This typically con-

tains the majority of the simulation logic, and also contains

references to the random variates that provide the required

non-determinism. The function is restricted to be non-

iterative, i.e. there must be no looping or recursion. This

restriction is to ensure that the function can be expressed as

a Directed Acyclic Graph (DAG) to allow automatic com-

pilation, which is the key advantage of this methodology.

Note that this does not mean that iterative processes cannot

be accommodated, since almost any iterative process can be

emulated by embedding loop counters and control flags in

S and using branching within f .

Table 1 gives examples of different types of random

walks, and three examples of “exotic” options expressed

in this framework. To save space we have not shown the

accumulated output type F and the aggregation function a,

which would typically estimate the mean and variance of

the components of E.

The top section of Table 1 demonstrates five types of

asset path, demonstrating increasing levels of complexity.

Random Walk is the simplest kind of path, one dimensional

Gaussian noise (or Brownian motion). Although not useful

by itself, it forms a building block in many types of sim-

ulation, and acts here as a minimum size simulation for

benchmarking purposes. Random Jump demonstrates the

use of a non time-based termination condition. Geometric

Walk demonstrates a form of random walk often encoun-

tered in finance, where the size of asset price movements is

related to the magnitude of the current price. Bi-Variate

Walk shows an example of a path that contains two cor-

related components, where the direction of change in one

component will be correlated with the direction of change

in the other. Note that R1 is used twice in the state transi-

tion function, meaning that the same random value is used

in both places. GARCH Walk demonstrates a more compli-

cated type of random walk used in advanced financial mod-

els, designed to emulate the time-varying nature of volatil-

ity. This captures the memory of asset prices, where large

changes in price are often followed by more large changes.

The bottom section of Table 1 gives examples of prac-

tical simulations for valuing exotic options. The options

are defined over an underlying asset path, represented by

the state member x and the asset path transition function

p(x,R). This might be one of the paths shown in the top
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Name S and S0 E f : S 7→ S t : S 7→ {0, 1} r : S 7→ E

Random Walk
t ∈ [0, T ]← 0
x ∈ ℜ ← 0

x ∈ ℜ t′ ← t + δt
x′ ← x + R1

t = T x← x

Random Jump
x ∈ ℜ ← 0
y ∈ ℜ ← 0

y ∈ ℜ y′ ← y + R1

x′ ← x + µ + R2

x > K y ← y

Geometric Walk x ∈ ℜ ← x0 x ∈ ℜ x′ ← x× (µ + σR1) t = T x← x

Bi-Variate Walk
a ∈ ℜ ← a0

b ∈ ℜ ← b0

x ∈ ℜ a′ ← a + µa + σaaR1

b′ ← b+µb +σabR1 +σbbR2

t = T x← a + b

GARCH Walk

σ ∈ ℜ+ ← σ0

ǫ ∈ Re← ǫ0
v ∈ ℜ+ ← v0

v ∈ ℜ
σ′ ←

√
a0 + a1ǫ2 + a2σ2

ǫ′ ← σ′
R1

v′ ← v + µ + ǫ′
t = T v ← v

Asian Option
x ∈ ℜ+ ← x0

s ∈ ℜ+ ← 0
c ∈ ℜ+ x′ ← p(x,R)

s′ ← s + x
t = T c← (s/T −K)+

Volatility Swap
x ∈ ℜ+ ← x0

s ∈ ℜ+ ← 0
c ∈ ℜ+ x′ ← p(x,R)

s′ ← s + ln2(x′/x)
t = T c← (

√

s/T −K)+

Up-and-Out

Barrier Option

x ∈ ℜ+ ← x0

h ∈ {0, 1} ← 1
c ∈ ℜ+ x′ ← p(x,R)

h′ ← h ∧ (x′ ≤ B)
t = T ∨ ¬h c← h× (x−K)+

Table 1. Example simulation definition tuples for underlying random walks and option pricing paths.

of the table, such as GARCH, or it might be another as-

set model such as jump-diffusion. All the options are path-

dependent, meaning that it is not just the final value of the

asset that matters, but also the path the asset took in reach-

ing the final value. An Asian option pays an amount that

depends on the average asset price, rather than on the fi-

nal asset price, and so is less sensitive to changes in asset

price immediately before the exercise date. The Volatility

Swap has no direct relation to asset price at all, and is de-

pendent on the volatility of asset returns within a period,

providing a pay-off when the observed volatility exceeds

some strike level. Finally, the Up-and-Out Barrier Option

acts as a normal call option, unless the stock price exceeds

a barrier level, in which case the option is “knocked-out”

and will not pay out. The fact that we have a flexible termi-

nation condition allows us to optimise the simulation, and

terminate all paths once they are knocked-out.

The proposed design flow can capture all these types of

options and more; different simulation paths can be com-

posed into portfolios, defining complex pay-off and termi-

nation conditions. This allows for advanced financial in-

struments such as options-on-options, variable time hori-

zons, and non-equal time steps. As long as the criteria for

simulation tuples are met, then the design flow outlined in

the next section can automatically schedule and implement

it; the only limitations to complexity are the resources avail-

able on the target device. In the next section the compilation

strategy and design-flow for simulations will be presented.

3 Design Flow

The key component for performance in a simulation is

the state transition function, where it is necessary to achieve

the highest possible throughput and efficiency. How-

ever, because path-based Monte-Carlo simulation contains a

loop-carried dependency through the transition function, at-

tempting to execute paths sequentially would be inefficient:

floating point operations typically take ten or more cycles to

complete, and a complex state transition function might re-

quire multiple dependent floating point nodes, reducing the

state update rate to one every twenty or more cycles.

Our approach is to go to the other extreme: instead of

attempting to reduce the latency, we aggressively pipeline

to increase throughput. Multiple simulation paths can then

be scheduled in a C-Slow fashion [4], with as many paths

as can be accommodated by the pipelined update function

proceeding in parallel. As states exit the transition function

pipeline, they can be checked against the termination con-

dition. Any terminal states will then be removed from the

pipeline, allowing a new initial state to be started. Any non-

terminal states exiting the pipeline will be cycled back to

the start, allowing paths to continue till termination.

Figure 2 shows the structure of an implemented simu-

lation. At the top level is the platform interface, which

consists of a binding to the input/output capabilities of the

hardware platform, and a global communications bus. The

controlling software is able to direct this global bus to load

constants, initiate simulations, check simulation progress,

and read-back results. In most simulations the required bus

bandwidth will be low compared to the amount of compu-

tation, allowing a slow and area efficient bus to be used.

Attached to the global bus are one or more simulation

kernels, which implement the simulation tuple. The num-

ber, type and meaning of the input and output ports of the

simulation kernel is dependent on the simulation tuple, as

free parameters in the simulation specification are mapped

to input ports on the simulation kernel. Ports are mapped to
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the global bus through a kernel harness, which understands

how to route commands from the global bus to the ports of

the simulation kernel. This level of indirection allows simu-

lation kernels to be implemented just once for all platforms,

requiring only a relatively simple kernel harness to bind the

simulation kernel ports for each global bus type.

The simulation kernel contains all the path execution

logic, implementing the different parts of the simulation tu-

ple such as f and t (the transition and termination func-

tions). The main processing structure is the loop running

through f(s), shown with thick lines. This implements

the C-Slow path update function, with multiple simulation

paths executing in parallel. As state tuples exit f(s) they are

checked using t(s) to see if the state is terminal, and non-

terminal states are routed back up to the top of the loop,

to be stepped forwards again. Terminal states are removed

from the loop and routed into a FIFO of terminal states.

This frees up an execution slot in the circular state transi-

tion pipeline, so as the terminal state is extracted, a copy of

S0 is routed in. Adding this new state starts a new path, so

the processing pipeline is automatically kept fully occupied.

Terminal states are extracted from the FIFO by r(s),
which extracts the actual result tuple from the raw state.

The result tuple then enters another queue before being pre-

sented to the accumulation function a(e), which extracts the

statistical information from the path. The exact nature of

these two FIFOs depends on the complexity of r and a, and

on the average number of state transitions per path. If r is

extremely simple (for example just extracting an element of

the state), then there is no need for a FIFO before r. How-

ever, if r is complex (for example, the Volatility Swap in Ta-

ble 1) and on average each simulation takes multiple steps

per path, a FIFO may allow a more efficient serial imple-

mentation of r to be used.

The core of the simulation kernel is the state transition

function (f(s) in Figure 2), which typically need to per-

form a combination of mathematical operations and random

number generation. To achieve a high clock rate both these

operations need to be pipelined, so it is necessary to cre-

ate a scheduled pipeline that takes as input the original state

s and produces as output the new state s′. In the general

case such scheduling is a difficult problem, but because the

form of r(s) is restricted to be non-iterative, a simple de-

terministic scheduling algorithm can be used. Specifically,

because r(s) cannot contain any loops it can be represented

as a DAG, making it possible to schedule using an ASAP

(As Soon As Possible) scheduler. This scheduler simply

schedules the start of each pipelined operation in the cycle

at which all of its arguments become ready.

Figure 3 gives a simple example of scheduling the

GARCH Random walk in this way, assuming all operations

take one cycle. The latency of the pipeline is determined

by the path(s) between the input and output state that incur

Simulation Kernel

s

f(s)

s’t(s)

r(s)

a(s)

s0

Platform
Interface

Kernel Harness : Inst0

Global bus
interface

        Kernel Harness : Inst1

        Kernel Harness : Inst2

Global bus
interface
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Figure 2. Simulation architecture.
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Figure 3. Translating state update function to
fully-pipelined DAG.

the highest total node delay, in this case the paths between σ
and ǫ down to v′. Parameters are held static across a batch of

simulation paths, and so can be used from within any cycle.

Random number generators should be scheduled as close

to their first point of use as possible to reduce the amount

of buffering needed, although if a random number is used

twice it must be buffered from the first cycle of use.

Figure 4 shows the overall design flow from input speci-

fication through to run-time execution. The two inputs con-

sist of a set of simulation descriptions, which contain the

simulator specification tuples for different types of paths,
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Figure 4. High-level design flow.

and a simulator configuration which describes the combina-

tion of simulator specifications to implement and the type of

platform to use. The design flow can then proceed forward

in parallel, with three different types of compilation and

synthesis: turning the simulator path tuple into a platform

independent simulation kernel through C-Slow scheduling;

creating kernel harnesses that can attach the simulation ker-

nels to the global bus; and create a top-level design that

instantiates the platform interface, global logic, and all the

required kernel harnesses.

The different components are then ready to be com-

bined with the pre-synthesised database of operators, such

as floating-point computation and random number genera-

tor cores, producing a final bit-file. Associated with this

bit-file are meta-data which explain exactly which simula-

tion kernels are contained within the bit-file, and how the

kernel parameters are mapped onto the global bus. At run-

time a software component can use the meta-data to find

and load the correct bit-file, set the unbound simulation pa-

rameters, initialise all the random number generator seeds,

and then execute simulation paths.

4 Evaluation

A completely automated implementation of the proposed

automated framework is under development, and we pro-

vide performance results from a manual execution of the

design-flow. All steps are followed as described in the pre-

vious section, by mechanically performing ASAP schedul-

ing of DAGs, so these results accurately characterise the

performance that can be expected from the final automated

version. The chosen simulations are the five different types
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Figure 5. Performance for an xc4vsx55 device
as number of simulation kernels is increased.

of underlying random walk shown in the top of Table 1.

The implementations are described in the Handel-C lan-

guage, compiled to VHDL using DK4.1, then synthesised

using Synplify 7. Floating-point cores from CoreGen 7.1

are adopted for all mathematical operations, using the IEEE

single precision floating point format. Random number

generators are implemented using linear piecewise approx-

imation [3]. The resulting components are then placed and

routed using ISE 7.1, using default optimisation options ex-

cept for the inclusion of timing driven placement. The target

part chosen is a Xilinx Virtex-4 xc4vsx55 FPGA, due to its

large number of DSP blocks.

We evaluate performance using MStep/s, a measure of

the number of times the state transition function can be exe-

cuted by a device per second. If a design contains i simula-

tion kernels, and can execute at f MHz, then it can achieve

i×f MSteps/s. Although this is a measure of peak sustained

performance, it is close to achieved performance, since the

only overhead unaccounted for is that introduced by param-

eter setup and the retrieval of results. This overhead will

be of the order of 100-1000 cycles for every 10M-1000M

cycles of path generation, so the impact will be minimal.

Figure 5 shows performance in a Virtex-4 xc4vsx55 device

as the number of parallel simulation kernels is increased,

until either the design is over-mapped, or the design is un-

routeable. This shows that there are significant performance

benefits in using intra-device parallelism in this application

domain.

Figure 6 compares the performance of the hardware im-

plementations against that of a software implementation.

The software is developed in C++, and compiled using the

Visual Studio 2005 compiler with all optimisations turned

on, and all floating-point transformations allowed. The ran-

dom numbers are generated using a combination of the

Mersenne-Twister URNG to provide random integers [2],

and the Ziggurat method to convert the random uniform in-

tegers into Gaussian random numbers [1]. The maximum
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f xc4vsx55 P4 2.66GHz

n=1 n=max

Walk 374 6053 44

Jump 1017 7836 68

Log-Norm 787 8316 85

Dual 1544 9080 112

GARCH 1207 5889 120

Average 986 7435 86

Table 2. Sustained MFLOP/s for hardware and

software implementations.

and minimum speed-up over software are 137 times for

Random-Walk, and 49 times for GARCH, and taking the

geometric mean of the speed-ups, we see an average speed-

up of 87 times across the five iteration kernels.

Table 2 estimates the performance of the hardware and

software implementations in Mega Floating-Point Opera-

tions per second (MFLOP/s), using the operation count per

transition function, and assuming that random number gen-

eration takes similar time to one floating-point operation.

On average the hardware implementations achieve about

7.4GFLOP/s with a maximum of over 9GFLOP/s. Note that

these are not theoretical peak rates: both software and hard-

ware should achieve within a few percent of these process-

ing rates in a real application.

5 Related Work

There have been few published accelerators for financial

simulations, and these focus on creating a custom design

for a specific simulation. An implementation of the BGM

method is presented in [5], which uses a scheduling strategy

and implementation designed by hand for one specific type

of simulation. The methodology presented here is capable

of capturing and implementing the published BGM, so in

future it should be possible to directly compare the auto-

matically generated version against the previous manually

optimised version.

6 Conclusion

This paper has presented a methodology for the auto-

matic implementation of many types of financial simulation

in reconfigurable hardware. By imposing restrictions on

the simulation path specification it is possible to automat-

ically generate pipelined optimised hardware, using ASAP

scheduling to create C-Slow simulation pipelines. Although

the path specification is restricted it still allows many use-

ful simulations to be expressed, and we have shown how a

number of different types of random walk and exotic option

pricing formulae can be expressed in the restricted form.

The performance of the system has been tested using

a manual implementation of the proposed design-flow, us-

ing single-precision floating point in a Virtex-4 xc4vsx55.

Across five different types of random walks the hard-

ware implementation is found to be 80 times faster than a

2.66GHz Pentium-4, achieving up to 9 GFLOPs/s.

Future work will focus on automation of the design-flow,

and the potential for further optimisations. As the proposed

framework is deliberately designed to be an automated pro-

cess, there are no technical hurdles to the development of

a completely automated compilation route, and the results

produce by an automated system are expected to closely

correspond to the manual results presented here. However,

there are still many questions about the real-world perfor-

mance of such a system, particularly when applied to more

complex financial systems. Of particular interest will be a

comparison between the hand-optimised BGM implemen-

tation [5] and one that is automatically generated from the

abstract mathematical description.
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