ELECTRONIC WORKSHOPSIN COMPUTING
Series edited by Professor C.J. van Rijsbergen

Mary Sheeran, Chalmers Technical University, Sweden, and Satnam Singh,
University of Glasgow, UK (EdS)

Designing Correct Circuits

Proceedings of the 3rd Workshop on Designing Correct Circuits
(DCC96), Bastad, Sweden, 2-4 September 1996

ISBN: 3-540-76102-0

Paper:

Deriving Two-Phase Modulesfor a Multi-
Target Hardware Compiler
J. He, G. Brown, W. Luk and J. O'Leary

Published in collaboration with the
British Computer Society

S) Springer

©Copyright in this paper belongs to the author(s)

Deriving Two-Phase Modules
for a Multi-Target Hardware Compiler

Jfeng He Geoffrey Brown
Oxford University Computing Laboratory School of Electrical Engineering, Corndl University
Wolfson Building, Parks Road, Oxford OX1 3QD, UK Ithaca, NY 14853, USA
Wayne Luk

Department of Computing, Imperia College
180 Queen’s Gate, London SW7 2BZ, UK

John O’ Leary
Microprocessor Products Group, Intel Corporation
2111 NE 25th Avenue, Mail Stop JF1-81, Hillsboro, Oregon 97124-5961, USA

Abstract

This paper adopts the CSP framework for deriving a compilation scheme from a simple imperative language to two-
phase modules. Two-phase modules are processes that communicate with one another using two-phase handshake
protocols. The two-phase modules generated by our compilation scheme can be implemented as asynchronous or
clocked circuits. The derivation techniques have been applied to a concurrent language which is a superset of the
language discussed.

1 Introduction

A verified compiler isessentid to astructured approach for verifying designs: if itsusers are confident of the correctness
of thetrand ation from the source language to the target description, they can focus on getting the source programright.
The verification of the compiler should itself be structured to make it simple, modular and flexible.

We have been investigating a method for verifying a compilation scheme for occam-like languages that targets
both asynchronous[2] and clocked [8] hardware. The method involvestwo steps; thefirst isto trand ate the constructs
of the source language systematicaly into an intermediate form known as two-phase modules, which interact with
one another using simple two-phase protocols. Figure 1 shows the hardware modules implementing the following
program:

var x:
do

true —» ¢z .= -
od

The second step of our method isto use appropriate protocol converters to derive the implementation of the two-phase
modulesin aparticular target technology. The second step has been described el sewhere [3]; the purpose of this paper
isto describethe first step.

The verification of asynchronous and clocked realisations of occam-like languages has been undertaken by a
number of researchers, including He et. al. [5], Smith and Zwarico [11], van Berkel [12], and Weber et. al. [14].
There are three principal differences between our work and theirs. First, our approach provides a means of capturing
and reasoning about asynchronous and clocked systems within a unified framework; it can also dea with systems
containing both asynchronous and clocked elements. Second, our verification strategy is structured into a number of
stagesto improve modul arity and reusability of proofs. Finally, many of our proofs can be automated; we shall identify
some of them later.

Designing Correct Circuits, 1996 1

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

Figure 1. Two-phase modules for a simple program. Note that each connection actually contains severa wires. the
assignment module for instance, labelled ‘:=" above, has a top 2-wire control interface, a right 3-wire read interface
and aleft 3-wirewriteinterface. The definition of these interfaces can be found in Figure 2.

Our derivation of the two-phase modules includes several novelties. The use of the CSP framework [6, 10] makes
our descriptions concise and simplifies our presentation. Using the CSP a gebra, we can systematically refine source
programs into a collection of interacting two-phase modules; program variables are modelled by data modules, while
control constructs result in control modules. We aso exploit the regularity of the handshake protocols which govern
the interaction between these modul es — thisleads to a notion of refinement for such modules which greatly ssimplifies
our derivation.

The rest of the paper is organised as follows. Section 2 provides an overview of our derivation strategy. Section 3
introduces the source language for our compiler and the two-phase handshake protocol s adopted by the intermediate
form. Section 4 reviewsthe d gebraof CSP and shows how it can be used to capture handshake protocols. Sections5, 6
and 7 are devoted to trandl ating vari abl es, expressions and statements from the source program into two-phase modul es.
Section 8 describes the specification of two-phase modules, and Section 9 outlinesthe derivation of implementations.
Concluding remarks are presented in Section 10.

2 Overview of strategy

This section provides an overview of our derivation strategy for the sequential subset of our source language; the CSP
notation used here will be summarised in Section 4. The network of two-phase modules implementing the source
program P is specified as ¥, (P), where the request signal r activates P and the acknowledgement signal « indicates
that P hasterminated. ¥ (P) satisfies

v (P) = r— P;a— U (P).
Thus ¥ (P) can be activated multiple times, while P cannot. We define a compilation function to be the parallel
composition of an activatable master control process U7, (M (P)) and a dataprocess D(P):

Py oMy || D).)

The master control process M (P) involves only synchronised communications with 2 (P), which maintains the pro-
gram state. To avoid deadlock on theinternal linksbetween M (P) and D (P), we shal ensurethat thecommunications
on the added channels satisfy the related two-phase handshake protocols.

Our task isto verify that the compiled designisat |east asgood asits specification derived from the source program:

VL(P) C Cu(P)

The verification task can be broken down into two stages. In the first stage, we demonstrate the correct refinement of
aprogram P into the master process M (P) and the data process D (P) executing in parallel:

P M(P) || D(P).

Designing Correct Circuits, 1996 2

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

This result will be used in the second stage, the main challenge of which is to show that ¥, is a homomorphism.
Taking sequential composition as an example, calling ¥, a homomorphism means that the activatable control of the
composite can be implemented by those of its components together with the control module SEQ:

V,(M(P;Q)) B W (M(P)) || SEQ | wig(M(Q)

(see Equation 15). We can then establish that
Vo (P;Q) & Wi (M(P)) || SEQ || ¥ei(M(Q)) || P(P;Q).

An outline of these two verification stages can be found in the appendix. Once we check that the specification of
modules like SEQ satisfies the above formula, various asynchronous and clocked implementations can be devel oped
using the technique of protocol conversion [3]. An exampleisincluded in Section 9.

3 Joy and two-phase modules

To simplify the presentation we shall focus on the sequentia subset of Joy ([3], [9], [14]), our source language. Its
syntax is given by the following BNF rules, where v stands for program variable of Boolean type, B for Boolean
expression and P for process.

B = false|true|v|BVB|BAB|-B
P = skip|v:=B|if BGfi|doBGod|P; P
BG = B — P|BG|BG

Note that this subset of Joy deals only with Boolean variables and expressions. A Joy program may include skip,
which does nothing except terminating successfully, and assignment, conditional, iteration and sequential composition
statements. The Boolean guarded process B — P is executed when the Boolean guard B is true; its execution
completes when P completes execution. Two guarded processes may be composed using ||, the choice operator. The
statement if BG fi executes its boolean guarded command set until one succeeds; do repeatedly evaluates its boolean
guarded command set until execution fails.

The trandation of Joy into itsintermediate form is performed in a purely syntax-directed manner. The networks
that the Joy compiler generates are delay-insensitive in the following sense: wires with arbitrary (bounded) delay can
be introduced between any two primitive components without affecting the functional behaviour of the system.

Theideaof using modul escommuni cating with handshake protocol sto represent the main components of thesource
language has been explored by van Berkel [12]. Our work takesan ‘indirect approach’ inwhich our languageisgivena
denotationin an existing notation (CSP) and amapping from CSP to two-phase modules. In contrast, van Berkel takes
adirect approach in which each command of the source language is defined by a corresponding handshake process.
Furthermore, van Berkel focused on atrace-based model, while CSP providesamore sophisticated fail ures/divergences
model and arich algebraic system.

The signaling interfaces used by the two-phase components are shown in Figure 2. Each handshake interface
requiresan active partner (marked A in thefigure) that begins the handshake by sending arequest, and a passive partner
(marked P) that responds to the handshake by sending an acknowledgement.

The ssimplest interface, shown in Figure 2(a), is the two-wire control interface, which consists of one request and
one acknowledgement signal. A handshake begins when A sends an event to P along the wire marked r (for request).
A then awaits a response on the wire marked « (for acknowledgement). When A has received an acknowledgement
from P, the handshake is compl ete.

Figure 3 shows a module that composes two programs in sequence and has both passive and active interfaces.
When triggered through the top input r eq port, the SEQ modul e starts thefirst program in the sequence by dispatching
the event through the bottom | eft output PO.reg. When thefirst program signals termination viathe event P0.ack, the
second program is started by a P1.req output. SEQ returns ack after it receives P1.ack.

Some interfaces pass data as well as control information. Figure 2(b) shows two interfaces for passing Boolean
data encoded on two wires, sometimes known as dual -rail encoding. Theread interfaceisused in expression and guard
evaluation. The active partner in the handshake requests a value by sending an event on r; the passive partner sends an
acknowledgement on a; or a1, according to the value it wishesto return.

Thethree-wireinterfacein Figure 2(c) iscalled thewriteinterface, and isused to assign valuesto variables. Writing
avalue begins with arequest on either »; or r1, depending upon the value to be written; completion issignalled by an
acknowledgement event on a.

Designing Correct Circuits, 1996 3

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

r ro ro
- a r
A a P A 2 P A L. P
a a
« A)
(a) Control interface (b) Read interface (c) Write interface

Figure 2: Handshake interfaces.

PO.req PO.ack Pl.req Pl.ack

Pliigiinre e ey
/\ 9 / \JaCkU N>

PO P1

Figure 3: Two-phase module for sequential composition.

4 CSP

We shall regard the Joy language as a subset of CSP. To describe the operation of the target architecture, we need
to include a few more operators. P I @ represents the nondeterministic choice between P and) in which the
environment playsno part, while P | @ standsfor theexternal choice between P and) where the environment decides
which branch is selected to execute. The patternif B — P —-B — @ fi will be abbreviatedas P <1 B 1>). The
alphabet of P, o P, correspondsto the set of events that the process P can engagein. var w : P declares w tobea
local variable of P. L denotesthe chaotic process.

Recursion is handled by the ;1 operator. For instance the handshake protocol for the two-wire interface shown
in Figure 2(a), which aways performs the event r before the event ¢ and never engages in two consecutive events r
before the occurrence of «, is given by:

HP(r, a) = X ((r = a - X)|skip).
The presence of skip as a possible choice allows H P(r,) to terminate when its partner in a parallel composition
terminates.! The modelling of handshake protocol sformsan important part of our derivation techniques. What follows
elaborates on thisexample.
Using the CSP algebra, one can show that a sequence of H P(r,) isstill a handshake protocol:

HP(r,a); HP(r,a) = HP(r, a).

Parallel composition of P and @, represented by P ||4 @, synchronises on the set of events A common to both
P and @); the A will usualy be dropped since it can be deduced from context. Sometimes we abuse the notation by
using P || @ to represent a parallel program where the eventsin the set « P N «Q are not hidden. The synchronised
communication events between components of a parallel composition are sometimes called channels. ¢? is an input
channel while ¢! is an output channel. Channels may pass values. c!e sends the value of the expression ¢ to the
output channel ¢, and ¢?x reads avalue from theinput channel ¢ and assignsit tothevariable . InputChan(P) and

1 To reassure those who remember Tony Hoare's remark ([6], page 178), including an unguarded skip in an external choiceis acceptable here.

Designing Correct Circuits, 1996 4

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

OutputChan(P) represent thesetsof input channel namesand output channel namesrespectively, and Chan(P) &

OutputChan(P) U InputChan(P).

A process () witha and b in itsal phabet satisfies thetwo-phase handshake protocol on (a, b) if (Q || H P(a, b)) =
Q. Thisconditionwill be signified by I, ») Q. Given thiscondition, one can show that for any process R, H P(a, b)
distributesinto (@; R) to give

(Q;R) || HP(a, b) = (Q | HP(a, b)); (R HP(a, b)) = Q; (R HFP(a,b)).)

A similar law will be used later in showingthat P; Q C M(P;Q) || P(P; Q).

We need to generalise H P(a,b) in order to pass data in the handshake protocol, as shown in Figure 2(b) and
Figure 2(c). One way to achieve thisisto let I be afinite set, B be an I-indexed family of finite set of events, and
A = {(a(?), B(i)) | i € I}. Thetwo-phase handshake protocol on A can then be defined as follows:

HP(A) “ X : fier (a(i) = (e b — X) [skip).

A process () with

({a())lie 1} U BG) € a(Q)
i€l
issaid to obey the two-phase handshake protocol ontheset A if @ || HP(A) = Q. Thisconditionwill bereferred to

ask,4 Q.
We can now define the two-phase handshake refinement operator C 4 asfollows:

R Cay S = (RIHPA) C (S| HP(A),
where C adoptsthe refinement ordering in the failures-divergences model of CSP. In other words, R T4 S means
that .S behaves better than R in any environment which obeys the handshake protocol 7 P(A). One can show that, if
R Cy Sandb4 Q,then

@QIR) E (@IS 3

Later we shdl illustrate how this property can be used in replacing D(P) by a sequentia version, SD(P), which has
useful algebraic laws to simplify our derivation.

5 Variables

This section and the next two show how to construct communicating processes to model program variables and
expressions of the source program P, and to transform P into a network of communicating processes such that
P C M(P)| D(P). The master process M (P) should retain the control structure of the source program P, while
the data process D (P) can be expressed as Var(P) || Exp(P), whereVar(P) and Exp(P) implement respectively the
variables and expressions of P.

Given that VAR(P) denotes the set of al program variable names for P, we define Var(P) as the parallel
composition of al the processes Var(z) representing program variables in the source program P:

var(P) Y || {z : 2 € VAR(P) : Var(z)}.

Var(z) models a program varigble » by providing a pair of channels (z.req, x.val) for read access. after x.req is
activated, the value of » should be available from the channel =.val. More precisely, given that Chan(Var(z)) C
Chan(Q), Var(x) should satisfy

(z.req! = zwal?v — Q) || Var(z) = (v = x); (Q || Var(z)). 4

Similarly, assigninganew valueto = can be achieved by communicating withthechannels (x.write, x.ack). Formaly,
giventhat Chan(Var(z)) € Chan(@Q), one should be ableto show that

(z.writelv — z.ack? = Q) || Var(z) = (2 := v); (Q || Var(z)). (5)

Designing Correct Circuits, 1996 5

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

The application of these lemmas in proofswill be demonstrated in the appendix.
We use three components to implement Var(z). Cell(z) isthebasic storage cdll, and RMux(«) and Wmux(x) are
multiplexors alowing multiple users to connect to Cell(x):

var(z) = cell(z) || RMux || WMux. (6)

Let us consider each of these components in turn. As explained in [6], a Boolean variable x can be modelled by a
communicating process Cel1(x) which models a storage cell:

Cell(x) & skip | Read(x) | Write(z).

The processRead(z) describes how the user can read the value of the variable » using communications:

Read(x) = zr.req? — zwally — Cell(x).

Thelocal variable x in the process Cel1 is used to hold the current value of the program variable z. It isrequired that
the user of the process Read must obey the handshake protocol on (z.req, .val) inorder to avoid deadlock on these
two channels.

The processWrite(z) describes how the value of « is updated by its user process,

Write(x) U write?e — z.ack! — Cell(z).

Users of Write(«) are also required to obey the handshake protocol on the channels (z.write, x.ack).

As a state hol der, the process Ce11(«) should be able to communicate with a number of users. To serve multiple-
user requests, we treat the reading and writing actions as atomic. For this purpose we introduce multiplexorsRMux and
WMux:

RMux = skip | ([ser (z.req;? = wreqd — zwal?w — z.wal;lw — RMux)),

wMux skip | ([jes (z.write;?w — zawritelw — x.ack? — w.ack;! — Whux)),

where the sets I and J are both finite. It is clear that the process RMux is alegal user of the process Read(x) since
it obeys the handshake protocol on the channels (z.req, x.val). Furthermore, the process RMux complies with the
handshake protocol on (z.req;, x.val;) forevery i € I.
Given that Var(z) is associated with the al phabet
InputChan = {z.req;|ie€ I} U {z.write; |j € J},
OutPutChan = {z.wal;|i€ I} U {z.ack;|je J}.
Each user process of Read(x) is alocated a pair (z.req;, z.val;) of channels for accessing the variable = via the

multiplexor RMux, and in turn each user process is required to satisfy the handshake protocol over the corresponding
channels. The usersof Write(x) can betreated in asimilar way.

6 Expressons

Let Exp(P) bethe parallel composition of the expression processes required by the program P. The characterisation
of an expression processissimilar to that for avariable process: for any Boolean expression b in P, and for any process
@ with Chan(Q) O Chan(Exp(P) || Var(P)),

(b.req;! = bwal;?v = Q) || P(P) = (v :=b);(Q| D(P)).

A Boolean expression can be modelled by a communi cating two-phase modul e in the same way as a program variable.
For example, the evaluation of the expression = V y can be described by the process

OR(z,y) = skip]
var w : (req? — z.req;! = vwal;?w — ((vallw — OR(z, y))
< w > (yreg;! — yval;7w — vallw — OR(z, y)))).

Designing Correct Circuits, 1996 6

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

The module operates as follows. It receives an event from the req channdl, and it activates x.regq;, the req channe of
the two-phase modul e evaluating the operand. The result of the evaluation will be received from the z.val; channd,
and itsvalue will be assigned to thelocal variable w. If w has the value true, then thisvaue will be passed to the val
channel; otherwise the two-phase module evaluating the y operand will be activated, and the vaue returned from it
will be passed to the val channd.

Taking the multiple-user issue into account, we adopt the following definition for (= Vv y):

Exp(or(z, y)) = OR(z, ¥)) || RMux(req, val)

where RMux(req, val) becomes the process RMux(z.req, .val) after proper channel renaming:

RMux(req, val) = skip | (lier (reg;? — req! = val?w — val;lw — RMux(req, val))).

In general, a composite expression b = b, V b2 can be defined in the same way as the expression (z V y) except
that the former will communicate with the processes Exp(b;) and Exp(b2) rather than Var(x) and Var(y). To avoid
channel name clash among the expression processes, we will rename the channels req and val used in the process
Exp(b) to b.req and b.val respectively.

To be able to execute the expression processes in paralld with the master control process, we must make sure that
the processes representing expressions have digoint sets of channéls. In particular, since most expression processes
may need to access the variable processes, the dlocation of the channels xz.req;, x.val; turns out to be an important
issue of the hardware compiler.

For simplicity we assume that there are index functions RIdx and WIdx. For each variable process Var(z), in
addition to the channel's used by the expression processes, the following set of channels

{z.req;, vval; | i € RIdx(x)} U {z.write;, x.ack; | j € WIdx(z)}

isavailable at the disposal of the master process. For the expression process we adopt the similar convention that the
set {b.req;, bwval; | i € RIdx(b)} of channels can be used by the master process.

To conclude this section, note that the set of two-phase handshake channdls consists of data-read channds, data
write channels and expression evaluation channels:

v Y {(x.reg;, z.val;) | i € RIdx(z) & € VAR(P)} U
{(z.write;, z.ack;)|j € WIdx(z) & © € VAR(P)} U
{(b.reqr, bvaly) | k € RIAx(b) & b is an expression in P}. (7)

7 Master control

This section will complete the first stage of our derivation of two-phase modules for Joy programs. to show that
P C M(P) || D(P).

The task can be simplified if we exploit the regularity of handshake protocols to construct SD(P), a sequential
version of D(P), which does not contain parallel composition:

de
sprpy < lier1dx(s) & cevar(p) (z.req;? — z.vallzx — SD(P))

|
ljeWldx(e) & ce VAR(P) (T.write;7x — x.ack;! — SD(P))]
HkERIdx(b)&bEEXP(P) (b?”@q27 — bvall'b — SD(P))I]
skip.

Sinceal users of P (P) must follow the handshake protocol H P(V') where V' is defined in equation 7, from lemma 3
we can replace D(P) by SD(P) within a handshake environment:

D(P) =y SD(P). (8)
SD(P) hastwo properties which are used extensively in our derivation:

SD(P);SD(P) = S8D(P), 9)

(M(P);Q) | SD(P) = (M(P) || SD(P)); (Q | SD(P)). (10)

Designing Correct Circuits, 1996 7

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

The second equeation shows the synchronised termination of M (P) and SD(P), asimpler version of which is given
inlemma2.

The construction of the master process is based on a trandator M whose task is to replace each direct evalua
tion of the expression b by communicating with the process Exp(b) using the multiplexor RMux(b.req, b.val), and
to replace every assignment to the variable = by communicating with the variable process using the multiplexor
WhMux(z.write, z.ack).

The master processes of the primitive commands have straightforward definitions:

. def .
M(skip) = skip, (11
de
Mz = e) < MieRIdx(e), jeWldx(z) VAT U :
(e.req;! = ewal;?v — z.owritejlv — z.ack;? — skip). (12)

The definition of M (z := e) suggests that the choice of channels used to communicate with Var(xz) and Exp(e)
are rather irrlevant. This nondeterminism allows us later to allocate a specific pair (¢, j) of channel indices for
implementing M (z := e).

The master process of a composite program is formed by those of itsindividual components:

MP;Q) € M(P):M@Q), (13)
M(G1]G2) & MG [M(G). (14)

The master process for a conditiona statement evaluates its Boolean guard by interacting with the related expression
process:

M(if b — P fi) = MieRidx(v) Var w : ((b.reg;! — bwal;?w — (M(P) <w > 1)))
where the local variable w isnot used in M (P). Asfor conditional statements with multiple branches,

M(if b — P BG fi) = MieRIdx(b) Var w : (b.req;! — bvali?w — (M(P) < w > M(if BG fi)))

where thelocal variable w isnot used in either M (P) or M(if BG fi).
The master process for an iteration statement is constructed in a similar way:

M(do BG od) o uX :ovarw : M(BG)

where

M(b — P) = MieRidx(b) (b.reqi! = bwal;7w — ((M(P); X) < w > skip)),

M(B = P|BG) ¥ Micriaxp) (breqs! — boali?w — (M(P); X) < w > M(BG))),

and the variable w does not appear in either M (P) or M(BG).
The correctness of the translator M can now be shown by structura induction:

P C M(P)[|D(P).

An outline of the proof will be given in the appendix.

8 Specification of two-phase modules

For a source program P, we define the specification of itstarget circuit with request channel r and acknowledgement
channel a as

U (P)=pX =r? > P;al =5 X.

Designing Correct Circuits, 1996 8

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

We includein the appendix aderivation of the main theorem
Vo (P) & W (M(P)) [D(P).

The right-hand side of thisformulais defined to be C7,(P), the compilation function mentioned in definition 1. Note
that C7,(P) involves M (P), a purely communication-based process without program variables or assignments.

Next, we shall demonstrate how to implement the process U7, (M (P)) by anetwork of two-phase modules within
an environment obeying both # P(r, a) and H P(V'), where V' isthe set of channels for variable-read, variable-write
and expression eva uation (equation 7). We define

(R Cpny S) it (R[HP(r,a) || HP(V)) E (S| HP(r, a) [| HP(V)).

The main objectives of our design are to preserve the modular structure of the source program, and to use a small
number of two-phase modules.

We have dready introduced a number of two-phase modules, such as Cel1 for implementing variables and OR for
expression evaluation. The following describes three further examples; the implementation of two of these will be
outlined in the next section.

First, the skip statement can be implemented by the SKIP module;

U (M(skip)) =) SKIP,
where KIP has the property that
KIP = r» =5 a - XKIP.

Second, consider the assignment statement. Let ¢ € RIdx(e) so that the channels e.req; and e.val; can be used for
communi cating with the expression evaluation modulefor e, and let j € WIdx(z) so that the channels z.write; and
z.ack; can be used for communicating with the variable module for . One can then show that:

U (M(z:=€)) Cpgno ASGN,
where ASGN should satisfy
ASGN = 7 — ereqi! — ewvali?7w — z.writejlw — z.ack;? — a! — ASGN.

The third example is sequential composition. If VAR(P0) N VAR(FP1) = §, then

VL (PO;PL) Cpne Wip(PO) || SEQ || W5 (P1) (15)
where SEQ should satisfy
SFEQ = 77 = r0! = a0? = rl! = al? - o! - SEQ.

This CSP description of the SEQ module matches exactly the state diagram shown in Figure 3. Other two-phase
modules, such as those for the conditional and iteration statements (Figure 1), can be developed in asimilar way.

9 Implementation

The CSPdescription of two-phasemodul esservestwo purposes. First, weuseit asabehavioural specificationfor further
refinement into circuits. Second, it can be regarded as a normal form which provides a basis for hardware/software
partitioning in a codesign environment. Most of our work has been focused on hardware synthesis. To illustrate this
approach, we outline an implementation within the CSP model. In practice, we use a separate hardware modd [9]
which isformally linked to CSP.
Let usfirst introduce a CSP description for awire:
Wire(a, b) < uX 1a? 5 ((a? = L)] (B = X)).

This description captures the behaviour of awire, which becomes chaotic if it receives a second input before the first
signal has propagated to the output. As expected, two wires can be connected into a single one: Wire(a, b) ||»
Wire(b, ¢) = Wire(a, ¢). Since the two-phase modules communicate with two-phase two-phase protocols, the

Designing Correct Circuits, 1996 9

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

two-phase implementations of these modules are relatively straightforward [2]. For instance, it can be shown that the
two-phase module SKIP can be implemented by Wire(r, a).
The two-phase implementation of SEQ involves three wires:
SEQ = Wire(r, r0) || Wire(a0, r1) || Wire(al, a),
and one can show that this definition of SEQ satisfies formula 15. This proof is an example which can be checked
using an automatic tool such as FDR [4].

A four-phase implementation of SEQ can be obtained from the two-phase specification as follows. Given that
4- 2 and 2- 4 are respectively converters that transform a four-phase protocol to atwo-phase protocol and vice versa,
we first generate a specification for the four-phase sequential composition operator by connecting converters to the
two-phase version as shown in Figure 4. Automatic tools are then used to check that the four-phase implementation
shown in Figure 5 satisfies this specification. Further details of thismethod can be foundin [3].

A clocked implementati on can be obtai ned using protocol convertersthat transf orm between two-phase handshaking
and clocked control. This approach requires a clocked circuit model [9] based on the theory proposed by Verhoeff
[13], and we have established a formal link between CSP and this clocked model using a Galois connection. The
details are beyond the scope of this paper.

10 Concluding remarks

We have presented in this paper a systematic approach for deriving two-phase modules, an intermediate form for a
compilation scheme that targets a simple imperative language for asynchronous and clocked implementations. The
use of CSP enables us to structure our derivation into several stages, making the proofs modular and reusable. Our
derivationis simplified by algebraic laws governing the operation and refinement of two-phase modules.

There are two significant extensions to our framework which have been devel oped. Thefirst involves adapting our
derivation to accommodate the extension of the source language to cover paralelism and communication [3]. This
can be accomplished by including processes that implement channels in the source language, and by using a further
trandator — in addition to M — that introduces communication between the master control processes and the channel
processes. The second extension involves optimising the hardware produced by our method. For instance, we have
devel oped protocol converters for clocked implementations which can generate conventional clocked circuits[8] from
designswith dual-rail encoded data.

Acknowledgements

Thanksto Mike Dean and the anonymousreferees for their comments and suggestions. Geoffrey Brown was supported
by NSF grant CCR-9058180 and matching funds from AT&T, and by an EPSRC Visiting Fellowship at Oxford
University Computing Laboratory. Wayne Luk was supported by the ESPRIT OMI/HORN (7249) project. John
O’ Leary was supported by NSF grants CCR-9058180 and CCR-9224575 under ajoint ESPRIT-NSF programme, and
by afellowship from Bell-Northern Research Limited. The support of ESPRIT PROCOS-US (ECUS027) project is
gratefully acknowledged.

Appendix: some proofs

What followsis a sketch of the proof of
Vo (P) & W (M(P)) [D(P)

where ¥7 (P) = pX = (7 — (P;(a! — X))). Weshdl first provethat P T M(P) || P(P) by structural
induction, when P isintheform of an assignment statement (base case) and sequential composition (induction case).

(YGivenP ¥ (z:=¢),

M(z = e) || D(P)
= {definition of Mz := ¢) (equation 12) and lemma 4}

Designing Correct Circuits, 1996 10

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

Figure 4: Generating afour-phase specification for a sequential composition circuit.

f our - phase
SEQ

Figure5: A four-phaseimplementation for sequential composition. The dement labelled ‘D’ isdescribed in [7].

Designing Correct Circuits, 1996 11

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

MieRIdx(e), j€ Widx(z) VAL U :

vi= e ((zawrite;lo — z.ack; — skip) || D(P))
= {lemma5}

MieRIdx(e), j€ Widx(z) VAL U :

(v:=e;x:=wv); (skip || D(P))
= {merging assignments}

xr =¢€

(i) Given P % Q; R,

M(Q;R) || D(P)
{definition of M(Q; R) (equation 13)}
(M(Q); M(R)) [| D(P)

= {lemma 8}

(M(Q); M(R)) || SD(P)
= {lemma 10}

(M(Q) | SD(P)); (M(R) || SD(P))
| {lemma 8}

(M(Q) [| D(P)); (M(R) || D(P))
{induction hypothesis}
QR
Now proceed to the main proof: ¥* (P) C W’ (M(P)) || P(P).

RHS
{lemma 8}

W, (M(P)) || SD(P)
= {definition of ¥/, (M (P))}

r? = (M(P); (a! = T (M(P)))) || (SD(P))
= {lemma 10}

r? = (M(P) || SD(P)): ((al — W,(M(P))) || SD(P)))
= {lemma 8}

r? = (M(P) | P(P)); ((a! = WL (M(P))) || D(P)))
3 {theoremabove: P C M(P) || P(P)}

r? = (P;(a! > RHS))
= {uniquefixed point of guarded recursion}

LHS

1L

References

[1] BrookesSD, Hoare CAR, Roscoe AW. A theory of communicating sequential processes. JACM 1984; 31:560-599

[2] Brown GM. Towardstruly delay-insensitivecircuit realizations of process algebras. In: Jones J, Sheeran M (eds)
Designing correct circuits. Springer-Verlag, 1991, pp 120-131 (Workshopsin Computing)

[3] BrownG, Luk W, O’ Leary JW. Retargeting a hardware compiler proof using protocol converters. In: Proc. inter-
national symposium on advanced research in asynchronous circuits and systems. | EEE Computer Society Press,
1994

Designing Correct Circuits, 1996 12

[4]
(5]

(6]

[7]

(8]

[9]

[10]
[11]

[12]

[13]
[14]

Deriving Two-Phase Modules for a Multi-Target Hardware Compiler

Formal Systems (Europe) Limited. FDR user manual and tutorial, 1993

He J, Page |, Bowen JP. Towards a provably correct hardware implementation of occam. In: Milne M, Pierre L
(eds) Correct hardware design and verification methods. Springer-Verlag, Heidelberg, 1993, pp 214-225 (L ecture
Notesin Computer Science No. 683)

Hoare CAR. Communicating sequential processes. Prentice Hall International Seriesin Computer Science, 1985

Martin AJ. Programming in VL SI: from communicating processes into delay-insensitivecircuits. In: Hoare CAR
(ed) Developments in concurrency and communication. Addison-Wesley, 1990.

Pagel., Luk W. Compilingoccam into FPGASs. In: Moore W and Luk W (eds) FPGAs. Abingdon EE& CS Books,
1991, pp 271-283

O'Leary JW. A model and proof technique for verifying hardware compilers for communicating processes. PhD
thesis, Cornell University, 1995

Roscoe AW, Hoare CAR. Laws of occam programming. Theoretical Computer Science 1988; 60:177-229

Smith SF, Zwarico AE. Correct compilation of specifications to deterministic asynchronous circuits. Formal
Methodsin System Design 1995; 7:155-226

van Berkel K. Handshake circuits: an intermediary between communicating processes and VLSI. PhD thesis,
Eindhoven University of Technology, 1992

Verhoeff T. A theory of delay-insensitive systems. PhD thesis, Eindhoven University of Technology, 1994

Weber S, Bloom B, Brown GM. Compiling Joy into silicon. In: Advanced research in VLS| and parald systems,
Proc. 1992 Brown/MIT conference. MIT Press, 1992, pp 79-98

Designing Correct Circuits, 1996 13

