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Abstract. This paper describes a scheme for representing heterogeneous array circuits, in particular those which 
have been optimized by pipelining or by transposition. Equations for correctness-preserving transformations of 
these parametric representations are presented. The method is illustrated on developing novel pipelined designs 
for parallel division. It is estimated that, for a field-programmable gate array implementation, the speed of an 
integer divider can be doubled at the expense of a 50 percent increase in area. 

1. Introduction 

The regularity and modularity of array-based circuits 
offer two important advantages: they facilitate the effi- 
cient implementation of these circuits in VLSI technol- 
ogy, and they simplify their description and transforma- 
tion so that optimized designs can be built rapidly and 
correctly. We have presented an algebraic framework 
and the related computer-based tools (see [1], [2], [3], 
[4]) for structuring and refining parametrized represen- 
tations of array-based circuits. Our approach has been 
used to develop a wide range of word-level and bit-level 
devices, including designs for digital signal processing 
[5], arithmetic circuits [2], multi-level storage managers 
[6] and butterfly networks [1]. 

The purpose of this paper is to illustrate how this 
framework captures various ways of pipelining and 
transposing designs, together with the resulting trade- 
offs. Although systematic methods for pipelining [2] 
and for transposition [7] have been introduced in the 
past, the study of" optimization schemes involving both 
of these transformations is novel. In particular, we com- 
pare several methods for improving the speed of circuits 
that contain counter-flowing data. An example of this 
kind of circuit, in this case a component used in an inte- 
ger divider, is shown in figure 1. It is not clear whether 
there is an efficient scheme for distributing latches to 
pipeline the broadcast circuitry as well as the array of 
fulladders (labelledfadd in the figure), because signals 
flow in opposite directions in these two circuits. One 
of our solutions, which will be detailed in a later sec- 
tion, involves reversing the broadcast direction and 

*Due to difficulties in typsetting, different fonts are used for Ruby 
expressions in main text and in figures. 
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F/g. 1. A circuit with counter-flowing data. 

eliminating long connections by transposition. The 
trade-offs of these transformations will be analyzed for 
a field-programmable gate array implementation. 

Some readers may question the necessity of using 
a language specific to array-based circuits. In our opin- 
ion the results obtained justify the use of such a lan- 
guage and the associated techniques for circuit develop- 
ment: no other design methodology that we are aware 
of deals uniformly with both pipelining and transposi- 
tion. Moreover, an algebraic approach provides a con- 
cise and systematic means of parametrizing designs and 
a simple transformation framework based on pattern 
matching and equational reasoning. 

Another advantage of this method is its flexibility 
of allowing the user to select where to begin developing 
a design. Since our transformations are correctness- 
preserving, the only requirement on the initial design 
description is that it behaves as desired. In the interest 
of clarity, this description does not need to be impte- 
mentable. On the other hand, it is often useful to trans- 
form a given structure which is asserted to behave cor- 
rectly to see if it leads to an attractive implementation; 
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that assertion can always be checked in a separate step. 
Where appropriate, simulation is another way of increas- 
ing confidence in the correctness of designs. The behav- 
ior of all circuit descriptions in Section 6, including 
the initial and final designs, can be simulated using an 
interpreter of  our language. 

The transformations discussed in this paper are in- 
tended to guide the development of parametrized design 
descriptions. They provide a means of organizing and 
codifying design experience, allowing such expertise 
to be deployed rapidly in new applications. They can 
also be used to document design decisions by recording 
what alternatives have been explored, how these alter- 
natives are related to one another, and why a particular 
design has been chosen. A design tree can often be used 
to summarize the relationship between designs; see fig- 
ure 13 for an example. 

A further advantage of  this method is the possibility 
of deriving formulae for estimating the quality ofparam- 
etrized design representations [4]. Some examples of  
such formulae can be found in table 1. These formulae 
are technology-independent, since they express the 
features of a composite design in terms of the features 
of  basic building blocks supplied by the user. They can 
be used without the knowledge of how they are derived. 

For readers who wish to obtain an overview of our 
approach, figure 4 provides a number of examples de- 
scribing various patterns of connecting processors in 
our notation. Figure 5 contains a theorem for pipelining 
designs--a triangle in the diagram represents an abstract 
view of a latch. Figure 8 gives a flavor of how a row 
of components can be transposed. A parallel divider 
design is shown in figure 9; using our transformations 

Table 1. Comparing divider designs. 

Latency Number of 
Design Minimum Cycle Time (cycles) Latches in Array 

DVOcell ( N -  I)T B + T X + NT e 0 0 

DVlcell  ( N -  1)T B + T x + KT r N N ( 3 N -  K + 2) 
~- 2K 

DV2cell NT B + T X +  NT F 0 0 

DV3cell NT B + T x + KT F N N(N + 2) 
K 

DV4cell T B + T x + KT F N N(N + 2) 
K 

N: the number of adders in a cell, 
K: clustering the adders in a cell in groups of K adders, 

T x, TF: the combinational delay of the cell xor, fadd, 
TB: the broadcast delay through an X/cell. 

the repeated unit D V O c e l l  can be replaced by the cells 
in figures 10, 11 or 12. Figure 13 summarizes the rela- 
tionship between the divider cells that we derive, and 
table 1 quantifies their salient features. Finally, figure 
15 presents possible implementations of two divider 
cells in field-programmable gate array technology. 

2. Design Representation 

The formalism that we use is based on Sheeran's rela- 
tional framework and the author's heterogeneous combi- 
nators. The background and the details of this approach 
have been described elsewhere (see [1], [8]), and only 
the definitions and concepts relevant to our discussion 
will be introduced here. 

A design will be described by a binary relation of 
the form x R y where x, y represent the interface signals 
and belong respectively to the domain and range of R. 
For example, an inverter can be specified as 

x inv  y c~ (x  = O A y = l ) V (x  -+- l A y = O), (1) 

or, more succinctly, as 0 inv 1 A 1 inv O. 

The converse R -1 of  a relation R is defined by 
x (R -1) y o y R x, and the identity relation is given 
by x t y ~* x = y. If  R is a function, then R x is the 
value of R for the argument x. 

Objects in our notation are either atoms (such as 
numbers or relations) or tuples of objects: for instance 
the object (0, (1, 2)  ) is a 2-tuple containing the num- 
ber 0 and the tuple (1, 2) .  A tuple is an ordered collec- 
tion of elements, with the empty tuple denoted by ( ) .  
Given that x is a tuple, #x represents the number of  
elements in it, and x i (where 0 < i < #x) is its i-th 
element. Tuples are concatenated by the functions ap l  

(append left), a p r  (append right), or  ' " '  (binary ap- 
pend), so that 

a p l  ( a ,  ( b ,  c,  d ,  e ) )  = a p r  ( ( a ,  b ,  c ,  d ) ,  e )  

= ( a ,  b,  c ) " ( d ,  e )  

= ( a , b , c , d , e ) .  

A rectangular circuit with connections on every side 
is modeled by a relation that relates 2-tuples, with the 
components in the domain corresponding to signals for 
the west and north side and those in the range corre- 
sponding to signals for the south and east side. In gen- 
eral, composite signals are represented as tuples with 
the position of a particular signal corresponding to its 
relative position, and with its structure--the grouping 
of signals--reflecting the logical organization of adja- 
cent signals. 
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Given a circuit R with connections on all four sides, 
we can use the generic reverse function recrev which 
recursively reverses a tuple and all its component tuples, 

recrevx = x i f x  = ( ) or if x is an atom, 

recrev((x) ^xs) = (recrev xs) ̂  (recrev x)  otherwise, 

to define R v and R ~c which denote the reflection of 
R in a vertical and in a horizontal axis: 

(x, y )RV (x ', y ' )  ¢~ (y' ,  recrev y)R(recrev x',  x ) ,  

(x, y)R~C(x ', y'  ) ¢~ (recrev x, x '  )R(y,  recrev y'  ). 

Clearly (RV f c = (R~C) v. 

3. Combinators 

Combinators are higher-order functions that capture 
common patterns of computation as parametrized ex- 
pressions. Both behavior and structure can be described 
by these patterns: they express the behavior of a com- 
posite device in terms of the behavior of its components, 
and they also describe the connection of components 
to form the composite device. 

3.1. Binary Composition 

Two components Q and R can be connected together 
if they share a compatible interface s which is hidden 
in the composite circuit Q; R (figure 2a), 

x ( a ; R ) y  ¢, 3s " (x a s) A (s R y). (2) 

As shown later, many theorems in this framework can 
be expressed in the form R = p - l ;  Q; p. The pattern 
p - l ;  Q; P - i n  words, 'Q conjugated by P--will  be ab- 
breviated to Q\P. 

If  there are no connections between Q and R, the 
composite is represented by parallel composition [Q, R] 
(figure 2b), where 

(Xo, Xl)[Q,R](yo, yl)  o (xoQYo) A (XlRyl) .  (3) 

It is simple to show that [P, Q]; [R, S] = [P; R, Q; S], 
and that [P, Q]- I  = [p- l ,  Q-l] .  Our framework con- 
tains a collection of such theorems, which can be used 
for reasoning about designs. 

There are several operations involving pairs of sig- 
nals that we will require. First of all, given that L is 
the identity relation, we have the abbreviations 

fs t  R = [R, L], 

snd R = [L, R]. 

Next, the relation fork can be used to duplicate a signal, 
since x fork (x, x ) .  Extracting an element from a pair 
is achieved by the projection relations 7rl and 7r 2, de- 
fined by ( x, y)  a'l x and (x, y)  7r2 y. Finally, we need 
to be able to swap the elements of a pair: (x, y)  swap 
(y, x) .  Examples of theorems involving these opera- 
tions include 

f s t Q ; s n d R  = s n d R ; f s t Q  = [Q,R] ,  

~ ; r l  = ~ ; ~  = ~ ,  

[Q, R]\swap = swap ; [Q, R] ; swap = [R, Q]. 

Two rectangular components with connections on every 
side can be assembled together by the beside ( ~ )  and 
below ($) operators (figure 2c and figure 2d): 

(a, (b, c) )(Q .-* R) (  (p, q) ,  r) 

¢* ]s • <a, b)Q(p ,  s) A (s, c )R(q ,  r) ,  

( (a, b) ,  c)(Q $ R)(p ,  (q, r) ) 

¢* ]s • (a, s )Q(p ,  q) A (b, c)R(s ,  r). 

b c 
Xl ~ Yl 

p q 

a. Q ;  R b. [Q,R] c. Q+-+R 

Fig. 2. Some binary combinators. 

a - - ~  q 

p 

d. QIR 
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sndh R 

I. 
. . . . . .  . . . . .  J 

O 

Fig. 3. The picture of fsth (Q $ (sndh R)). 

Since (Q $ R) -1 = Q-1  ,_, R - l ,  theorems that have 
been proved for beside can readily be adapted for below. 

It is useful to have the following abbreviations which 
are similar to the fst, s n d  and \ operators, 

fsth R = R .-. swap, 

sndh  R = swap +. R,  

fStv R = R $ swap, 

s n d v  R = swap $ R,  

Q\ \ [R ,  SI = [S - ] ,  R- ] l ;  Q; [R, S]. 

A simple example involving some of these abbreviations 
is shown in figure 3. 

Given that the conjugate operators have a lower 
precedence than all other operators except relational 
composition, one can show that fsth (sndv R) = sndv  
(fsth R), Qk\R = R -1Xswap; Q; R,  and that R\\(fs t  
Q) = snd  Q-I ;  R; fst Q. 

Finally, note that unappending the last element of 
a tuple followed by appending its first element corre- 
sponds to a shift left, and similarly for shift right, 

shl = a p r -  1; apl, 

shr = a p l -  1 ; apr. 

Clearly sh1-1 = shr, since (Q ; R) -1 = R- l ;  Q-1. 

3.2. Heterogeneous Combinators 

One can check that in general the binary operators (such 
as parallel composition) are not commutative, and that 
only relational composition is associative. For instance, 
since ( (x ,  y) ,  z)  and (x,  (y, z> ) are distinct tuples, 
[[P, Q], R] ~ [P, [Q, R]]. We now introduce a class 
of prefix combinators, called heterogeneous combi- 
nators, each of which takes a tuple of components and 
returns a binary relation corresponding to the composite 
circuit; the components that are wired together can be 
different from one another. So given that #x = #y = 

#R = N,  a heterogeneous chain (figure 4a) and a 
heterogeneous map (figure 4b) are described respec- 
tively by 

a (; R )  b ¢~ 3s  • (So = a )  A ( s  N = b) 

A Vi: 0 < i < N °siRiSi+l, 

x( l l  R) y ~ Vi: 0 <_ i < N "  xiRiy i. 

Similarly, a heterogeneous row (figure 4c) is described 
by 

(a ,x ) (* -*  R ) ( y ,  b )  ¢~ 3s" (So = a) A (SN = b) 

A Vi: 0 <-- i < N "  (si, xi)Ri<Yi, Si+l). 

A heterogeneous column (figure 4d) can be described 
in a similar fashion. The correctness of these descrip- 
tions can be proved using the recursive definitions of 
these combinators in terms of the binary operators 
shown earlier, but we shall not go into such details. 

Given xI t ~ {;, II, " ,  ~} and 0 <-- U < #R, we 
shall adopt the abbreviation 

x~ Re = X~<Ri IO < i < N ) ,  
i < N  

a. ; (/t~o,/~1,/~2) 

+++ 
b. II (/~,/~1,/~2) 

c. +-+ ( ~ ,  nl ,  Rz) T 
c. A/~ f. ZX/~ 

Fig. 4. Some heterogeneous and homogeneous combinators. 
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so that one can write 

Ii~<N Ri~-1 
i<N 

(Ri-1). 

3.3. Homogeneous Combinators 

For many applicatons the generality of heterogeneous 
combinators is not required. If  Ri does not depend on 
i, then the following homogeneous combinators [1] can 
be used to describe arrays of identical components. 

R N =  ; R (chain), 
i < N  

m a p N  R : II R (map), 
i < N  

AN R -- II Re (triangle), 
i < N  

aN R -- II RN-i-1 (reverse triangle), 
i < N  

rOWNR = ~ R (row), 
i < N  

col N R = $ R (column). 
i<N 

Instances of the zk and/~ operators are shown in figure 
4e and figure 4f. The subscripts associated with these 
combinators correspond to the size of  the arrays, often 
omitted when they can be deduced from context. 

4. Sequential Circuits and Pipelining 

So far we have been using relations to model a static 
situation--the steady state behavior of a circuit at a par- 
ticular instant of time. To deal with sequential circuits, 
an expression can be considered as relating a stream in 
its domain to a stream in its range. For our purpose, a 
stream can be considered to be a doubly-infinite tuple 

containing data at successive clock "ticks." Notice 
that the clock is an abstract means for specifying data 
synchronization, and it may be realized either by a 
global synchronous clock or by some hand-shaking 
mechanism. 

For instance, an inverter, Inv, can be specified as 
x Inv y ¢~ Yt" x t inv Yt, where inv is the corresponding 
static description given earlier in equation 1. For sim- 
plicity, combinational circuits will be described in the 
static form; they should be interpreted as relations on 
streams in composite expressions involving sequential 
elements. In most cases, such as in the absence of con- 
ditionals, the same algebraic theorems can be applied 
to expressions representing either combinational or se- 
quential systems [9]. 

A delay 33 is defined by x 33 y ¢~ Yt .  Yt = Xt-l" An 
anti-delay 33-1 is such that 33; 33-a = 33-1; 33 = t. A 
latch is modeled by a delay with data flowing from do- 
main to range, or by an anti-delay with data flowing from 
range to domain. We shall use the symbols t> and 
~7 to represent delays for horizontal and vertical data- 
flows respectively, so for instance . . . . .  
is a picture of 335. Similarly < and + represent 
anti-delays for horizontal and vertical dataflows. 

4.1. Retiming 

Retiming [10] is a method for pipelining a circuit by 
introducing and relocating latches. It can be applied 
to circuits containing no primitives which possess a 
measure of absolute time. For such circuits, simultane- 
ously delaying every domain signal and anti-delaying 
every range signal will not alter the behavior: R = 33; 
R; 33-1 = R \ 3 3 - 1 .  Circuits with this property are 
known as timeless [9]. The following theorems state 
that one can distribute delays within a chain or a row 
of timeless components so long as additional delays and 
anti-delays are placed at the edges of the circuits (fig- 
ure 5): 

+--4 /~  = +--4 
i < N  i < N  

m P - . _  J l  I - I  . . - -1  

(Ri ; snd  79) \\ ( f s t / ~ ) - 1 )  ; s n d  D - N  

Fig. 5. A theorem for retiming a row of heterogeneous components (N = 3). 
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i~N Ri i~N (Ri ,  33); 33-N, (4) 

Ri = snd  &33; ~ (Ri ; snd  33); 
i<N i<N 

[A ~)-1, ~)-N] 

= ~ (Ri ;  snd  33)kk(fst &33-1); 
i<N 

s n d  33-N. (5) 

Note that the boundary condition 33-N indicates that 
the pipelined circuits have an additional latency of N 
cycles, and the expression & 33-1 provides information 
about data-skews associated with the transformation. 

4.2. Controlling Pipelining 

Although pipelining can increase the throughput of a 
system, it may also increase its latency and the amount 
of area and power dissipation from latches both within 
the array and at its periphery for data-skewing. To syn- 
thesize expressions that denote designs with variable 
degrees of  pipelining, we first use clustering theorems 
to express the target array as an array of clusters of com- 
ponents; latches are then distributed between clusters 
using retiming theorems. In general a cluster with a 
larger number of  components will result in a slower 
design with smaller area and latency. 

It is obvious how to cluster a chain; just express it 
as a chain of  chains: 

• R i = ' ~  ~ RiK+j 1 . (6) i<~NK i~N j~.K 

To cluster rows, we need the relation groupn to format 
an (m X n)-tuple to form an n-tuple of m-tuples, 

x groupn y ¢~ ¥i, j: 0 < i < n, 0 <_ j < m 

• (#y = n) A (#x = m X n) A (Yi,j = Xmi+j), 

so that, for example, ( 1, 2, 3, 4, 5, 6 ) group3 < ( 1, 2 ) ,  
( 3, 4 ), ( 5, 6 > ). We can use group to format the signals 
to match the tuple structure required by a row of rows, 

R i =  ~ - ~ { ~ - ~ R i K + ~ \ \ f s t g r o u p  u ' .  (7) 
i<NK i<N j<K L "J 

One can then apply the retiming theorems described 
earlier, treating the chain or row of K RiK+j compo- 
nents as a single unit: 

• = ° ~ j ~ K R i K + j ~ ) ]  i<~NK Ri i~N ; ; ~)-N, 
(8) 

*'*I~"*RiK+j] i<N j<K i~N ~ RiK+j ; snd 
j <K  

\\(fst /k33-~); snd ~-N. (9) 

There are also retiming theorems to deal with two- 
dimensional arrays; such details can be found in [1], 

[21, [51. 

5. Transposition 

Transposition theorems relate circuits interleaved in dif- 
ferent ways. A general discussion of using transposition 
to optimize designs can be found elsewhere [7]; for this 
paper we shall just give a few examples illustrating the 
idea. The objective of transposition is to distribute the 
components of a circuit so as to shorten interconnec- 
tions or to vary its aspect ratio. 

There are two common patterns of wiring for de- 
scribing transposed circuits: tran and bend. The trans- 
pose relation interleaves the elements of  a tuple of 
tuptes, 

x tran y ¢* ¥i, j: O <_ i < #x, O <_ j < #y 

" (#xi = #y) A ()).i = xi,j), 

where xij = (xi)y. For example, ((1, 2, 3), (4, 5, 6)  ) 
tran ( (1, 4 ) ,  (2,  5),  (3, 6)  ). Notice that tran is only 
defined for tuples in which all sub-tuples have the same 
length. 

A bend is a piece of wire that connects its domain 
signals and leaves its range signal unspecified, 

( x , y )  b e n d z  ~ x = y .  

Note that bend = fork-l;  7ri-1; 7r2. 

5.L Transposing a Chain 

The theorems that will be introduced relate circuits with 
bends. A bend can be added, for instance, to make the 
two ends of a chain of components to point in the same 
direction (figure 6): 

o <x y> .i; en ]z 
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i<N 

¢ff ( x , y )  Qs t  ;i<N R i ; b e n d )  z 

Fig. 6. Adding a vertical bend to a chain (N = 4). 

i<N 
[O,, n 1 _1] ; be d 

Fig. Z Transposing a chain with a vertical bend (N = 2). 

We can now move some of the components from the 
lower branch to the upper branch (figure 7), since 

f s t  i~N Qi , i~N R ; bend 

[ 1 i~N Qi, i~N RN~i-1 ; bend 

Q 

--- i 'N [Qi, RN-Ii-1]; bend. (10) 

This transformation has two effects. First, it elimi- 
nates the long wire in the left-hand circuit which may 
cause undesirable propagation delay. Second, it also 
changes the aspect ratio of a circuit--for instance given 
that all components are of width w and height h, equa- 
tion 10 equates a circuit of size 2Nw x h with a circuit 
of size Nw x 2h. 

5.2. Transposing a Row 

A bend can also be added to a component with connec- 
tions on every side: 

(x, y)R(u, v) ¢~ ( (x, v), y)(fstv R; snd bend; 71"1)U. 

One can move the component to the upper branch pro- 
vided that it is reflected vertically, 

fstv R ; snd bend 

= (sndv RV)\\(fst recrev); snd bend. 

From this, an equation for transposing a circuit with 
two components can be derived: 

fstv (Q *-. R); snd bend 

= ([Q, RV]\tran)\\fst(snd recrev); snd bend. 

If both components are themselves rows of N compo- 
nents, then we can move half of the components from 
the lower branch to the upper branch and transpose the 
resulting circuit (figure 8). So given that srev = tran; 
snd recrev, we have 

f s t v (  i<N@'~ Qi ~ i<N~ R t  ; snd bend 

= ~ I  *'* Qi, <")R~_ t \tran~ i<N i<N i-1 

\ \ fst(snd recrev); snd bend 

= ~ ([Qi, R~-i-1]\tran)\\fst srev ; snd bend. 
i<N 

Note that the wiring cell tran can itself be expressed 
as a row of trancell, 

tran = apl-1; fst map(apr-l\TrO; 

row(col trancell); 7r2 (12) 
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44+44+ 
( " ] • RN_i_I] \ tran) \\ f s tsrev snd bend 

\ 
fs tv " ' Qi ~ +-+ Ri , sndbend= +-"> ([Qi, v 

i<N i<N J i<N 

Fig. R Transposing a row with a vertical bend  (N = 3). 

where trancell = ((fst swap)\shl) \(snd apr). Theo- 
rems like equation 5 can then be applied to pipeline 
the array of trancell. Hence it is possible to transpose 
an array of pipelined components without introducing 
long wires, provided that the boundary circuits such 
as tran are themselves pipelined as well. 

Further details on transposing linear and rectangular 
arrays with multiple bends can be found in [7]. 

6. Parallel Division 

In this section an example will be used to illustrate the 
application of  the techniques expounded in the preced- 
ing sections. Based on the nonrestoring division algo- 
rithm [11] one can construct an iterative array (figure 
9) for unsigned parallel division with divident D, 
divisor d, quotient q and remainder r. Given that !c 
represents a circuit that generates a constant signal c, 

x( !c )  y o x = y = c ,  

this divider design can be captured in our notation as 

DVO = fst(Tr21; fsl !1; apl); 

(row DVOcell ~ DVOcell')kk(fst apr); snd  AFcell, 

DVOcell = snd  7ri-l; shl *-* BXF; shrbend. 

We shall explain shl first, and deal with shrbend later 
on. shl shifts its input downwards towards the most sig- 
nificant bit and can be implemented by a column of 
wiring cells t2: 

shl = col t2 = col [t, t]. 

The bottom output of shl controls the function of the 
programmable adder/subtracter BXFand must be initial- 
ized to 1 to set BXF up as a subtracter. This initialization 
is performed by the interface circuit 7rgl; 1st !1. BXF 
itself consists of a column of XF/ cells, each containing 
a fulladder f add  and a circuit X,. that uses an exclusive- 
or gate xor to control the inversion of the divisor. 

The digits di of the divisor are hardwired as static 
coefficients, with do as the most significant bit (do = 0 
if d represents an unsigned number); this prevents the 
dynamic alteration of the divisor but enables fewer 
latches to be used in pipelining--we shall come back 
to this later. The output of  the top Xi cell is fed into 
the carry input of its neighoring fadd cell by the wiring 
cell bend -1. 

BXF = snd  bend-l; ~ XFi, 
i<N 

XFi = Xi ~ fadd, 

X~ = fst(ri-~; s n d  !d~); sndv( fork;  [re2, xorl). 

Notice that thefadd cell described above has all inputs 
in its domain and outputs in its range, and is different 
from the one in figure 1 whose carry output is in the 
domain of the corresponding relation. 

At the bottom of DVOcell another bending cell, 
shrbend, is used to connect the bottom output of shl 
to the bottom input if  its neighboring X o cell, and to 
duplicate and to pass to the right the bottom carry out- 
put of  the adder column: 

shrbend = fst(shr; fst bend); dupshl, 

dupshl = fst(Tr2; fork); (snd 7r2; shl)\(snd apl). 
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DVOcell 
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XF~xF' 

13 196 
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• r2 

• rl 
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Fig. 9. D e s i g n  DVO (L = 7, N = 4,  X = xor, A = and,  F = f a d d ) .  

The rightmost DVOcell, called DVOcell', has a simpli- 
fied shrbend as the bottom carry output of the adders 
is not duplicated: 

DVOcell' = snd  7ri-l; shl ~ BXF; shrbend', 

shrbend' = Ist(shr; [st bend; 7r2). 

An AFcell is placed to the right of DVOcell'. This is 
a remainder-correction circuit with a structure similar 
to that of a DVOcell. It can be omitted if only the quo- 
tient is required. 

AFcell = fork; fst (apl-1; 71-1); 71"11; snd(!0;  7r~-~); 

Bcell$~i~<NAFi) ;7r2, 

Bcell = shr; fst bend, 

AF~ = & ~. fadd, 
Ai = fst(Tr-~; snd  !di); sndv(fork; [r2, and]). 

Given that nat maps a tuple of  bits (most significant 
bit first) into its numerical value, the correctness of DV0 
with an L-bit D and N-bit d can be established by show- 
ing that 

((Di[O <-- i < N -  1),  ( D i [ N -  1 <_ i < L ) )  

DVO (q, r) ¢~ nat D = (nat q) x (nat d) + nat r. 

One should also work out ways to detect invalid inputs 
and outputs such as having a zero divisor or overflow 
in addition or subtraction. We omit such details since 
deriving designs from a behavioral description (see [1], 
[2], [5]) is not the main theme of this paper. 

It is simple to use equation 5 to pipeline DVO by 
placing latches between DVOcells. Now suppose that 
even this transformation does not provide a fast enough 
circuit. Two methods of pipelining the column of adders 
will be presented below. 

6.1. Decomposing Circuits with Counter-Flowing Data 

The main problem with pipelining DVOcell is the pres- 
ence of counter-flowing data in an XF/cel l - - remember  
that a delay with a rightward or a downward signal flow 
can be implemented by a latch, but a delay with a left- 
ward or an upward signal flow cannot be implemented. 
The first solution that we offer is to decompose the col- 
umn of XF i cells into a column of Xi cells beside a col- 
umn of fadd cells, 

$ XF~= $ ~ . y a M )  
i < N  i < N  

co,N a  
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and pipeline the column of fulladders using a reflected 
version of equation 5, 

col N fadd = (COlN(fadd;fst 33))\\(snd /k 33-1); 

fst 33-N 

= fst A33; CO1N(fadd; fst 33); 
[33-N,/-~ 33-~]. 

The A33 1 that is introduced between adjacent 
DVOcells can be cancelled by inserting N delays be- 
tween them, since AN33-1; 33N = 33; /k33. This 
gives 

DVOcell; 33N = snd 7ri-1; shl ~ BXF'; shrbend, 

BSF' = snd bend-i; ~ X i ~ faddD, 
i < N  

faddD = fst z~33; colu(fadd;fst 33); 

snd (33; A33). 

A similar procedure can be used to pipeline AFcell. 
Given that T x and TF represent respectively the 

propagation delay of xor and fadd, and TB is the delay 
due to broadcasting the control signal upwards through 
an X,. cell, the critical path delay of a DVOcell with 
pipelined fulladders is given by (N - I)TB + Tx + TF. 
This cell has a latency of N cycles and has N(N - 1) 
+ N + N(N + 1)/2 = N(3N + 1)/2 latches (an N-bit 
register which may be required to hold the divisor is 
not included in this figure). By clustering the N full- 
adders into M groups of K fulladders (N = MK) and 
then applying the column version of equation 5 as 
before, we obtain 

DVlcell  = snd 7r~-l; shl *-. BXF1; shrbend, 

BXF1 = snd  bend-l;  ~ X i ~ faddD1, 
i < N  

faddD 1 = fst(groupM; ~ 33); colM(colKfadd; fst 33); 

snd(33;/k 33 ;grouper1). 

One can reduce the value o f M  infaddD1 to produce 
circuits that work at a lower speed and with fewer 
latches; figure 10 shows a DVlcell pipelined by every 
two fulladders. On the other hand a faster circuit can 
be obtained--at the expense of introducing even more 
latches--by pipelining the column of Xi cells as well. 
In the following we shall discuss an alternative way of 
pipelining DVOcell which uses fewer latches. 

6. 2. Reversing the Broadcast Direction 

The basic idea of this method is to reverse the direction 
of broadcasting the control signal in X i by introducing 
a wire that connects the bottom output ofshl to the top 
input of the column of XF i cells (figure 11), 

DV2ceU = topbend; (tsth shl ; fst bend) 

~ ~ ~<N XFi~ ; ,st Tr2; 

topbend = snd(Tri-1; slid bend-~; shr; snd fork). 

It can be shown that a DV2cell behaves the same as 
a DVOcell: DV2cell = DVOcell. However, now that 
counter-flowing data have been eliminated, the column 
of XF i cells can be pipelined by inserting latches be- 
tween M groups each containing K cells (N = MK) 
to form a DV3cell: 

1--] I-,. I~  __J  I /  v r 

_iv 

7 

Fig. 10. Des ign  D V l c e l l  (N = 4,  M = K = 2, X = xor, F = fadd) .  
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.E 

i 

] .  

1. 

Fig. 11. Design DV2cell (N = 4, X = xor, F = fadd). 

~ XFi =A; ~ I ~<KXFiK+j;fstE)I ;B (13) 
i<N i<M j 

where 

A = fst (groupM ; A E)), 

B = [E) TM, ~ [ ) - 1 ,  group~l]. 

As before, the Z~E) -1 between adjacent DV3cells can 
be eliminated by composing it with E) M. One can 
check that a fully-pipelined DV3cell (K = t) has a criti- 
cal path delay of NTB + Tx + TF and a latency of N 
cycles, but it only has N(N - 1)/2 + 2N + N(N + 1)/2 
= N(N + 2) latches. Fewer skewing latches are re- 
quired since an XFi cell has only one horizontal input 
whilefadd has two horizontal inputs. Hence for N > 3, 
it will be more economical to pipeline a DV2cell rather 
than a DVOcell. 

A similar divider circuit with unidirectional data 
flow has been proposed independently by Parhi [12]. 

6.3. Introducing Transposition 

fsth(col R t col R); fst bend 

= col(sndh R ~c t fsth R) \ \ snd  frev ; fst bend 

where frev = tran ; fst recrev. 
Next, a similar procedure can be used to transpose 

the arrays of pipelined XF i cells and pipelined AF i 
cells, provided that a bend and a broadcast wire are 
first added so that they become respectively 

fsth ~ .<~ N '  (X_F~; fstE))~;fstbend 
and 

fsth ~ .<~ u '  (AFi; fs tE))~;fs tbend.  

These arrays can then be split in half and transposed 
as before. 

Finally, we also need to be able to transpose the 
triangular-shaped arrays of latches introduced by pipe- 
lining the column of X F  i cells (see equation 13). One 
way to achieve this is to use 

A 2 n a \ g r ° u p 2  = .[1 [ a  n+i, a n - i - 1 ] \ f  r e v  
t<n 

A pipelined DV3cell can be further optimized by trans- 
position to eliminate the broadcast wire and the associ- 
ated delay of NTs. The resulting design, DV4cell, can 
be obtained in three steps. First of all, since shl = 
cok 2, we can split it into two halves using the follow- 
ing theorem: 

COI2nR = (COInR $ COInR)\\snd group21. 

The resulting array is then transposed using the column 
version of equation 11, 

to deduce that 

fst /~Q; fsth $ Ri; fst bend 
i<2n 

= ~ i~<n R~ \\snd(frev; group~l); fst bend 

where R i' = fst[Q n+i, Qn-i-1]; sndh R~i-1 $ fsth 
R,+i. Substituting into this equation with Q = ~D and 
R = XF/; fst E) then completes the major development 
steps for DV4cell. 
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There is a further opportunity for speed improve- 
ment: as discussed in the preceding section, equation 
12 enables the peripheral transposition to be expressed 
as a row of wiring cells which can then be pipelined 
if desired. 

The amount of pipelining in this circuit can also be 
controlled by grouping cells into clusters before pipelin- 
ing and transposition. If each cluster contains K cells, 
then the array has N(N + 2)/K latches, N/K cycles 
latency and T B + Tx + KTF critical path delay. A 
DV4cell pipelined by every two adders is shown in 
figure 12. 

Figure 13 summarizes the relationship between the 
divider designs that we discussed, and table 1 compares 
their salient features. 

6.4. Performance Evaluation 

We are developing a suite of computer-based tools to 
support the design framework described in this paper. 
An overview of these tools is shown in figure 14, and 
further details can be found in [3], [4] and [13]. The 
design system has been used to implement the divider 
designs on a CHS2x4 board which contains several 
field-programmable gate arrays known as Configurable 
Array Logic (CAL) chips. Table 2 compares the fea- 
tures of DVOcell (with horizontal outputs latched), 
DVlcell and DV4cell, where N is the number of adders 
in each design. Since it is difficult to measure the max- 
imum operation speed using our current system, the 
critical path delays are estimated using the manufac- 
turer's data [14]: 2 nanoseconds for CAL cell routing 
delay, and 8 nanoseconds for CAL cell computational 
delay. In the table both DVlcell and DV4cell are pipe- 
lined by N/2 adders; the corresponding CAL implemen- 
tations for N = 4 are shown in figure 15. 

One can deduce from table 2 that for large N, both 
DVlcell and DV4cell need 50 percent more CAL cells 
than DVOcell, and both of them have a latency twice 
as much as that of DVOcell. On the other hand, DV lcell 
is 1.8 times faster than DVOcell, while DV4cell is 2.2 
times faster than DVOcell. For instance, a divider with 
an 8-bit divisor (N = 9) can compute 2.6 million divi- 
sions per second when implemented as a DVOcell; the 
corresponding figures for a DVlcell and a DV4cell are 
respectively 4.6 and 5.7 million divisions per second. 
Since the latched fulladder used in a DV4cell has a 
critical path delay of only 44 nanoseconds, it can be 
used with up to three routing cells to form the basic 
unit of a fully-pipelined divider circuit operating at 20 
million divisions per second. 

i i 

Fig. 12. Design DV4cell with partial pipelining, 

v 11" 

DVOcell 

p i p e ~ r s e  broadcast direction 

D V 1 ceil D V 2  ceil 

pipel ine  

D V3  cell 

t r anspose  

D V 4  cell 

Fig. 13. Relating divider designs. 

I ~ performance estimator expression transforme 

LaTeX generator 

Fig. 14. Overview of design tools. 

Table 2. Comparing divider designs in Configurable Array Logic. 

Number of 
Design CAL ceils Latency Critical Path Delay 

DVOcell 8N + 8 1 cycle 40N + 18 ns 

DVlcel l  12N + 18 2 cycles 22N + 20 ns 

DV4cell 12N + 24 2 cycles 18N + 12 ns 
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Fig. 15. CAL implementation 

6.5. Other Possibilities 

Three remarks are in order. First, the above develop- 
ment can also be used for a division circuit with the 
divisor supplied externally. Only minor changes need 
to be made to the descriptions for capturing the prop- 
agation of the divisor from one DVOcell to another 
DVOcell and also to AFcell; so for instance, shl and BXF 
will become 

shl2 = col(fstv t2), 

BXF2 = snd bend-~; 

col(X2 ,-, (fst shr; fstv fadd)), 

X2  = sndv(fork; [r2, fork; [xor, ~'d]). 

However, a fully-pipelined column of adder ceils need 
N 2 extra skewing latches for the lines carrying the 
divisor. This outweighs the use of an N-bit register to 
hold the divisor, although it is more flexible as different 
divisors can be used in successive clock cycles. More- 
over, for a field-programmable gate array implementa- 
tion it may be preferable to reconfigure the array to 
accommodate different values of divisors, if the divisor 
is updated relatively infrequently. 

The second remark concerns the efficiency of our 
implementation. In addition to the nonrestoring division 
array described in this section, two other common 
parallel dividers are the carry-lookahead array (which 
is also based on the nonrestoring principle) and the 

I I 

of DV lcell and DV4cell. 

restoring division array [11]. The carry-lookahead array 
removes the need for pipelining the adders by using 
carry-save and carry-lookahead adders. However, the 
circuit is more complex and less regular than the simple 
rectangular array of DV0, and there is still the problem 
of broadcast delay. As for the restoring array, each of 
its cells consists of a column of fulladders whose final 
carry output controls an adjacent column of multiplex- 
ers. The column of adders can be pipelined in the same 
way as DVlcell, but changing the direction of broad- 
casting the control signal for the multiplexers does not 
lead to as much reduction in the number of latches as 
in DV2cell above. 

Our final remark is about the proposed optimization 
scheme. The methods of pipelining and transposition 
appear to be applicable in general to circuits involving 
broadcasting such as other arithmetic arrays [11] and 
semi-systolic arrays [6]. 

7. Conclusion 

We have presented a framework for optimizing array- 
based circuits. The key objectives of this framework 
are to provide a uniform description of arrays of hetero- 
geneous and homogeneous components, to devise proce- 
dures for transforming these descriptions, and to explore 
the trade-offs involved in these transformations. The 
techniques discussed formalize and generalize design 
experience; in particular, they allow incorporating the 



20 Luk 

appropriate degree of pipelining and transposition to 
cater for specific applications. The approach is sup- 
ported by computer-based tools which enable designs 
to be developed and checked rapidly. 

Current work is centered on two fronts. We are ex- 
tending our transformation framework to cover design 
serialization [15] in order to widen the range of solutions 
that satisfy given constraints, such as requirements on 
speed, size and shape of the circuit. It is also our inten- 
tion to interface our methods and tools to other develop- 
ment techniques, circuit design aids and cell libraries. 
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