
Journal of VLSI Signal Processing, 5, 7-20 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Pipelining and Transposing Heterogeneous Array Designs

WAYNE LUK
Programming Research Group, Oxford University Computing Laboratory, 11 Keble Road, OxJbrd, England OX1 30D

Received December 12, 1991; Revised May 21, 1992.

Abstract. This paper describes a scheme for representing heterogeneous array circuits, in particular those which
have been optimized by pipelining or by transposition. Equations for correctness-preserving transformations of
these parametric representations are presented. The method is illustrated on developing novel pipelined designs
for parallel division. It is estimated that, for a field-programmable gate array implementation, the speed of an
integer divider can be doubled at the expense of a 50 percent increase in area.

1. Introduction

The regularity and modularity of array-based circuits
offer two important advantages: they facilitate the effi-
cient implementation of these circuits in VLSI technol-
ogy, and they simplify their description and transforma-
tion so that optimized designs can be built rapidly and
correctly. We have presented an algebraic framework
and the related computer-based tools (see [1], [2], [3],
[4]) for structuring and refining parametrized represen-
tations of array-based circuits. Our approach has been
used to develop a wide range of word-level and bit-level
devices, including designs for digital signal processing
[5], arithmetic circuits [2], multi-level storage managers
[6] and butterfly networks [1].

The purpose of this paper is to illustrate how this
framework captures various ways of pipelining and
transposing designs, together with the resulting trade-
offs. Although systematic methods for pipelining [2]
and for transposition [7] have been introduced in the
past, the study of" optimization schemes involving both
of these transformations is novel. In particular, we com-
pare several methods for improving the speed of circuits
that contain counter-flowing data. An example of this
kind of circuit, in this case a component used in an inte-
ger divider, is shown in figure 1. It is not clear whether
there is an efficient scheme for distributing latches to
pipeline the broadcast circuitry as well as the array of
fulladders (labelledfadd in the figure), because signals
flow in opposite directions in these two circuits. One
of our solutions, which will be detailed in a later sec-
tion, involves reversing the broadcast direction and

*Due to difficulties in typsetting, different fonts are used for Ruby
expressions in main text and in figures.

J

i
F/g. 1. A circuit with counter-flowing data.

eliminating long connections by transposition. The
trade-offs of these transformations will be analyzed for
a field-programmable gate array implementation.

Some readers may question the necessity of using
a language specific to array-based circuits. In our opin-
ion the results obtained justify the use of such a lan-
guage and the associated techniques for circuit develop-
ment: no other design methodology that we are aware
of deals uniformly with both pipelining and transposi-
tion. Moreover, an algebraic approach provides a con-
cise and systematic means of parametrizing designs and
a simple transformation framework based on pattern
matching and equational reasoning.

Another advantage of this method is its flexibility
of allowing the user to select where to begin developing
a design. Since our transformations are correctness-
preserving, the only requirement on the initial design
description is that it behaves as desired. In the interest
of clarity, this description does not need to be impte-
mentable. On the other hand, it is often useful to trans-
form a given structure which is asserted to behave cor-
rectly to see if it leads to an attractive implementation;

8 L u k

that assertion can always be checked in a separate step.
Where appropriate, simulation is another way of increas-
ing confidence in the correctness of designs. The behav-
ior of all circuit descriptions in Section 6, including
the initial and final designs, can be simulated using an
interpreter of our language.

The transformations discussed in this paper are in-
tended to guide the development of parametrized design
descriptions. They provide a means of organizing and
codifying design experience, allowing such expertise
to be deployed rapidly in new applications. They can
also be used to document design decisions by recording
what alternatives have been explored, how these alter-
natives are related to one another, and why a particular
design has been chosen. A design tree can often be used
to summarize the relationship between designs; see fig-
ure 13 for an example.

A further advantage of this method is the possibility
of deriving formulae for estimating the quality ofparam-
etrized design representations [4]. Some examples of
such formulae can be found in table 1. These formulae
are technology-independent, since they express the
features of a composite design in terms of the features
of basic building blocks supplied by the user. They can
be used without the knowledge of how they are derived.

For readers who wish to obtain an overview of our
approach, figure 4 provides a number of examples de-
scribing various patterns of connecting processors in
our notation. Figure 5 contains a theorem for pipelining
designs--a triangle in the diagram represents an abstract
view of a latch. Figure 8 gives a flavor of how a row
of components can be transposed. A parallel divider
design is shown in figure 9; using our transformations

Table 1. Comparing divider designs.

Latency Number of
Design Minimum Cycle Time (cycles) Latches in Array

DVOcell (N - I)T B + T X + NT e 0 0

DVlcell (N - 1)T B + T x + KT r N N (3 N - K + 2)
~- 2K

DV2cell NT B + T X + NT F 0 0

DV3cell NT B + T x + KT F N N(N + 2)
K

DV4cell T B + T x + KT F N N(N + 2)
K

N: the number of adders in a cell,
K: clustering the adders in a cell in groups of K adders,

T x, TF: the combinational delay of the cell xor, fadd,
TB: the broadcast delay through an X/cell.

the repeated unit D V O c e l l can be replaced by the cells
in figures 10, 11 or 12. Figure 13 summarizes the rela-
tionship between the divider cells that we derive, and
table 1 quantifies their salient features. Finally, figure
15 presents possible implementations of two divider
cells in field-programmable gate array technology.

2. Design Representation

The formalism that we use is based on Sheeran's rela-
tional framework and the author's heterogeneous combi-
nators. The background and the details of this approach
have been described elsewhere (see [1], [8]), and only
the definitions and concepts relevant to our discussion
will be introduced here.

A design will be described by a binary relation of
the form x R y where x, y represent the interface signals
and belong respectively to the domain and range of R.
For example, an inverter can be specified as

x inv y c~ (x = O A y = l) V (x -+- l A y = O), (1)

or, more succinctly, as 0 inv 1 A 1 inv O.

The converse R -1 of a relation R is defined by
x (R -1) y o y R x, and the identity relation is given
by x t y ~* x = y. If R is a function, then R x is the
value of R for the argument x.

Objects in our notation are either atoms (such as
numbers or relations) or tuples of objects: for instance
the object (0, (1, 2)) is a 2-tuple containing the num-
ber 0 and the tuple (1, 2) . A tuple is an ordered collec-
tion of elements, with the empty tuple denoted by () .
Given that x is a tuple, #x represents the number of
elements in it, and x i (where 0 < i < #x) is its i-th
element. Tuples are concatenated by the functions ap l

(append left), a p r (append right), or ' " ' (binary ap-
pend), so that

a p l (a , (b , c, d , e)) = a p r ((a , b , c , d) , e)

= (a , b, c) " (d , e)

= (a , b , c , d , e) .

A rectangular circuit with connections on every side
is modeled by a relation that relates 2-tuples, with the
components in the domain corresponding to signals for
the west and north side and those in the range corre-
sponding to signals for the south and east side. In gen-
eral, composite signals are represented as tuples with
the position of a particular signal corresponding to its
relative position, and with its structure--the grouping
of signals--reflecting the logical organization of adja-
cent signals.

Pipelining and Transposing Heterogeneous Array Designs 9

Given a circuit R with connections on all four sides,
we can use the generic reverse function recrev which
recursively reverses a tuple and all its component tuples,

recrevx = x i f x = () or if x is an atom,

recrev((x) ^xs) = (recrev xs) ̂ (recrev x) otherwise,

to define R v and R ~c which denote the reflection of
R in a vertical and in a horizontal axis:

(x, y)RV (x ', y ') ¢~ (y' , recrev y)R(recrev x', x) ,

(x, y)R~C(x ', y') ¢~ (recrev x, x ')R(y, recrev y').

Clearly (RV f c = (R~C) v.

3. Combinators

Combinators are higher-order functions that capture
common patterns of computation as parametrized ex-
pressions. Both behavior and structure can be described
by these patterns: they express the behavior of a com-
posite device in terms of the behavior of its components,
and they also describe the connection of components
to form the composite device.

3.1. Binary Composition

Two components Q and R can be connected together
if they share a compatible interface s which is hidden
in the composite circuit Q; R (figure 2a),

x (a ; R) y ¢, 3s " (x a s) A (s R y). (2)

As shown later, many theorems in this framework can
be expressed in the form R = p - l ; Q; p. The pattern
p - l ; Q; P - i n words, 'Q conjugated by P--will be ab-
breviated to Q\P.

If there are no connections between Q and R, the
composite is represented by parallel composition [Q, R]
(figure 2b), where

(Xo, Xl)[Q,R](yo, yl) o (xoQYo) A (XlRyl) . (3)

It is simple to show that [P, Q]; [R, S] = [P; R, Q; S],
and that [P, Q]- I = [p- l , Q-l] . Our framework con-
tains a collection of such theorems, which can be used
for reasoning about designs.

There are several operations involving pairs of sig-
nals that we will require. First of all, given that L is
the identity relation, we have the abbreviations

fs t R = [R, L],

snd R = [L, R].

Next, the relation fork can be used to duplicate a signal,
since x fork (x, x) . Extracting an element from a pair
is achieved by the projection relations 7rl and 7r 2, de-
fined by (x, y) a'l x and (x, y) 7r2 y. Finally, we need
to be able to swap the elements of a pair: (x, y) swap
(y, x) . Examples of theorems involving these opera-
tions include

f s t Q ; s n d R = s n d R ; f s t Q = [Q,R] ,

~ ; r l = ~ ; ~ = ~ ,

[Q, R]\swap = swap ; [Q, R] ; swap = [R, Q].

Two rectangular components with connections on every
side can be assembled together by the beside (~) and
below ($) operators (figure 2c and figure 2d):

(a, (b, c))(Q .-* R) ((p, q) , r)

¢*]s • <a, b)Q(p , s) A (s, c)R(q , r) ,

((a, b) , c)(Q $ R)(p , (q, r))

¢*]s • (a, s)Q(p , q) A (b, c)R(s , r).

b c
Xl ~ Yl

p q

a. Q ; R b. [Q,R] c. Q+-+R

Fig. 2. Some binary combinators.

a - - ~ q

p

d. QIR

10 Luk

sndh R

I.
. J

O

Fig. 3. The picture of fsth (Q $ (sndh R)).

Since (Q $ R) -1 = Q-1 ,_, R - l , theorems that have
been proved for beside can readily be adapted for below.

It is useful to have the following abbreviations which
are similar to the fst, s n d and \ operators,

fsth R = R .-. swap,

sndh R = swap +. R,

fStv R = R $ swap,

s n d v R = swap $ R,

Q\ \ [R , SI = [S -] , R-] l ; Q; [R, S].

A simple example involving some of these abbreviations
is shown in figure 3.

Given that the conjugate operators have a lower
precedence than all other operators except relational
composition, one can show that fsth (sndv R) = sndv
(fsth R), Qk\R = R -1Xswap; Q; R, and that R\\(fs t
Q) = snd Q-I ; R; fst Q.

Finally, note that unappending the last element of
a tuple followed by appending its first element corre-
sponds to a shift left, and similarly for shift right,

shl = a p r - 1; apl,

shr = a p l - 1 ; apr.

Clearly sh1-1 = shr, since (Q ; R) -1 = R- l ; Q-1.

3.2. Heterogeneous Combinators

One can check that in general the binary operators (such
as parallel composition) are not commutative, and that
only relational composition is associative. For instance,
since ((x , y) , z) and (x, (y, z>) are distinct tuples,
[[P, Q], R] ~ [P, [Q, R]]. We now introduce a class
of prefix combinators, called heterogeneous combi-
nators, each of which takes a tuple of components and
returns a binary relation corresponding to the composite
circuit; the components that are wired together can be
different from one another. So given that #x = #y =

#R = N, a heterogeneous chain (figure 4a) and a
heterogeneous map (figure 4b) are described respec-
tively by

a (; R) b ¢~ 3s • (So = a) A (s N = b)

A Vi: 0 < i < N °siRiSi+l,

x(l l R) y ~ Vi: 0 <_ i < N " xiRiy i.

Similarly, a heterogeneous row (figure 4c) is described
by

(a ,x) (* -* R) (y , b) ¢~ 3s" (So = a) A (SN = b)

A Vi: 0 <-- i < N " (si, xi)Ri<Yi, Si+l).

A heterogeneous column (figure 4d) can be described
in a similar fashion. The correctness of these descrip-
tions can be proved using the recursive definitions of
these combinators in terms of the binary operators
shown earlier, but we shall not go into such details.

Given xI t ~ {;, II, " , ~} and 0 <-- U < #R, we
shall adopt the abbreviation

x~ Re = X~<Ri IO < i < N) ,
i < N

a. ; (/t~o,/~1,/~2)

+++
b. II (/~,/~1,/~2)

c. +-+ (~ , nl , Rz) T
c. A/~ f. ZX/~

Fig. 4. Some heterogeneous and homogeneous combinators.

Pipelining and Transposing Heterogeneous Array Designs 1 1

so that one can write

Ii~<N Ri~-1
i<N

(Ri-1).

3.3. Homogeneous Combinators

For many applicatons the generality of heterogeneous
combinators is not required. If Ri does not depend on
i, then the following homogeneous combinators [1] can
be used to describe arrays of identical components.

R N = ; R (chain),
i < N

m a p N R : II R (map),
i < N

AN R -- II Re (triangle),
i < N

aN R -- II RN-i-1 (reverse triangle),
i < N

rOWNR = ~ R (row),
i < N

col N R = $ R (column).
i<N

Instances of the zk and/~ operators are shown in figure
4e and figure 4f. The subscripts associated with these
combinators correspond to the size of the arrays, often
omitted when they can be deduced from context.

4. Sequential Circuits and Pipelining

So far we have been using relations to model a static
situation--the steady state behavior of a circuit at a par-
ticular instant of time. To deal with sequential circuits,
an expression can be considered as relating a stream in
its domain to a stream in its range. For our purpose, a
stream can be considered to be a doubly-infinite tuple

containing data at successive clock "ticks." Notice
that the clock is an abstract means for specifying data
synchronization, and it may be realized either by a
global synchronous clock or by some hand-shaking
mechanism.

For instance, an inverter, Inv, can be specified as
x Inv y ¢~ Yt" x t inv Yt, where inv is the corresponding
static description given earlier in equation 1. For sim-
plicity, combinational circuits will be described in the
static form; they should be interpreted as relations on
streams in composite expressions involving sequential
elements. In most cases, such as in the absence of con-
ditionals, the same algebraic theorems can be applied
to expressions representing either combinational or se-
quential systems [9].

A delay 33 is defined by x 33 y ¢~ Yt . Yt = Xt-l" An
anti-delay 33-1 is such that 33; 33-a = 33-1; 33 = t. A
latch is modeled by a delay with data flowing from do-
main to range, or by an anti-delay with data flowing from
range to domain. We shall use the symbols t> and
~7 to represent delays for horizontal and vertical data-
flows respectively, so for instance
is a picture of 335. Similarly < and + represent
anti-delays for horizontal and vertical dataflows.

4.1. Retiming

Retiming [10] is a method for pipelining a circuit by
introducing and relocating latches. It can be applied
to circuits containing no primitives which possess a
measure of absolute time. For such circuits, simultane-
ously delaying every domain signal and anti-delaying
every range signal will not alter the behavior: R = 33;
R; 33-1 = R \ 3 3 - 1 . Circuits with this property are
known as timeless [9]. The following theorems state
that one can distribute delays within a chain or a row
of timeless components so long as additional delays and
anti-delays are placed at the edges of the circuits (fig-
ure 5):

+--4 /~ = +--4
i < N i < N

m P - . _ J l I - I . . - -1

(Ri ; snd 79) \\ (f s t / ~) - 1) ; s n d D - N

Fig. 5. A theorem for retiming a row of heterogeneous components (N = 3).

12 Luk

i~N Ri i~N (Ri , 33); 33-N, (4)

Ri = snd &33; ~ (Ri ; snd 33);
i<N i<N

[A ~)-1, ~)-N]

= ~ (Ri ; snd 33)kk(fst &33-1);
i<N

s n d 33-N. (5)

Note that the boundary condition 33-N indicates that
the pipelined circuits have an additional latency of N
cycles, and the expression & 33-1 provides information
about data-skews associated with the transformation.

4.2. Controlling Pipelining

Although pipelining can increase the throughput of a
system, it may also increase its latency and the amount
of area and power dissipation from latches both within
the array and at its periphery for data-skewing. To syn-
thesize expressions that denote designs with variable
degrees of pipelining, we first use clustering theorems
to express the target array as an array of clusters of com-
ponents; latches are then distributed between clusters
using retiming theorems. In general a cluster with a
larger number of components will result in a slower
design with smaller area and latency.

It is obvious how to cluster a chain; just express it
as a chain of chains:

• R i = ' ~ ~ RiK+j 1 . (6) i<~NK i~N j~.K

To cluster rows, we need the relation groupn to format
an (m X n)-tuple to form an n-tuple of m-tuples,

x groupn y ¢~ ¥i, j: 0 < i < n, 0 <_ j < m

• (#y = n) A (#x = m X n) A (Yi,j = Xmi+j),

so that, for example, (1, 2, 3, 4, 5, 6) group3 < (1, 2) ,
(3, 4), (5, 6 >). We can use group to format the signals
to match the tuple structure required by a row of rows,

R i = ~ - ~ { ~ - ~ R i K + ~ \ \ f s t g r o u p u ' . (7)
i<NK i<N j<K L "J

One can then apply the retiming theorems described
earlier, treating the chain or row of K RiK+j compo-
nents as a single unit:

• = ° ~ j ~ K R i K + j ~)] i<~NK Ri i~N ; ; ~)-N,
(8)

*'*I~"*RiK+j] i<N j<K i~N ~ RiK+j ; snd
j <K

\\(fst /k33-~); snd ~-N. (9)

There are also retiming theorems to deal with two-
dimensional arrays; such details can be found in [1],

[21, [51.

5. Transposition

Transposition theorems relate circuits interleaved in dif-
ferent ways. A general discussion of using transposition
to optimize designs can be found elsewhere [7]; for this
paper we shall just give a few examples illustrating the
idea. The objective of transposition is to distribute the
components of a circuit so as to shorten interconnec-
tions or to vary its aspect ratio.

There are two common patterns of wiring for de-
scribing transposed circuits: tran and bend. The trans-
pose relation interleaves the elements of a tuple of
tuptes,

x tran y ¢* ¥i, j: O <_ i < #x, O <_ j < #y

" (#xi = #y) A ()).i = xi,j),

where xij = (xi)y. For example, ((1, 2, 3), (4, 5, 6))
tran ((1, 4) , (2, 5), (3, 6)). Notice that tran is only
defined for tuples in which all sub-tuples have the same
length.

A bend is a piece of wire that connects its domain
signals and leaves its range signal unspecified,

(x , y) b e n d z ~ x = y .

Note that bend = fork-l; 7ri-1; 7r2.

5.L Transposing a Chain

The theorems that will be introduced relate circuits with
bends. A bend can be added, for instance, to make the
two ends of a chain of components to point in the same
direction (figure 6):

o <x y> .i; en]z

Pipelining and Transposing Heterogeneous Array Designs 13

i<N

¢ff (x , y) Qs t ;i<N R i ; b e n d) z

Fig. 6. Adding a vertical bend to a chain (N = 4).

i<N
[O,, n 1 _1] ; be d

Fig. Z Transposing a chain with a vertical bend (N = 2).

We can now move some of the components from the
lower branch to the upper branch (figure 7), since

f s t i~N Qi , i~N R ; bend

[1 i~N Qi, i~N RN~i-1 ; bend

Q

--- i 'N [Qi, RN-Ii-1]; bend. (10)

This transformation has two effects. First, it elimi-
nates the long wire in the left-hand circuit which may
cause undesirable propagation delay. Second, it also
changes the aspect ratio of a circuit--for instance given
that all components are of width w and height h, equa-
tion 10 equates a circuit of size 2Nw x h with a circuit
of size Nw x 2h.

5.2. Transposing a Row

A bend can also be added to a component with connec-
tions on every side:

(x, y)R(u, v) ¢~ ((x, v), y)(fstv R; snd bend; 71"1)U.

One can move the component to the upper branch pro-
vided that it is reflected vertically,

fstv R ; snd bend

= (sndv RV)\\(fst recrev); snd bend.

From this, an equation for transposing a circuit with
two components can be derived:

fstv (Q *-. R); snd bend

= ([Q, RV]\tran)\\fst(snd recrev); snd bend.

If both components are themselves rows of N compo-
nents, then we can move half of the components from
the lower branch to the upper branch and transpose the
resulting circuit (figure 8). So given that srev = tran;
snd recrev, we have

f s t v (i<N@'~ Qi ~ i<N~ R t ; snd bend

= ~ I *'* Qi, <")R~_ t \tran~ i<N i<N i-1

\ \ fst(snd recrev); snd bend

= ~ ([Qi, R~-i-1]\tran)\\fst srev ; snd bend.
i<N

Note that the wiring cell tran can itself be expressed
as a row of trancell,

tran = apl-1; fst map(apr-l\TrO;

row(col trancell); 7r2 (12)

14 Luk

44+44+
("] • RN_i_I] \ tran) \\ f s tsrev snd bend

\
fs tv " ' Qi ~ +-+ Ri , sndbend= +-"> ([Qi, v

i<N i<N J i<N

Fig. R Transposing a row with a vertical bend (N = 3).

where trancell = ((fst swap)\shl) \(snd apr). Theo-
rems like equation 5 can then be applied to pipeline
the array of trancell. Hence it is possible to transpose
an array of pipelined components without introducing
long wires, provided that the boundary circuits such
as tran are themselves pipelined as well.

Further details on transposing linear and rectangular
arrays with multiple bends can be found in [7].

6. Parallel Division

In this section an example will be used to illustrate the
application of the techniques expounded in the preced-
ing sections. Based on the nonrestoring division algo-
rithm [11] one can construct an iterative array (figure
9) for unsigned parallel division with divident D,
divisor d, quotient q and remainder r. Given that !c
represents a circuit that generates a constant signal c,

x(!c) y o x = y = c ,

this divider design can be captured in our notation as

DVO = fst(Tr21; fsl !1; apl);

(row DVOcell ~ DVOcell')kk(fst apr); snd AFcell,

DVOcell = snd 7ri-l; shl *-* BXF; shrbend.

We shall explain shl first, and deal with shrbend later
on. shl shifts its input downwards towards the most sig-
nificant bit and can be implemented by a column of
wiring cells t2:

shl = col t2 = col [t, t].

The bottom output of shl controls the function of the
programmable adder/subtracter BXFand must be initial-
ized to 1 to set BXF up as a subtracter. This initialization
is performed by the interface circuit 7rgl; 1st !1. BXF
itself consists of a column of XF/ cells, each containing
a fulladder f add and a circuit X,. that uses an exclusive-
or gate xor to control the inversion of the divisor.

The digits di of the divisor are hardwired as static
coefficients, with do as the most significant bit (do = 0
if d represents an unsigned number); this prevents the
dynamic alteration of the divisor but enables fewer
latches to be used in pipelining--we shall come back
to this later. The output of the top Xi cell is fed into
the carry input of its neighoring fadd cell by the wiring
cell bend -1.

BXF = snd bend-l; ~ XFi,
i<N

XFi = Xi ~ fadd,

X~ = fst(ri-~; s n d !d~); sndv(fork; [re2, xorl).

Notice that thefadd cell described above has all inputs
in its domain and outputs in its range, and is different
from the one in figure 1 whose carry output is in the
domain of the corresponding relation.

At the bottom of DVOcell another bending cell,
shrbend, is used to connect the bottom output of shl
to the bottom input if its neighboring X o cell, and to
duplicate and to pass to the right the bottom carry out-
put of the adder column:

shrbend = fst(shr; fst bend); dupshl,

dupshl = fst(Tr2; fork); (snd 7r2; shl)\(snd apl).

Pipelining and Transposing Heterogeneous Array Designs 15

DVOcell

¢.

XF~xF'

13 196
XF

Xt ,

X F

qo ql q2 q3

, 7"3

• r2

• rl

,tO

Fig. 9. D e s i g n DVO (L = 7, N = 4, X = xor, A = and, F = f a d d) .

The rightmost DVOcell, called DVOcell', has a simpli-
fied shrbend as the bottom carry output of the adders
is not duplicated:

DVOcell' = snd 7ri-l; shl ~ BXF; shrbend',

shrbend' = Ist(shr; [st bend; 7r2).

An AFcell is placed to the right of DVOcell'. This is
a remainder-correction circuit with a structure similar
to that of a DVOcell. It can be omitted if only the quo-
tient is required.

AFcell = fork; fst (apl-1; 71-1); 71"11; snd(!0; 7r~-~);

Bcell$~i~<NAFi) ;7r2,

Bcell = shr; fst bend,

AF~ = & ~. fadd,
Ai = fst(Tr-~; snd !di); sndv(fork; [r2, and]).

Given that nat maps a tuple of bits (most significant
bit first) into its numerical value, the correctness of DV0
with an L-bit D and N-bit d can be established by show-
ing that

((Di[O <-- i < N - 1), (D i [N - 1 <_ i < L))

DVO (q, r) ¢~ nat D = (nat q) x (nat d) + nat r.

One should also work out ways to detect invalid inputs
and outputs such as having a zero divisor or overflow
in addition or subtraction. We omit such details since
deriving designs from a behavioral description (see [1],
[2], [5]) is not the main theme of this paper.

It is simple to use equation 5 to pipeline DVO by
placing latches between DVOcells. Now suppose that
even this transformation does not provide a fast enough
circuit. Two methods of pipelining the column of adders
will be presented below.

6.1. Decomposing Circuits with Counter-Flowing Data

The main problem with pipelining DVOcell is the pres-
ence of counter-flowing data in an XF/cel l - - remember
that a delay with a rightward or a downward signal flow
can be implemented by a latch, but a delay with a left-
ward or an upward signal flow cannot be implemented.
The first solution that we offer is to decompose the col-
umn of XF i cells into a column of Xi cells beside a col-
umn of fadd cells,

$ XF~= $ ~ . y a M)
i < N i < N

co,N a

16 Luk

and pipeline the column of fulladders using a reflected
version of equation 5,

col N fadd = (COlN(fadd;fst 33))\\(snd /k 33-1);

fst 33-N

= fst A33; CO1N(fadd; fst 33);
[33-N,/-~ 33-~].

The A33 1 that is introduced between adjacent
DVOcells can be cancelled by inserting N delays be-
tween them, since AN33-1; 33N = 33; /k33. This
gives

DVOcell; 33N = snd 7ri-1; shl ~ BXF'; shrbend,

BSF' = snd bend-i; ~ X i ~ faddD,
i < N

faddD = fst z~33; colu(fadd;fst 33);

snd (33; A33).

A similar procedure can be used to pipeline AFcell.
Given that T x and TF represent respectively the

propagation delay of xor and fadd, and TB is the delay
due to broadcasting the control signal upwards through
an X,. cell, the critical path delay of a DVOcell with
pipelined fulladders is given by (N - I)TB + Tx + TF.
This cell has a latency of N cycles and has N(N - 1)
+ N + N(N + 1)/2 = N(3N + 1)/2 latches (an N-bit
register which may be required to hold the divisor is
not included in this figure). By clustering the N full-
adders into M groups of K fulladders (N = MK) and
then applying the column version of equation 5 as
before, we obtain

DVlcell = snd 7r~-l; shl *-. BXF1; shrbend,

BXF1 = snd bend-l; ~ X i ~ faddD1,
i < N

faddD 1 = fst(groupM; ~ 33); colM(colKfadd; fst 33);

snd(33;/k 33 ;grouper1).

One can reduce the value o f M infaddD1 to produce
circuits that work at a lower speed and with fewer
latches; figure 10 shows a DVlcell pipelined by every
two fulladders. On the other hand a faster circuit can
be obtained--at the expense of introducing even more
latches--by pipelining the column of Xi cells as well.
In the following we shall discuss an alternative way of
pipelining DVOcell which uses fewer latches.

6. 2. Reversing the Broadcast Direction

The basic idea of this method is to reverse the direction
of broadcasting the control signal in X i by introducing
a wire that connects the bottom output ofshl to the top
input of the column of XF i cells (figure 11),

DV2ceU = topbend; (tsth shl ; fst bend)

~ ~ ~<N XFi~ ; ,st Tr2;

topbend = snd(Tri-1; slid bend-~; shr; snd fork).

It can be shown that a DV2cell behaves the same as
a DVOcell: DV2cell = DVOcell. However, now that
counter-flowing data have been eliminated, the column
of XF i cells can be pipelined by inserting latches be-
tween M groups each containing K cells (N = MK)
to form a DV3cell:

1--] I-,. I~ __J I / v r

_iv

7

Fig. 10. Des ign D V l c e l l (N = 4, M = K = 2, X = xor, F = fadd) .

Pipelining and Transposing Heterogeneous Array Designs 17

.E

i

] .

1.

Fig. 11. Design DV2cell (N = 4, X = xor, F = fadd).

~ XFi =A; ~ I ~<KXFiK+j;fstE)I ;B (13)
i<N i<M j

where

A = fst (groupM ; A E)),

B = [E) TM, ~ [) - 1 , group~l].

As before, the Z~E) -1 between adjacent DV3cells can
be eliminated by composing it with E) M. One can
check that a fully-pipelined DV3cell (K = t) has a criti-
cal path delay of NTB + Tx + TF and a latency of N
cycles, but it only has N(N - 1)/2 + 2N + N(N + 1)/2
= N(N + 2) latches. Fewer skewing latches are re-
quired since an XFi cell has only one horizontal input
whilefadd has two horizontal inputs. Hence for N > 3,
it will be more economical to pipeline a DV2cell rather
than a DVOcell.

A similar divider circuit with unidirectional data
flow has been proposed independently by Parhi [12].

6.3. Introducing Transposition

fsth(col R t col R); fst bend

= col(sndh R ~c t fsth R) \ \ snd frev ; fst bend

where frev = tran ; fst recrev.
Next, a similar procedure can be used to transpose

the arrays of pipelined XF i cells and pipelined AF i
cells, provided that a bend and a broadcast wire are
first added so that they become respectively

fsth ~ .<~ N ' (X_F~; fstE))~;fstbend
and

fsth ~ .<~ u ' (AFi; fs tE))~;fs tbend.

These arrays can then be split in half and transposed
as before.

Finally, we also need to be able to transpose the
triangular-shaped arrays of latches introduced by pipe-
lining the column of X F i cells (see equation 13). One
way to achieve this is to use

A 2 n a \ g r ° u p 2 = .[1 [a n+i, a n - i - 1] \ f r e v
t<n

A pipelined DV3cell can be further optimized by trans-
position to eliminate the broadcast wire and the associ-
ated delay of NTs. The resulting design, DV4cell, can
be obtained in three steps. First of all, since shl =
cok 2, we can split it into two halves using the follow-
ing theorem:

COI2nR = (COInR $ COInR)\\snd group21.

The resulting array is then transposed using the column
version of equation 11,

to deduce that

fst /~Q; fsth $ Ri; fst bend
i<2n

= ~ i~<n R~ \\snd(frev; group~l); fst bend

where R i' = fst[Q n+i, Qn-i-1]; sndh R~i-1 $ fsth
R,+i. Substituting into this equation with Q = ~D and
R = XF/; fst E) then completes the major development
steps for DV4cell.

18 Luk

There is a further opportunity for speed improve-
ment: as discussed in the preceding section, equation
12 enables the peripheral transposition to be expressed
as a row of wiring cells which can then be pipelined
if desired.

The amount of pipelining in this circuit can also be
controlled by grouping cells into clusters before pipelin-
ing and transposition. If each cluster contains K cells,
then the array has N(N + 2)/K latches, N/K cycles
latency and T B + Tx + KTF critical path delay. A
DV4cell pipelined by every two adders is shown in
figure 12.

Figure 13 summarizes the relationship between the
divider designs that we discussed, and table 1 compares
their salient features.

6.4. Performance Evaluation

We are developing a suite of computer-based tools to
support the design framework described in this paper.
An overview of these tools is shown in figure 14, and
further details can be found in [3], [4] and [13]. The
design system has been used to implement the divider
designs on a CHS2x4 board which contains several
field-programmable gate arrays known as Configurable
Array Logic (CAL) chips. Table 2 compares the fea-
tures of DVOcell (with horizontal outputs latched),
DVlcell and DV4cell, where N is the number of adders
in each design. Since it is difficult to measure the max-
imum operation speed using our current system, the
critical path delays are estimated using the manufac-
turer's data [14]: 2 nanoseconds for CAL cell routing
delay, and 8 nanoseconds for CAL cell computational
delay. In the table both DVlcell and DV4cell are pipe-
lined by N/2 adders; the corresponding CAL implemen-
tations for N = 4 are shown in figure 15.

One can deduce from table 2 that for large N, both
DVlcell and DV4cell need 50 percent more CAL cells
than DVOcell, and both of them have a latency twice
as much as that of DVOcell. On the other hand, DV lcell
is 1.8 times faster than DVOcell, while DV4cell is 2.2
times faster than DVOcell. For instance, a divider with
an 8-bit divisor (N = 9) can compute 2.6 million divi-
sions per second when implemented as a DVOcell; the
corresponding figures for a DVlcell and a DV4cell are
respectively 4.6 and 5.7 million divisions per second.
Since the latched fulladder used in a DV4cell has a
critical path delay of only 44 nanoseconds, it can be
used with up to three routing cells to form the basic
unit of a fully-pipelined divider circuit operating at 20
million divisions per second.

i i

Fig. 12. Design DV4cell with partial pipelining,

v 11"

DVOcell

p i p e ~ r s e broadcast direction

D V 1 ceil D V 2 ceil

pipel ine

D V3 cell

t r anspose

D V 4 cell

Fig. 13. Relating divider designs.

I ~ performance estimator expression transforme

LaTeX generator

Fig. 14. Overview of design tools.

Table 2. Comparing divider designs in Configurable Array Logic.

Number of
Design CAL ceils Latency Critical Path Delay

DVOcell 8N + 8 1 cycle 40N + 18 ns

DVlcel l 12N + 18 2 cycles 22N + 20 ns

DV4cell 12N + 24 2 cycles 18N + 12 ns

Pipelining and Transposing Heterogeneous Array Designs 19

Fig. 15. CAL implementation

6.5. Other Possibilities

Three remarks are in order. First, the above develop-
ment can also be used for a division circuit with the
divisor supplied externally. Only minor changes need
to be made to the descriptions for capturing the prop-
agation of the divisor from one DVOcell to another
DVOcell and also to AFcell; so for instance, shl and BXF
will become

shl2 = col(fstv t2),

BXF2 = snd bend-~;

col(X2 ,-, (fst shr; fstv fadd)),

X2 = sndv(fork; [r2, fork; [xor, ~'d]).

However, a fully-pipelined column of adder ceils need
N 2 extra skewing latches for the lines carrying the
divisor. This outweighs the use of an N-bit register to
hold the divisor, although it is more flexible as different
divisors can be used in successive clock cycles. More-
over, for a field-programmable gate array implementa-
tion it may be preferable to reconfigure the array to
accommodate different values of divisors, if the divisor
is updated relatively infrequently.

The second remark concerns the efficiency of our
implementation. In addition to the nonrestoring division
array described in this section, two other common
parallel dividers are the carry-lookahead array (which
is also based on the nonrestoring principle) and the

I I

of DV lcell and DV4cell.

restoring division array [11]. The carry-lookahead array
removes the need for pipelining the adders by using
carry-save and carry-lookahead adders. However, the
circuit is more complex and less regular than the simple
rectangular array of DV0, and there is still the problem
of broadcast delay. As for the restoring array, each of
its cells consists of a column of fulladders whose final
carry output controls an adjacent column of multiplex-
ers. The column of adders can be pipelined in the same
way as DVlcell, but changing the direction of broad-
casting the control signal for the multiplexers does not
lead to as much reduction in the number of latches as
in DV2cell above.

Our final remark is about the proposed optimization
scheme. The methods of pipelining and transposition
appear to be applicable in general to circuits involving
broadcasting such as other arithmetic arrays [11] and
semi-systolic arrays [6].

7. Conclusion

We have presented a framework for optimizing array-
based circuits. The key objectives of this framework
are to provide a uniform description of arrays of hetero-
geneous and homogeneous components, to devise proce-
dures for transforming these descriptions, and to explore
the trade-offs involved in these transformations. The
techniques discussed formalize and generalize design
experience; in particular, they allow incorporating the

20 Luk

appropriate degree of pipelining and transposition to
cater for specific applications. The approach is sup-
ported by computer-based tools which enable designs
to be developed and checked rapidly.

Current work is centered on two fronts. We are ex-
tending our transformation framework to cover design
serialization [15] in order to widen the range of solutions
that satisfy given constraints, such as requirements on
speed, size and shape of the circuit. It is also our inten-
tion to interface our methods and tools to other develop-
ment techniques, circuit design aids and cell libraries.

Acknowledgments

I thank Andrew Kay, Keshab Parhi, Richard Stamper
and the referees for their comments. The support of
Rank Xerox (UK) Limited, Scottish Enterprise and
Algotronix Limited is gratefully acknowledged.

References

1. G. Jones and M. Sheeran, "Circuit design in Ruby" in (J.
Staunstrup, ed.), Formal Methods" for VLS1 Design, North-
Holland, 1990, pp. 13-70.

2. W. Luk and G. Jones, "From specification to parametrized archi-
tectures," in (G.J. Milne, ed.), The F~ion of Hardware Design
and Verification, North-Holland, 1988, pp. 267-288.

3. W. Luk, G. Jones and M. Sheeran, "Computer-based tools for
regular array design" in (J.V. McCanny, J. McWhirter, and E.E.
Swartzlander Jr., eds.), Systolic Array Processors, Englewood
Cliffs, NJ: Prentice Hall, 1989, pp. 589-598.

4. W. Luk, 'Analyzing parametrized designs by nonstandard inter-
pretation" in (S.Y. Kung et al., eds.), Proc. International Confer-
ence on Application-Specific Array Processors, IEEE Computer
Society Press, 1990, pp. 133-144.

5. W. Luk and G. Jones, "The derivation of regular synchronous
circuits" in (K. Bromley, S.Y. Kung, and E. Swartzlander, eds.),
Proc. International Conference on Systolic Arrays, IEEE Com-
puter Society Press, 1988, pp. 305-314.

6. W. Luk and G. Brown, "A systolic LRU processor and its top-
down development;' Science of Computer Programming, vol. 15,
1990, pp. 217-233.

7. W. Lnk, "Optimizing designs by transposition," in (G. Jones and
M. Sheeran, eds.), Designing Correct Circuits, BerlirdNew York:
Springer-Verlag, 1991, pp. 332-354.

8. W. Luk, "Specifying and developing regular heterogeneous
designs" in (L. Claesen, ed.), Formal VLSI Specification and
Synthesis, North-Holland, 1990, pp. 391-409.

9. G. Jones and M. Sheeran, "Timeless truths about sequential cir-
cuits" in (S.K. Tewksbury, B.W. Dickinson, and S.C. Schwartz,
eds.), Concurrent Computations: Algorithms, Architectures and
Technology, Plenum Press, 1988, pp. 245-259.

10. C.E. Leiserson and J.B. Saxe, "Retiming synchronous circuitry"
Algorithmica, vol. 6, 1991, pp. 5-35.

11. K. Hwang, Computer Arithmetic, New York: Wiley, 1979.
12. K.K. Parhi, 'A systematic approach for design of digit-serial

signal processing architectures," IEEE Trans. on Circuits and
Systems, vol. 38, 1991, pp. 358-375.

13. W. Luk and I. Page, "Parametrizing designs for FPGAs" in (W.
Moore and W. Luk, eds.), FPGAs, Abingdon, England. Abing-
don EE&CS Books, 1991, pp. 284-295.

14. Algotronix Limited, CAL 1024 Datasheet 1990.
15. W. Luk, "Systematic serialization of array-based architectures"

to appear in Integration, Special Issue on Algorithms and VLSI
Architectures.

Wayne Luk received his M.A., M.Sc. and D.Phil. degrees in engi-
neering and computing science from Oxford University. He is Rank
Xerox Fellow at Oriel College, Oxford and is also a member of the
Faculty of Mathematical Sciences of Oxfbrd University. His research
interests include algorithms and architectures for processor arrays,
and techniques and tools for building reliable high-performance
systems.

