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Stream Processing Dual-Track CGRA
for Object Inference
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Abstract— With the development of machine learning technol-
ogy, the exploration of energy-efficient and flexible architectures
for object inference algorithms is of growing interest in recent
years. However, not many publications concentrate on a coarse-
grained reconfigurable architecture (CGRA) for object inference
algorithms. This paper provides a stream processing, dual-track
programming CGRA-based approach to address the inherent
computing characteristics of algorithms in object inference.
Based on the proposed approach, an architecture called stream
dual-track CGRA (SDT-CGRA) is presented as an implemen-
tation prototype. To evaluate the performance, the SDT-CGRA
is realized in Verilog HDL and implemented in Semiconductor
Manufacturing International Corporation 55-nm process, with
the footprint of 5.19 mm2 at 450 MHz. Seven object infer-
ence algorithms, including convolutional neural network (CNN),
k-means, principal component analysis (PCA), spatial pyramid
matching (SPM), linear support vector machine (SVM), Softmax,
and Joint Bayesian, are selected as benchmarks. The experi-
mental results show that the SDT-CGRA can gain on average
343.8 times and 17.7 times higher energy efficiency for Softmax,
PCA, and CNN, 621.0 times and 1261.8 times higher energy
efficiency for k-means, SPM, linear-SVM, and Joint-Bayesian
algorithms when compared with the Intel Xeon E5-2637 CPU and
the Nvidia TitanX graphics processing unit. When compared with
the state-of-the-art solutions of AlexNet on field-programmable
gate array and CGRA, the proposed SDT-CGRA can achieve a
1.78 times increase in energy efficiency and a 13 times speedup,
respectively.

Index Terms— Acceleration, coarse-grained reconfigurable
architecture (CGRA), deep learning, domain-specific computing,
object inference.

I. INTRODUCTION

W ITH the breakthrough of deep learning technology
in speech applications [2], computer vision [3], and

other tasks in artificial intelligence [4], the architecture explo-
ration of related algorithms is a hot research topic in terms
of energy efficiency and flexibility. For example, Google’s
tensor processing unit (TPU) is built specifically for machine
learning acceleration and tailored for the TensorFlow software
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Fig. 1. General flow of object inference.

framework [5], [6]. It is reported that TPU can achieve an
order of magnitude energy efficiency enhancement compared
with the traditional approaches [5], [6]. In academia, deep
learning accelerator, such as DaDianNao [7], ShiDianNao [8],
Eyeriss [9], Cambricon [10], and so on, has shown impressive
improvements in energy efficiency compared with general-
purpose processors and graphics processing units (GPUs).
However, application-specific accelerators (e.g., DaDianNao,
ShiDianNao, and Eyeriss) are often tailored to specific algo-
rithms [e.g., convolutional neural network (CNN)]. The hard-
wired logic prohibits them to migrate from one algorithm
to another. As a result, they may not be proper approaches
to accelerate algorithms in an object inference flow, since
a general object inference flow not only contains CNN but
also includes other algorithms, as shown in Fig. 1. As for
the application-specific instruction processors (ASIPs), e.g.,
Cambricon, their energy efficiency is restricted due to the
logic and memory overhead to support flexibility. On the
contrary, coarse-grained reconfigurable architecture (CGRA),
a promising paradigm for domain-specific computing, has been
shown that it can outperform ASIPs in energy efficiency and
has more flexibility than application-specific accelerators [11].
However, few CGRA architectures concentrate on the domain
of object inference in machine learning.

The increasing demand to process data streams more effi-
ciently for data-centric applications for an embedded system is
another motivation to design an appropriate CGRA. As shown
in Section III, the computing processes in an object inference
flow have three inherent characteristics. The first is stream
processing, which means that an algorithm can be divided
into multiple computing kernels while each kernel computes
in the stream manner. The second is fixed kernel-level opera-
tions (OPs), which means that the computing patterns of the
kernels remain unchanged in a long execution period (even up
to thousands of execution cycles), such as the image filtering
and the gradient computation of image in the edge detection.
The one is large amount of memory storage requirements for
input data, intermediate data, and output results.
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Fig. 2. (a) Loading OPs in every execution cycle. (b) Static configuration.

To design a CGRA that caters to these characteristics,
we first use a cluster of processing elements [e.g., arithmetic
logical unit (ALU) and multiplier] as an elementary reconfig-
urable cell (RC) for kernel-level OPs. This design choice is
made, because a complex cell has more possibilities to map
a complex kernel in a single cell rather than across multiple
cells. As a result, the cost in data transmission among multiple
cells for complex kernel OPs can be reduced, and hence,
the computation can be speeded up. This approach is similar
to expression-grained reconfigurable array (EGRA) [12] and
FPCA [13], which have proved that the clustered RC array can
outperform traditional CGRAs that can only map one com-
puting OP in each cell. Second, stream processing is adopted
as programming paradigm. Due to the characteristic of the
fixed kernel-level OPs, we propose a dual-track programming
model based on the stream processing. The key idea is to adopt
static configuration to construct the functionalities of RCs
for kernel-level OPs and to apply dynamic configuration to
manage data streams transmission. This approach is similar to
the differentiation between the configuration and the I/O data
transfers in Morphsys [14]. However, the major difference is
that our model applies static configuration to fix the RCs’
functionalities and local interconnections in a long execution
period, while Morphsys loads the OPs from context memory
for their RCs in every execution cycle, as shown in Fig. 2(a).
According to the characteristic of the fixed kernel-level OPs
in object inference applications, the group of OPs for a
specific kernel is repeatedly executed. In this case, the repeated
OPs can be simplified as static configuration in our approach
[as shown in Fig. 2(b)], which can reduce the bandwidth to
load OPs and decrease the overall power consumption. Third,
with the granularity of input data increasing from word level
to stream level, the intermediate storage (e.g., register file in
traditional reconfigurable block) of each RC should also be
increased from word-level granularity to stream-level granular-
ity. As a result, stream memory is provided for each RC. This
approach can also meet with the requirements of increasing
intermediate storage in object inference flow. Fig. 3 shows this
migration from word-level granularity (register file) to stream-
level granularity [stream buffer unit (SBU)].

To summarize, our contributions in this paper are as follows.
1) A novel CGRA-based approach to accelerate algorithms

in a general object inference flow is provided. This
approach has three aspects. First, it adopts stream
processing, such that each kernel-level RC computes in
stream manner. Second, it uses both static configuration
and dynamic configuration for stream processing, such
that static configuration constructs kernel functionalities,
while dynamic configuration is used for scheduling of

Fig. 3. Migration from (a) word-level granularity to (b) stream-level
granularity.

data streams. Third, stream memory is used for buffering
the input, output, and intermediate streams.

2) A CGRA implementation prototype, called stream dual-
track CGRA (SDT-CGRA), is provided to realize the
above-mentioned approach. Novelties include the com-
posable and decomposable RC architectures that are
interconnected in a reverse-S topology and stream-driven
control mechanism to simplify control behavior for the
cluster-based RC architecture, as shown in Section IV-D.

The rest of this paper is organized as follows. Section II
covers the previous work in this domain. Section III presents
the design approach based on the analysis of algorithms on
the object inference flow. Section IV introduces an archi-
tecture called SDT-CGRA to implement the proposed design
approach. Section V includes several examples to demonstrate
the mapping strategies. Section VI contains the experimental
results. Finally, Section VII discusses future work and con-
cludes this paper.

II. RELATED WORK

A. Architecture Perspective

In the past decades, several CGRA frameworks are pro-
posed. Among them, ADRES [15] is one of the widely studied
templates based on data flow computing. The tightly coupled
characteristic with a host processor allows multiple customized
instructions to be efficiently executed on ADRES. As a result,
instruction-level parallelism can be exploited to accelerate
algorithms. Another CGRA template is Morphsys [14], which
is organized by 2-D mesh homogeneous reconfigurable cells in
single instruction multiple data fashion. It exploits data-level
parallelism to accelerate applications.

These two approaches exploit parallelism from different
perspectives to improve the computing performance for the
applications in a specific domain. However, for the algorithms
in an object inference flow, the characteristic of fixed kernel-
level OP makes ADRES and Morphsys no longer be energy-
efficient. For example, both ADRES and Morphsys have to
load context instructions in every execution cycle, which is not
necessary according to the characteristic of the fixed kernel-
level OPs in our applications.

On the contrary, DySER [16], a CGRA architecture
that explores functionality and parallelism specialized in a
single array has shown that specializing the common data
paths in their proposed architecture with certain execution
periods for the programs can improve the energy efficiency.
We further extend this specialized approach to the object
inference domain, where the kernel-level OPs are suitable for
specialization.
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Kernel-level OPs in stream processing require kernel-based
processing units in order to compute efficiently. EGRA [12],
an expression-level granularity CGRA framework, has showed
that the expression-level or kernel-level CGRA fabric can
outperform traditional CGRA approaches. In this paper, recon-
figurable block in kernel-level granularity is used as the
elementary reconfigurable cell (RC). The major difference
is that we derive the RC architecture and its computing
manner according to the computing characteristics of our
target applications.

BilRC [17] and elastic CGRA [18] can be categorized
into another CGRA template. Both of them are similar to
commercial (field-programmable gate array) FPGA in archi-
tecture arrangement and configuration manner. For BilRC,
applications’ dataflows are mapped statically and scheduled
dynamically by execution triggering, while elastic CGRA
depends on elastic interconnection [19] to manage dataflows.
In our approach, elastic interconnection is adopted for data
transmission among RCs and global memory, interconnections
in RC units.

An earlier version of this paper was presented in [1].
This paper further optimizes the architecture of RC and
SDT-CGRA. More specifically, the number of ALUs, first-
input, first-ouputs (FIFOs), and static configuration bits are
reduced by 20%, 20%, and 38.5%, respectively. Details will
be discussed in Section IV. More complementary experiments
are provided in Section VI.

B. Application Perspective
Most of the CGRA architectures proposed in the past mainly

concentrate on the digital signal processing. For example,
ADRES, BilRC, and elastic CGRA mainly target at the
acceleration of fast Fourier transform, discrete cosine trans-
formation/inverse discrete cosine transformation, and so on.
In [20], a CGRA architecture is proposed to accelerate video
decoding in multiple standards. In [13], an architecture called
FPCA is designed for medical image processing.

As for machine learning, MAPLE [21] introduces an
FPGA-based reconfigurable accelerator for classification. They
abstract all selected algorithms as matrix multiplications and
design a matrix multiplication engine for all of them. Actually,
this approach limits the exploitation of locality properties for
some machine learning algorithms, e.g., CNN. In [22], a CNN
acceleration approach based on CGRA (called EMAX) is
proposed. However, limited experiments are done to evaluate
the performance of EMAX on CNN. In [23], a multithread
CGRA (called M-CGRA) is proposed to accelerate CNN
only. However, the object inference flow not only contains
CNN but also includes other traditional algorithms. If one
wants to design an architecture for CNN acceleration only,
the algorithm-specific approaches, such as Eyeriss [9], deep
neural network processing unit [24], deep neural architec-
ture [25], and hybrid-neural-network processor [26], are more
suitable and energy efficient.

III. COMPUTING CHARACTERISTICS ANALYSIS

A. Algorithms Characteristics

Object inference is one of the most important topics in
computer vision. In the competitions of PASCAL VOC [27]

TABLE I

SELECTED REPRESENTATIVE ALGORITHMS

TABLE II

SUMMARY OF MAJOR COMPUTATION PATTERNS FROM REPRESENTATIVE
ALGORITHMS IN GENERAL OBJECT INFERENCE FLOW

and ImageNet [28], a general processing flow of the proposed
algorithms in the past several years can be abstracted into three
key stages: feature extraction, feature selection, and inference,
as shown in Fig. 1. In this paper, several representative
algorithms covering these three stages are selected as case
studies. Among them, CNN is used for feature extraction;
k-means, spatial pyramid matching (SPM) [29], and principal
component analysis (PCA) are adopted for feature selection;
the linear support vector machine (SVM), Softmax [3] and
Joint Bayesian [30] are used for inference. Table I summarizes
these algorithms, while their computing patterns are analyzed
and shown in Table II.

Generally, the detection of objects requires to process
images or feature maps by scanning OPs within specific
processing scopes in multiple scales. Each scanning OP can be
regarded as a kernel function executing over a limited scope
of the input image/feature map and then shifting to the next
scope in a specific order, as shown in Fig. 4(a). As for mul-
tiscale detection, general methods include classifiers running
on the pyramid of images/feature maps (e.g., deformable part
model [31]), the pyramid of filters running on the feature
maps (e.g., a speedup robust feature [32]), and the pyramid of
referenced bounding boxes on the final regression functions
(e.g., faster regions with CNN feature [33]). For simplicity,
multiscale detection can be regarded as multilayer scanning
OP, as shown in Fig. 4(b).

Each process in Fig. 4 has the following inherent properties.
The functionality of the computing kernel remains unchanged
for the same input image/feature map. The only difference is
the input data for the computing kernel. As a result, any spe-
cific kernel will execute repeatedly over all the correspondent
kernel scopes. In this process, the computing patterns of the
kernels remain unchanged for a long execution periods, which
correspond to the fixed kernel-level OPs. In this case, the input
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Fig. 4. Computation procedure of a kernel over a scope. (a) Scanning
behavior example. (b) Illustration of multiscale scanning.

data from all the kernel scopes can be organized as bunches
of data streams, while the execution of a kernel is in stream
processing manner. Besides, the multiscale/multilayer OPs
have pyramid input images/feature maps, or pyramid output of
intermediate results, which means that the storage requirement
(includes intermediate storage) is much critical than CGRAs
for other applications, e.g., digital signal processing. In this
case, another computing characteristic of algorithms in object
inference is the requirement of sufficient storage. To summa-
rize, the computing characteristics of algorithms in the object
inference flow are as follows:

1) stream processing;
2) fixed kernel-level OPs;
3) ample storage.

In our selected representative algorithms, kernel-level OPs
in stream processing account for most of computations.
In CNN, take AlexNet [3] for example, 92% of the computa-
tion are convolution and pooling. The rest, which includes
the fully connected layer (contains matrix multiplication
pattern in Table II) and the softmax layer (contains
matrix multiplication and interpolation pattern in Table II), can
also be organized as kernel-level OPs in stream processing
manner. More importantly, the computing pattern of a specific
layer, e.g., the first convolutional layer, can remain unchanged
for nearly one million execution cycles. In this case, if we
consider the power consumption in loading each OP for an
ALU in every execution cycle in Fig. 2(a), the power saving
of our static configuration approach is substantial.

B. Guidelines for Architecture Design

As discussed in Section III-A, the computing characteristics
can enable us to design a CGRA in the following approaches.

1) Design kernel-level granularity RCs in stream manner.
2) Increase the size of intermediate storage.
3) Use static configuration for RCs to construct their func-

tionalities and dynamic configuration for data streams
scheduling.

The first two steps explain how to design a CGRA architecture
for our target applications, while the last one, which is called
the dual-track programming model in this paper, explains how
the architecture works. We will discuss these two parts in detail
in the following.

1) How to Design a CGRA Architecture for Target
Applications: Convolution and matrix multiplication are
two of the most important computing patterns in algorithms
of object inference flow. These two computing patterns
involve many multiplication–accumulation OPs. As a result,
the elementatry RC should be based on the multiplier-ALU

Fig. 5. Information of convolution kernels in AlexNet, VGG-16, and
GoogleNet. (a) Number of convolution kernels with different sizes in three
CNN architectures. (b) Computing workload ratios of different sizes of
convolution kernels in all convolutional layers for specific CNN architecture.

(MUL-ALU for short) units. An approach, such as placing
multipliers and ALUs in different parts, e.g., BilRC [17],
would increase the routing resource requirements and even
lead to the placement or routing conflict. As a result,
the tightly coupled multiplier and ALU for our applications
is a proper approach.

On the other hand, extra OPs are required to support
further additions, accumulations, or logic OPs in convolution,
matrix multiplication, distance calculation, and so on. If single
MUL-ALU unit is used as the elementary RC, the extra addi-
tions, accumulations, or logic OPs will lead to low utilization
ratio of multipliers in MUL-ALU units. As a result, combining
MUL-ALU units and extra ALUs as the elementary RC is
necessary.

We studied the problem of determining the number of
MUL-ALU units and extra ALUs in each RC by collecting
run time statistics over several representative CNN algorithms,
since CNN is the most important part in terms of computation
and inference accuracy. Fig. 5(a) shows the statistics of differ-
ent sizes of convolution kernels in AlexNet, VGG-16 [34], and
GoogleNet [35]. It is clear that the number of the convolution
of 3×3 (denoted as conv_3×3) ranks number one in AlexNet
and VGG-16, while GoogleNet has the most number of the
1 × 1 convolution kernels (denoted as conv_1 × 1). However,
from the perspective of computation, the 3 × 3 convolution
kernel still ranks number one in three CNN architectures
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Fig. 6. (a) RC array. (b) RC array reorganization.

[see Fig. 5(b)]. In VGG-16, the computation ratio of conv_3×3
in all the convolutional layers is even up to 100%. As a result,
efficient support for 3 × 3 convolution kernel can be regarded
as the foundation to design an RC unit. In this case, three
MUL-ALU units and an extra ALU are combined together
as the elementary RC in our CGRA approach. As for other
sizes of convolution kernel and other computation patterns,
flexible interconnections inside and outside RCs are provided
to support them. Details will be discussed in Section IV.

The whole CGRA architecture can be regarded as a
2-D array of RC units, as shown in Fig. 6(a). In order to
introduce the static and dynamic configurations clearly, we can
reorganize the architecture in Fig. 6(a) as Fig. 6(b), where
all the SBUs are lined up as one column. In our dual-
track programming model, the SBUs are controlled by the
dynamic context in a very long instruction word (VLIW)
format, while the RC array is configured statically according
to the computing kernels. The CGRA architecture based on
the stream processing, dual-track programming model is also
called SDT-CGRA in this paper.

2) How the Architecture Works: The RC array in Fig. 6(b)
is guided by the dual-track programming model, whose con-
figuration flow is shown in Fig. 7(a). For each computing
kernel in a kernel-level iteration, the functionality of given
computing kernel is initially constructed by static configura-
tion. Then, the data stream manager is configured according
to the scheduling requirements, such as loading data from the
off-chip memory to the SBU or from the SBU to the RC
array and storing data from the RC array to the SBU or from
the SBU to the off-chip memory. After the configurations,
the address generator in the SBU starts to generate addresses
to issue load or store OPs [indicated by the innermost loop
in Fig. 7(a)], while the RC array performs as a consumer as
well as a producer in this process. It is worth mentioning that
the dynamic VLIW context only supports load and store OPs.

To illustrate the proposed model, a convolution example,
which is widely used in image processing and machine
learning domain, is presented. Fig. 7(b) shows the process
of static mapping and dynamic scheduling of the data streams
for the convolution OP. For simplicity, we assume that the
input image Imap contains two rows of data, denoted as L1
and L2. The size of the convolution kernel is 1 × 3. Based on
the dual-track model, the convolution OP is statically mapped
into one RC, e.g., RC1. The corresponding scheduling of the
data streams is supposed to be compiled into two VLIWs:
Instruction 1 and Instruction 2. Each of them can issue two

Fig. 7. Programming model of the SDT-CGRA and an example of
convolution OP based on the proposed dual-track model. (a) Programming
model. (b) Example for the model.

concurrent OPs, which are used to load the input data and
store back the results. For example, in Instruction 1, L1 is
read out from the SBU and then sent to RC1. At the same
time, the output stream result R1 is stored back to the SBU
as soon as it is available. Instruction 2 performs the same
OPs except that the input data stream and the output stream
are different. In this method, RC1 is configured to be a
stream processing unit for efficient convolution computation
over the input image. To demonstrate the benefits of the dual-
track programming model for SDT-CGRA, we assume that
two configuration methods in Fig. 2 are applied in RC1,
respectively. It can be supposed that both methods need to load
the same length of configuration contexts (denoted by LCC) to
calculate one convolution result, e.g., R11 in Fig. 7(b). As for
the approach that requires to load OPs in every execution
cycle, the total length of configuration contexts loaded to ALU
is 10 × LCC (the final result R in Fig. 7(b) contains ten
elements). As for our static configuration approach, the total
length of configuration contexts is still to be LCC , since we
only need to configure the RC1 in one time. From this point of
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Fig. 8. Typical acceleration system consists of an SDT-CGRA architecture,
an off-chip memory, and a host processor.

view, the static configuration is better. If we consider the power
consumption of loading configuration contexts, the advantages
of our approach are more evident.

IV. SDT-CGRA ARCHITECTURE: A PROTOTYPE

According to the design strategies introduced in Section III,
we present a prototype to implement SDT-CGRA. Each part
of SDT-CGRA is introduced as follows.

A. Overview of SDT-CGRA

The top-level architecture of the proposed SDT-CGRA
and a typical system is shown in Fig. 8. The SDT-CGRA
unit can be mainly organized into a global memory section
and a computing array section according to the difference
of configuration manner. The global memory section is
used to cache data streams and issue load or store OPs
through dynamic configuration. In contrast, the computing
array section, which works in static configuration manner,
consists of several columns of RC and one column of special
RC [shown as interpolation RC (IRC) and power RC (PRC)
in Fig. 8]. Special RCs are used to support some special
OPs, such as power function (corresponding to PRC) and
transcendental function that can be approximated by inter-
polation (corresponding to IRC). Since such OPs account
for small computation generally, only several special RC
units are provided. Details of these units are introduced
in Section IV-C.

In addition to the memory blocks and the computing units,
the interconnections among them play a key role in data
transmission and selection of mapping strategies. For example,
the interconnections marked as blue arrows in Fig. 8 are
used to connect the RC units in reverse-S topology, which is
designed to provide the composition and decomposition capa-
bility among adjacent RCs in the horizontal direction. As a
result, the larger computing kernel that exceeds the computing
volume of one RC can be realized by several RCs and helps
to reduce the idle processing elements. Details can be found
in Section IV-D. The green arrows, on the other hand, can

Fig. 9. Microarchitecture of RC from the data path perspective.

Fig. 10. Three different work styles of MUL-ALU units. zn means to delay
n clock cycles of the data. (a) Independent manner. (b) Broadcast manner.
(c) Systolic manner.

enable the results from one RC to pass directly to the next RC
in the vertical direction. This type of direct data transmission
method is inspired by the fast data relay CGRA [36] to reduce
the global memory communication congestion. The local data
bus is designed for data transmission between SBUs and RCs.
With the help of a scalable crossbar switch [37], each SBU
can be accessed by any RC, IRC, and PRC based on the local
data transmission channels.

There are three interfaces in total for the proposed
SDT-CGRA. The external direct memory access interface
provides a direct access to the off-chip memory for the SBUs.
The remaining two interfaces are used for configuration: one
for static configuration and the other for loading dynamic
context instructions.

B. RC Architecture

1) Detailed Architecture: The guidelines in Section III-B
show that the RC architecture can be designed with three
MUL-ALU units and an extra ALU for our target applications.
Fig. 9 shows a detailed RC architecture in SDT-CGRA. Three
MUL-ALU units can be configured to execute multiply–
accumulate OPs, distance calculations, or other computing
patterns in independent manner, broadcast manner, or systolic



1104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 6, JUNE 2018

manner, as shown in Fig. 10. An extra ALU is used to perform
further addition, accumulation, or other logic OPs to reduce the
bandwidth of output interface. This idea follows [38], where
it is called the “map-reduce” structure. In our architecture,
three MUL-ALU units belong to the “map” part, while the
remaining ALU belongs to the “reduce” part (see Fig. 9).
The “map” part can be used to execute concurrent OPs,
while the “reduce” part is used to collect the results from
the “map” part. The “map” part is composable and decom-
posable, which will be introduced in Section IV-D. When
compared with the RC architecture in our previous work [1],
the numbers of FIFOs and ALUs are both reduced from 5 to 4
(20% reduction) without any impact on the mapping of com-
puting kernels. Besides, the number of multiplexers, which
provide internal interconnections to efficiently support other
computing patterns, is reduced from 37 to 22 (40.5% reduc-
tion). In addition, the static configuration bits for multiplexers
are reduced by 38.5%. The intention to design such tightly
coupled RC unit with three MUL-ALU units is to increase
the OP intensity per input data, which can help to improve
the computation performance according to the roofline
model [39].

To implement stream processing, the input and output
stream interfaces in Fig. 3 are realized with two types of
local memories [FIFOs and static random access memories
(SRAMs)]. FIFOs are used to maintain the working status
of Ctr_Unit by the “full” and “empty” signals. The SRAMs
are adopted to cache the data that are used frequently, e.g.,
the weights of convolution kernels. In many cases, the SRAM
can also be used to perform as a double buffer to overlap the
time cost in data transmission from SBU to RC by the time
consumed in computing.

2) Stream-Driven Control Mechanism: The control mech-
anism of RC is determined by two characteristics involving
stream processing and static configuration. To accommodate
stream processing, the FIFOs in input and output stream
interfaces and the interconnection channels based on elastic
interconnection [19] (see Section IV-D) are provided to issue
“processing flag.” That is to say, if the input FIFOs are not
empty and the output FIFO is not full, or the input interconnec-
tion channels have valid data and the output interconnection
channels are writable, the Ctr_Unit in Fig. 9 will control
the RC to process the input data. Otherwise, the Ctr_Unit
will stop the RC from processing. This stream-driven control
mechanism of Ctr_Unit is realized by finite-state machines
and counters, which is configured in static configuration stage
and designed to generate control signals, such as read enable
signals for input FIFOs, read addresses for input SRAMs,
write enable signal for the output FIFO, and clear signals for
ALUs when they are configured to be accumulators, ready
and valid signals in interconnection channels for adjacent RCs,
and so on.

C. Special RC Design

Two types of special RCs, PRC and IRC, are developed
to support the power functions and piecewise functions,
respectively. Consider the first PRC, designed to calculate
x1/2, x−1/2, and x−1 based on the fast inverse square root

Algorithm 1 Calculate y = x p [40] in C Language Syntax

Fig. 11. Elastic control mechanism [19].

algorithm [40] shown in Algorithm 1. Many multiplications in
Algorithm 1 can be simplified to be shifting or addition OPs,
while pow(x, (p −1)/p) can be calculated by multiplications
when p sets to be 1/2, −1/2, or −1. Due to the requirement of
the floating-point representation of the input value x according
to the fast inverse square root algorithm, the input x is first
converted from the fixed-point format to the floating-point
format. In line 6 of the code in Algorithm 1, all the values
required to calculate y will be converted back to the fixed-
point value to calculate the final result in order to reduce the
hardware complexity.

Consider next IRC, designed to calculate the interpolation
for transcendental functions that can be approximated by
piecewise functions, as shown by the following expression:

f (x) = ai ×x +bi, x ∈ [xi , xi+1), i = 0, 1, . . . , N − 1.

(1)

Specifically, the input data x are compared with the boundary
values of each interval from x0 to xN−1 in parallel to generate
an address for lookup tables. Then, the coefficients of ai and bi

from lookup tables are used to calculate the interpolation
result f (x). It is worth mentioning that both PRC and IRC
are independent of RCs. As a result, the data transmissions
between them are through SBUs and local data buses.

D. Interconnections

The interconnections of SDT-CGRA are organized into two
types. The first is the interconnections between RCs, while
the second is the crossbar between SBUs and the RC array.
The main strategy for these interconnections is the elastic
data transmission mechanism (see Fig. 11), which can be
used to simplify the control procedure by converting dynamic
scheduling to dataflow control [19]. The “stop” and “valid”
signals determine the handshaking process and maintain the
reliable data transmission between different nodes.

1) Interconnections Among RCs: A simple example is used
to introduce the functionality of the reverse-S interconnections
among RCs. Assuming that five MUL-ALUs are required to
implement an expression E, three MUL-ALUs in the first
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Fig. 12. (a) Illustration of the RC decomposition and combination in different
rows. (b) Illustration of elastic interconnection to support RC decomposition
and combination, some ALUs are configured to be accumulators (ACC).

Fig. 13. (a) Crossbar switch. (b) Illustration of the dynamic configuration
and execution relationship.

RC and two MUL-ALUs in the second RC can be combined
together to map E. The unused resources of the second RC can
be further combined with other RCs. Fig. 12(a) shows such an
approach, where five RCs in two adjacent rows are configured
to calculate three such expressions in parallel.

Fig. 12(b) shows the details of the decomposition and
combination process. The elastic interconnections are used to
transfer the input data and the results that are required by
the next RC. Although the second RC is split into two parts,
its control behavior is still independent of other RCs as a
result of elastic interconnections. That is to say, the working
status of the second RC just depends on the “valid” and “stop”
signals of the elastic interconnections as well as the “full” and
“empty” signals of the FIFOs in the input and output interfaces.
No other control signals from other RCs are required.

2) Scalable Crossbar Switch: The scalable crossbar switch
in SDT-CGRA performs as a bridge to interconnect the SBUs
and the RC array. It provides the capability for all the RCs
to access each SBU. To accommodate the characteristics
of stream processing and dynamic data stream scheduling,
the crossbar switch is controlled dynamically by each select
signal along with data stream in each input channel, as indi-
cated by “ctr” in Fig. 13(a).

E. SBU Architecture

As indicated in Fig. 3, each SBU contains a memory block
and an address generator that can provide read and write
addresses simultaneously. The OPs of the address generator
in each SBU, such as read/write from/to the RC array or the
off-chip memory, are controlled by dynamic configuration
contexts. To demonstrate the control flow of the data streams,
suppose that the kth SBU issues several write OPs to the jth
RC in the ith row [denoted as RCij in Fig. 13(a)]. In the
first VLIW cycle, the kth SBU and the control signals corre-
sponding to the output channel in the crossbar are configured.

Fig. 14. (a) Example of mapping 5 × 5 convolution kernel into three RCs,
which includes two working phase. Each phase is correspondent to a dynamic
configuration instruction. (b) The computation process of phase p(p = 0, 1).

After the end of configuration, the address generator in the kth
SBU starts to generate addresses to read data from the memory
block for RCij . At the same time, the next VLIW instruction
is fetched and waits for the finish of the current instruction,
as shown in Fig. 13(b). This double-buffer technique adopted
in the dynamic configuration process can help to reduce the
configuration overhead.

V. ALGORITHM MAPPING EXAMPLES

In machine learning, convolution OP and large-scale matrix
multiplication are two of the most common computing pat-
terns. For example, the convolutional layers and the fully
connected layers account for nearly 92% and 8% computation
workloads, respectively, in AlexNet. In this section, several
strategies are demonstrated to map computing kernels to
the proposed SDT-CGRA based on the convolution OP and
the matrix multiplication. It should be mentioned that these
strategies are only part of the computing methods in the
considered algorithms; other methods can also be mapped
on SDT-CGRA.

A. Mapping Strategies of the Convolution Layers

One of the strategies to map convolution OPs in the convo-
lutional layers can support various sizes of convolution kernels
with arbitrary strides. Without loss of generality, suppose that
the mapped kernel is 5 × 5, the stride is 2 × 2, and the
width of the 2-D input feature map is N. The number of
MUL-ALUs that are required to map such a convolution kernel
is determined by �5/2�×�5/2�. There are two working phases
(depend on the stride of the kernel) for data scheduling, where
each phase corresponds to one dynamic VLIW configura-
tion instruction. Fig. 14 shows the mapping and computing
strategies. The convolution kernel is mapped into three RCs
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with two working phases, as shown in Fig. 14(a). Before
the computation begins, the weights of the convolution kernel
are loaded into three SRAM blocks in each RC. To simplify
the control procedure, the size of the convolution kernel is
extended to be 6×6 by padding 0s at the right and bottom sides
of the kernel. In this case, the weights in the first two rows
of the extended convolution kernel, (w0,0, w0,1, . . . , w0,4, 0)
and (w1,0, w1,1, . . . , w1,4, 0), are loaded into all the SRAM
blocks in the first RC. The weights of the third and the fourth
rows are loaded into the second RC, while the last two rows
are loaded into the last RC. After the weights are initialized,
the input data are read from the source SBU in the row order
and broadcasted to all the mapped RCs.

As for the even rows (row number starts from 0) in the
input feature map, three RCs work in #Phase 0. For the odd
rows, the mapped RCs work in #Phase 1. The computation
process of both phases is shown in Fig. 14(b), where LIn

i,p
and LOut

i−1+p,p represent the input and output of intermediate
results buffered in the ith SBU at phase p, i = 0, 1, and 2;
p = 0 and 1; and i − 1 + p = −1 means LOut

i−1+p,p = 0.
For example, the first row of the input data is loaded into
the zeroth RC to convolve with the first row of the weights.
The corresponding results, denoted as LIn

0,0, are buffered in the
zeroth SBU. After the end of #Phase 0, the zeroth RC switches
to work in #Phase 1 to compute the convolution of the second
row of the input data and the second row of the weights. At the
same time, the results from #Phase 0 (denoted as LIn

0,0 earlier)
are read from the zeroth SBU (denoted as LOut

0,1 ) and sent to
the zeroth RC to add up with the current convolution results
to generate LIn

0,1. This process is repeated until all the data of
the input feature map are sent to the RCs. We can see that the
input data are fully reused and the convolutions are computed
in parallel.

Generally speaking, suppose that the size of convolution
kernel is kx × ky with the stride of sx × sy , then �kx/sx� ×
�ky/sy� MUL-ALUs are needed according to this mapping
strategy. The decomposition and combination characteristics
of RCs introduced in Section IV-D provide the capability to
map larger convolution kernels flexibly and efficiently.

B. Mapping Strategy for the Fully Connected Layers

Matrix multiplication is the major computing pattern in each
fully connective layer. For example, the OPs in the first fully
connected layer of AlexNet can be expressed as

O1×4096 = F1×9216 × ω9216×4096. (2)

If the input feature F from the previous layer is directly
used to compute the output result O, the system suffers from
frequent loading of the weight ω from the SBU to SRAM
blocks in RCs. In this case, the overheads of transmission of
the weights will lead to the decline of overall performances.
One idea is to reuse the weights as much as possible. A direct
method is to adopt a “batch” strategy, which means that
a certain number of input features, e.g., 100, are batched
together to construct a larger matrix, such as F100×9216.
In this way, the weights can be reused 100 times so that
the time cost to load new weights into the SRAM blocks

Fig. 15. Mapping strategy of large-scale matrix multiplication.

can be hidden by the computing time. Due to the capacity
limitation of each SRAM block, the weight matrix has to
be divided into several smaller submatrices so that each one
can be loaded into one SRAM block. In order to adopt the
double-buffer strategy, the dimension of each submatrix should
not exceed half of the size of an SRAM block, e.g., 128.
As a result, the first dimension of the weight matrix can be
divided into 72 parts (72 × 128 = 9216). Similarly, the input
feature matrix F100×9216 is divided into 100 × 72 blocks.
Each block is denoted as Fi, j

1×128, where i and j are the
block indices. Suppose there are 25 RCs in SDT-CGRA. The
number of SRAM blocks in all RCs is 75. The size of the sec-
ond dimension of the weight matrix is not divisible by 75
(4096 = 54 × 75 + 46). As a result, the weight matrix is
divided unequally into two types. One is t1: ωm,n

128×75 and the
other is t2 : ωm,n

128×46, where m and n are the indices. After the
partition, (2) can be expressed as

O100×4096

=

⎡
⎢⎢⎢⎣

F0,0 · · · F0,71

F1,0 · · · F1,71

...
...

...

F99,0 · · · F99,71

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎢⎢⎣

ω0,0
t1 · · · ω0,53

t1 ω0,54
t2

ω1,0
t1 · · · ω1,53

t1 ω1,54
t2

...
. . .

...
...

ω71,0
t1 · · · ω71,53

t1 ω71,54
t2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(3)

To illustrate the computing process of (3) on the
SDT-CGRA, we take the multiplication process of F100×9216
with ω0,0

t1 as an example. The computing process mapped
into the SDT-CGRA is shown in Fig. 15. First, 75 columns
of ω0,0

t1 are loaded into 75 SRAMs in the RC array. Then,
the submatrices F0,0, F1,0, …, F99,0 in the first column
of F100×9216 are broadcast to all the RCs one by one for
processing with multiplication and accumulation. The results
are sent to the SBUs and then added up with the products
of ω1,0

t1 and the second column of F100×9216. This process is
repeated until the final matrix result is computed.

VI. EXPERIMENTAL RESULTS

A. Evaluation Setup

In order to evaluate the proposed architecture, seven algo-
rithms shown in Table I (see Section III) are selected as
benchmarks. The typical implementations and problem sizes
are listed in Table III. For example, we take k-means and SPM
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TABLE III

TYPICAL IMPLEMENTATIONS, APPLICATIONS, AND PROBLEM
SIZES OF THE SELECTIVE ALGORITHMS

from [29] for object detection with the vocabulary size of the
codebook to be 200. The evaluations of these algorithms on
different platforms are all based on the same problem size.
It is worth noting that all the algorithms are evaluated for
inference, while the training stage is not evaluated in this
paper.

To map the algorithms into the SDT-CGRA, the static con-
figurations and the dynamic VLIW instructions are written in
the microcode format manually. In order to reduce the effort of
writing static and dynamic configurations, we encapsulate the
static configurations of the most common computing patterns
and the SBU read/write OPs into a library. To map a given
task into the SDT-CGRA, it is programmed with the provided
application program interfaces of the library.

B. Implementation Details

The proposed SDT-CGRA contains 5 × 5 (25) RCs, five
special RCs, 54-kB global SRAM (27 SBU), and 54.6-kB
local memory (including FIFOs and SRAMs). The detailed
information is shown in Table IV, where all the computing
units are designed based on 16-bit fixed point except several
32-bit fixed-point adders and shifters in PRCs. The whole
SDT-CGRA is implemented in Verilog HDL and then synthe-
sized, placed, and routed with the Synopsys design compiler
and the IC compiler based on the Semiconductor Manufactur-
ing International Corporation (SMIC) 55-nm library.

The final results reported by the IC compiler show that the
area of the proposed architecture is 5.19 mm2. The average
chip-only power consumption (dynamic power plus static
power) of SDT-CGRA is evaluated based on the simulation
wave files over the seven selected benchmarks. The results
show that the average power dissipation is 0.84 W. The
breakdown of the area, the average power dissipation, and the
chip-only energy consumption are listed in Table V, where
we can see that RC array accounts for 65% of the chip area
and 62.3% of the average power dissipation. The SBU ranks
the second place in all metrics. Besides, the delay of the critical
path is 2.21 ns, which means that the architecture can run
at 450 MHz. Since the SDT-CGRA contains 86 multipliers

TABLE IV

DETAILED INFORMATION OF EACH UNIT

TABLE V

CHARACTERISTICS OF THE LAYOUT OF SDT-CGRA AND THE

AVERAGE POWER DISSIPATION AND TOTAL ENERGY
CONSUMPTIONS OVER SEVEN BENCHMARKS

Fig. 16. Layout of SDT-CGRA (SMIC 55 nm).

and 119 ALUs, its peak performance can reach 92.3 GOP/s.
The layout of the SDT-CGRA generated by IC compiler is
shown in Fig. 16. It is worth to note that the input/output
pads are not added, since the SDT-CGRA is not designed as
an independent chip for acceleration. Instead, it is designed
as a reconfigurable accelerator in a typical system-on-chip for
object inference applications.

As for system power evaluation, we adopt an approximated
evaluation method proposed in [25] to estimate the power
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Fig. 17. Speedup of SDT-CGRA and GPU over CPU (the higher the better).

consumption of the whole system

Energy = EnergySDT−CGRA + Energyoff−chip (4)

where EnergySDT-CGRA is the chip-only power and
Energyoff-chip is the power consumption in off-chip memory
accesses. According to [41], the typical energy consumption of
an off-chip memory (e.g., DDR3) is 70 pJ/bit. Consequently,
we can estimate Energyoff-chip according to the data assessment
on the off-chip memory. For example, the estimated
power consumption of AlexNet is shown in the following
comparisons.

C. Comparisons With CPU and GPU

The algorithms in Table III are mapped on the proposed
SDT-CGRA. We also implement these algorithms on both
CPU and GPU. The CPU solution is based on the Intel
E5-2637 (8 threads, 22-nm process) with the state-of-the-art
Intel MKL library and Caffe [42] library, which are multi-
threaded and widely used in linear algebra computing and deep
learning applications. For the GPU solution, the algorithms
are programmed with CUDA by cuBLAS [43] and Caffe
library based on the Nvidia TitanX GPU (3584 CUDA cores,
16-nm process). In our evaluation approach, all the data
are stored in the device memories before execution. In this
case, the time cost in GPU implementations does not include
the time of data transmission from host memory to the
internal device memory. In SDT-CGRA, we assume that the
data are stored in the off-chip memory with the bandwidth
of 12.5 GB/s, which is a typical value of DDR3. Besides,
we take the thermal design power of CPU (80 W) and
GPU (250 W) provided by vendors as the power consumption
of these two devices. As we do not take the energy consump-
tion of the off-chip memory in CPU and GPU into account,
only EnergySDT-CGRA is used for fair comparison.

To evaluate the speedup, the CPU solution is selected as
baseline for comparison. Fig. 17 shows the accelerations of
different algorithms on SDT-CGRA and GPU versus CPU.
It is clear that the SDT-CGRA is faster than CPU
(log(Speedup) > 0) for all algorithms. For heavyweight
algorithms [including Softmax, PCA, and CNN (AlexNet)],
whose computation complexities are much larger than other
algorithms in our experimental setup, GPU outperforms both

Fig. 18. Energy efficiency of SDT-CGRA compared with CPU and GPU.

Fig. 19. Time cost in dynamic configuration over the total computation time.

CPU and SDT-CGRA greatly. For the lightweight algo-
rithms (including SVM, SPM, k-means, and Joint Bayesian),
SDT-CGRA gets better speedup than GPU, and the CPU can
even faster than GPU in SPM and Joint Bayesian.

However, in the case of energy efficiency, the SDT-CGRA
outperforms the CPU and GPU in all algorithms listed
in Table III. We select the SDT-CGRA as the baseline for
comparison. Results in Fig. 18 show that the energy cost in
SDT-CGRA is smaller than the CPU and GPU. For more
specific, SDT-CGRA can achieve on average 343.8 times
and 17.7 times energy efficiency for heavyweight algorithms
(including Softmax, PCA, and CNN), and 621.0 times and
1261.8 times energy efficiency for lightweight algorithms
(including SVM, SPM, k-means, and Joint Bayesian) when
compared with CPU and GPU.

As the SDT-CGRA is designed based on the proposed
dual-track programming model, the overheads of static con-
figuration on RCs are small enough to be neglected in the
selected algorithms. On the contrary, the time cost in dynamic
configuration, which is used to schedule data streams, is much
higher. Fig. 19 shows the time cost in dynamic configuration
over the total time cost in computing for a specific algorithm.
As we have shown in Fig. 13(b), the time cost in fetching
dynamic configuration contexts is mainly hidden by the time
cost in computation. As a result, dynamic configuration has
little effect on the overall processing performance.

D. Comparisons With FPGA and ASIC

Several representative highly customized implementa-
tions of CNN on FPGA and application-specific integrated
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TABLE VI

COMPARISON WITH FPGA AND ASIC ACCELERATORS

circuit (ASIC) are adopted for comparison. In [44], the accel-
eration of five convolutional layers of AlexNet on a
Xilinx VC707 FPGA board is reported. In [45], a fully
pipelined architecture (each layer is one pipeline stage) is
proposed to accelerate all the layers of AlexNet on FPGA.
In [9], an ASIC designed for CNN acceleration only is
presented. The results are shown in Table VI, where the
power consumption refers to the system power that includes
the power dissipation in the off-chip memory. It is worth
noting that only the results of convolutional layers are reported
in [9] and [44]. As a result, we calculate the energy consump-
tion and the energy efficiency in two different ways: convolu-
tional layer only and all layers. From Table VI, we can see that
SDT-CGRA achieves better results than FPGA in energy con-
sumption, GOPS/W, and frames/W. Specifically, SDT-CGRA
is 1.78 times better than the state-of-the-art acceleration of
AlexNet in energy efficiency. As an ASIC implementation,
[9] achieves a better energy efficiency than SDT-CGRA, due
to its highly customized (for CNN) architecture and memory
system. However, SDT-CGRA is a flexible architecture that
is not only designed to support CNN but a wide range of
algorithms.

E. Comparison With CGRA Implementations

EMAX [22] is proposed to accelerate CNN. In [22], OPs
per memory bandwidth is adopted as the criteria to evalu-
ate their architecture. And only the mapping results of the

Fig. 20. Scalability of different computing patterns with a different
number of RC. The conv1 refers to the first convolutional layer of AlexNet.
The softmax-batchsize10 refers to the softmax with the batch size of 10.
RC256 means that the number of RC is 256. The rests are similar.

second convolutional layer of AlexNet are provided. Accord-
ing to [22], the number of OPs per memory bandwidth in
EMAX is about 6. In SDT-CGRA, the whole architecture can
reach 78.75 GOP/s when mapped with the second convolu-
tional layer of AlexNet, with the requirement of 4.5-GB/s off-
chip memory bandwidth. As a result, the number of OPs per
memory bandwidth in SDT-CGRA can reach 17.5, which is
almost three times of EMAX.

M-CGRA [23] is a CGRA architecture that is designed
for CNN acceleration. For comparison purpose, we list the
mapping results of AlexNet on M-CGRA and SDT-CGRA
in Table VII. The power or energy consumption is not available
in [23]. From Table VII, we can see that SDT-CGRA can
achieve 13.4 times speedup compared with M-CGRA.

F. Performance Scalability

The performance scalability of the SDT-CGRA is explored
using several computing patterns. According to [46] and [47],
the number of OPs per word (denoted by Va) of a given
algorithm determines its upper bound of computing perfor-
mance. As a result, different computing patterns that have
different values of Va are selected for this paper, including:
1) convolution in the convolutional layer: Va ≈ 2 × k2 × O
(O×k2 � N2) or Va ≈ 2×N2(O×k2 � N2), where k is the
size of the convolution kernel, N is the size of input feature
map, and O is the number of output feature map; 2) vector–
vector multiplication: Va = 1; 3) vector-matrix multiplication:
Va = 2N/(N − 1), where N is the size of vector; and
4) matrix–matrix multiplication: Va = N , where N is the size
of matrix.

The bandwidth of the off-chip memory for the SDT-CGRA
is assumed to be 12.5 GB/s. With this premise, the perfor-
mance scalability of SDT-CGRA is estimated with different
numbers of RCs. The results are shown in Fig. 20, where the
performance improvements of conv1 (the first convolutional
layer in AlexNet) and conv3 (the third convolutional layer
in AlexNet) are nearly linear with the increase of the num-
ber of RCs. For conv1, the performance under RC100 and
RC256 is nearly the same. The reason is that, when the number
of output feature maps O is less than the number of RCs,
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TABLE VII

COMPARISON BETWEEN M-CGRA AND SDT-CGRA

the performance will saturate. As for svm, which involves
vector–vector multiplication, the performance relies heavily
on the off-chip memory bandwidth. The softmax, an algorithm
that contains a vector-matrix multiplication process, also suf-
fers from the same problem. However, when we adopt the
batch processing technique (the vector-matrix multiplication
is converted to matrix–matrix multiplication), the problem can
be alleviated. For example, when the batch size increases from
1 to 50, the performance will improve correspondingly with
the increase in the number of RCs. It is worth to note that
batch processing is only useful for applications that are not
sensitive to latency.

VII. CONCLUSION

This paper proposes a stream processing, dual-track pro-
gramming CGRA, which targets algorithms in the object
inference flow. The proposed SDT-CGRA is implemented
using the SMIC 55-nm standard cell technology with a foot-
print of 5.19 mm2. When running at 450 MHz over seven
typical algorithms, the average chip-only power consumption
of SDT-CGRA is 0.84 W. When compared with CPU and
GPU, the SDT-CGRA can gain on average 343.8 times and
17.7 times energy efficiency for heavyweight algorithms, and
621.0 times and 1261.8 times energy efficiency for lightweight
algorithms, respectively. Although the SDT-CGRA does not
gain competitive energy efficiency compared with ASIC solu-
tion for specific algorithms, SDT-CGRA in a 55-nm transistor
technology can achieve 1.78 times improvement in energy effi-
ciency compared with the state-of-the-art solution of AlexNet
on FPGA in a 28-nm transistor technology. When compared
with the CGRA approach, SDT-CGRA is three times better
than EMAX in terms of OPs per memory bandwidth and
13 times of M-CGRA in terms of speedup. Current and future
work includes extending the proposed approach for other
applications and automating the development of the associated
compilation and debugging tools.
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