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Abstract—Users of heterogeneous computing systems face two problems: first, in understanding the trade-off relationships between
the observable characteristics of their applications, such as latency and quality of the result, and second, how to exploit knowledge of
these characteristics to allocate work to distributed computing platforms efficiently. A domain specific approach addresses both of
these problems. By considering a subset of operations or functions, models of the observable characteristics or domain metrics may be
formulated in advance, and populated at run-time for task instances. These metric models can then be used to express the allocation of
work as a constrained integer program. These claims are illustrated using the domain of derivatives pricing in computational finance,
with the domain metrics of workload latency and pricing accuracy. For a large, varied workload of 128 Black-Scholes and Heston model-
based option pricing tasks, running upon a diverse array of 16 Multicore CPUs, GPUs and FPGAs platforms, predictions made by
models of both the makespan and accuracy are generally within 10 percent of the run-time performance. When these models are used
as inputs to machine learning and MILP-based workload allocation approaches, a latency improvement of up to 24 and 270 times over

the heuristic approach is seen.

Index Terms—Distributed computing, programming environments, accelerator architectures, high performance computing,

application software

1 INTRODUCTION

THE following vignette illustrates the research problem
that we address in this paper.

Julia is a financial analyst at the Bank of England that monitors
counterparty risk between investment banks. She is highly qualified
in statistics and financial economics, and relies heavily on compu-
tational finance techniques to evaluate the derivative contracts that
exist between investment banks. However, beyond the specialised
programming environment that she uses, she knows little about
computing and often runs her calculations for days on her laptop.

She learns that a cluster of heterogeneous computing systems
could massively accelerate her computations. She manages to cob-
ble one together using the Bank’s spare servers and cloud-based
resources. Through the use of an open source application frame-
work, she is soon able to execute her problems upon all of the het-
erogeneous computing platforms. However, she has no idea about
how long a problem is going to take on a given platform. Further-
more, she is also mystified as to the relationship between the statis-
tical accuracy she requires and the time it takes to evaluate her
problems. Unable to understand the relationships between the
metrics she cares about, she finds that some workloads take even
longer on the cluster than on her laptop’s CPU!

Julia clearly needs a tool to help her not only understand the
resources at her disposal, but also how to use them efficiently.
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1.1 Problem Statement

Julia might be a fiction, but the problems she faces are a real-
ity for the increasing number of high performance comput-
ing application programmers. They have two problems

1)  Understanding the relationships between the run-
time characteristics of their application tasks on het-
erogeneous computing platforms.

2)  Allocating tasks to the available platforms so as opti-
mise these run-time characteristics.

In this paper, we both describe and demonstrate practi-
cally an approach to high performance, heterogeneous com-
puting that addresses these problems. Our approach is
premised on only supporting a subset of operations across
all heterogeneous platforms. Computational application
domains provide a natural means to limit the operations
supported without overly inhibiting programmers, and
hence our approach is a domain specific one.

We use the empirical definition of application domains
as used in programming research [1], [2], [3], i.e., an iden-
tifiable category of computational activities where a small
number of computational operations account for all or a
disproportionately high proportion of the computations
performed. For example, within the domain of Linear
Algebra, vector arithmetic is used disproportionately
more often than other operations. Hence, by focusing on
supporting these frequently-used operations, these appli-
cation domains can be practically supported across het-
erogeneous platforms.

1.2 Contributions
In this paper, we make the following contributions:

(1) We introduce a domain specific approach for model-
ling the run-time characteristics or metrics of hetero-
geneous computing platforms.
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import ForwardFinancialFramework as F3

U_II = F3.Heston(0.05,100,0.09,1,-0.3,2,0.09)

0_2 = F3.Barrier(U_II,True,100,5,4096,True,120)

0_2.get_price(interactive=True)
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Fig. 1. Our proposed domain specific, high-level programming flow for
high performance heterogeneous computing.

(2) We demonstrate metric modelling in the applica-
tion domain of computational finance derivatives
pricing. Our practical evaluation encompasses a
large, diverse workload of 128 computational
finance tasks across a heterogeneous computing
cluster of 16 CPU, GPU and FPGA platforms across
three continents.

(3) We show how the allocation of tasks to platforms can
be formulated as a constrained integer programming
problem. We demonstrate how the allocation prob-
lem can be solved using three distinct approaches:
heuristics, machine learning and Mixed Integer Lin-
ear Programming (MILP).

(4) We apply the three allocation approaches to both
synthetic and real world heterogeneous task and
platform data. We show that while heuristics pro-
vide acceptable results, machine learning and MILP
can provide orders of magnitude more efficient task
allocations.

1.3 Proposed Methodology

We demonstrate that domain specific abstractions provide a
means for characterising computing platforms in a manner
that is meaningful in the context of that domain, and hence
to the domain programmer.

Furthermore, we show how this domain specific charac-
terisation allows for heterogeneous platforms to be evalu-
ated in a coherent manner, allowing for an efficient
allocation of work across these resources.

We seek to provide domain programmers such as Julia
with the following programming flow, as illustrated in Fig. 1

(1)  She specifies her tasks in a domain specific form.

(2) Her tasks are then characterised using domain met-
rics with respect to the available platforms.

(3) The optimal task allocations that make up the domain
metric trade-off space are found automatically.

(4) Julia then selects the desired trade-off from the met-
ric design space.

(5) Her workload is then evaluated, using the platforms
in accordance with her objectives.

1.4 The Rest of the Paper

In Section 2, we elaborate on the background to the benefits
of domain specific abstractions for heterogeneous comput-
ing, as well the state-of-the-art with respect to heterogeneous
computing characterisation and workload allocation. We
then expanded upon our two claims in Section 3: first, that
domain specific abstractions enable the useful characterisa-
tion of heterogeneous platforms, and second, that these
domain specific metric models can be used in partitioning
work across heterogeneous platforms.

Then, in Section 4 we demonstrate the domain specific
methodology in practice by applying it to Julia’s domain,
financial derivatives pricing. We provide a brief overview
of the domain and its heterogeneous implementation, after
which we describe the latency and accuracy metric models,
as well as heuristicc ML and MILP allocation approaches
applied. In Sections 5 and 6 we then evaluate our claims in
the context of this case study.

Finally we conclude the paper, summarising our major
conclusions and lay out suggestions for further work.

2 BACKGROUND

2.1 Domain Specific Heterogeneous Computing

An important finding in recent years is that domain spe-
cific abstractions can enable improved performance in a
heterogeneous computing context [4], [5], [6]. As alluded
to in the introduction, empirical studies of software engi-
neering [1] have found that a small set of algorithmic
operations or design patterns within an application
domain are executed disproportionately more frequently
than others, often following a power law distribution.
Indeed, application domains are often identified by
grouping these operations together [2]. By supporting
the efficient, heterogeneous acceleration of these dispro-
portionately influentially operations, significant gains
can be realised automatically for programs restricted to a
particular domain.

Previous works have shown domain specific-enabled
heterogeneous performance in practice, such as our own
use of software application frameworks [6], or domain spe-
cific languages, as shown by Chafi et al. [4] and Thomas and
Luk [5]. The key information yielded by the domain specific
abstractions is the implicit dependency relationships
between computations, allowing for heterogeneous parallel-
ism to be exploited without programmer intervention.

However putting this approach into practice remains a
challenge, requiring system developers with domain exper-
tise to create domain specific abstractions [5], [6] that sup-
port heterogeneous execution. Chafi et al’s [4] approach
advocates the use of language virtualisation, providing both
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a framework for creating implicitly parallel domain specific
languages as well as a dynamic run-time for running appli-
cations created using such languages.

2.2 Task Characterisation and Allocation on
Heterogeneous Platforms

The problem of characterising and allocating computational

tasks to heterogeneous computing platforms has been

widely studied for almost 40 years [7], [8], [9], [10], [11],

[12], [13], [14], [15], [16], [17], [18].

2.2.1 Task Characterisation

As identified by Braun et al. [7], characterising the execution
of tasks upon heterogeneous computing platform is com-
prised of three interrelated activities

Task Profiling: Identifies the atomic (i.e., indivisible)
tasks that comprises the current application. These tasks
can then be further qualified by performing analysis or
profiling of the task code. A key insight from Khokhar
et al. [8] is that profiling should determine the parallel
execution modes possible for the given task. An increas-
ingly popular approach is to require the programmer to
identify the parallel execution modes, either through a
specially designed API [19] or by embedding this within
the language itself [4].

Analytic Platform Benchmarking: Identifies the capabilities
of the heterogeneous computational platforms available.
Another insight from Khockar et al. [8] is that this process
details how well the platform supports different parallel
execution modes. A heterogeneous benchmark such as
Rodinia [20] could be used for this purpose, or a representa-
tive subset of the current tasks.

Task-Platform Characterisation: Synthesises the data from
the two previous activities, which results in models of how
the specified tasks will execute upon the available resour-
ces. Grewe's work [14] illustrates how a sophisticated
machine learning-based approach can be used to do so.

As described in the next section, the last activity is usu-
ally not distinguished from allocating of tasks to plat-
forms [14], [19]. We argue that maintaining this separation
is useful, as it allows for the quality of the characterisation
activities to be evaluated independently from the allocation
approach that is being used.

2.2.2 The Allocation Problem

When considering the allocation of tasks to heterogeneous
computing resources, the general scenario considered in the
literature, i.e., [9], [10], [11], [14], [15], [16], [17], [18] is a set
of independent or atomic tasks being partioned across or
allocated to multiple heterogeneous platforms. It is assumed
that a task will block a platform for its duration, i.e., occupy
the computing resource completely. It is also commonly
assumed that the allocation is being performed statically, in
advance of the execution of any of the tasks.

In this general problem formulation, the general objective
is to minimise the makespan. The makespan is the latency
between when the first task is initiated until the last result
returned for the task set.

As described above, minimising the makespan with a pri-
ori knowledge of the execution time of atomic tasks is a well
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studied problem. As we shall show in Section 3, as others
have [17], this problem can be expressed formally as a 0-1
integer linear programming problem which has famously
been shown to be NP-complete by Karp [21].

2.2.3 Allocation Approaches

Surveying the literature, there are three categories of sug-
gested approaches to the allocation problem described
above

Heuristic [9], [11], [16]: A simple algorithmic rule is
applied to allocate tasks to the available resources. Under
specified circumstances such a rule might achieve a prov-
ably optimal allocation of tasks, and there is usually a lower
bound on the quality of the solution relative to the optimal
solution.

Machine Learning [14], [15]: A feasible task-platform allo-
cation is improved using machine learning techniques such
as Danzig’s Simplex algorithm, simulated annealing or
genetic algorithms. At worst these techniques can confirm
the quality of the starting solution.

Integer Linear Programming [10], [17], [18], [22]: The prob-
lem can be formulated as a constrained integer program
that can be solved using linear optimisation techniques. In
addition to applying standard optimisation heuristics, a
dual formulation of the problem can be used to prove the
optimality of the solution.

2.2.4 Analysis

Generally heuristic approaches have been the most studied
in the context of heterogeneous computing. Braun’s compre-
hensive study [9] found that simpler heuristics achieve better
results than more complex ones for the general case. This
suggests that the truly optimal approach is case-specific,
dependent upon the dynamics between the task and
platforms concerned, and so the more complex an allocation
approach, the more likely it is to map better to certain config-
urations than others.

ILP appears to be an understudied approach, usually
applied only in environments of pressing resource con-
straint [10]. This lack of attention is likely due to the NP-
hard complexity of mixed integer linear programs and the
NP-complete complexity of binary valued programs.

However considerable progress has been made in ILP in
the last three decades [23], and hence we believe that this
approach is now practical for run-time allocation [18], as
do others [17]. A key insight is that an external measure-
ment of solution quality is desirable so that a high quality
solution that is not necessarily provably optimal can be
identified.

3 DoMAIN CHARACTERISATION & ALLOCATION

In this section we elaborate on our claims that a domain spe-
cific approach to heterogeneous computing allows for both
the useful characterisation of task upon heterogeneous plat-
forms, and in turn, an efficient allocation of those tasks to
platforms. To illustrate our explanation, in this section we
use examples from the domains of image filtering and linear
algebra arithmetic.

In Section 4, we apply our domain specific approach to
the financial derivatives pricing domain.
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3.1 Characterising Tasks upon Platforms

By useful characterisation, we mean actionable, i.e., the
domain specific approach enables predictive modelling of
the run-time characteristics of domain tasks upon a wide
range of heterogeneous platforms. Characterisation would
be useful to domain programmers such as Julia as it allows
for the static comparison of different platforms which, as
we will show in the next section, is critical in the efficient
allocation of task workloads.

However, this domain specific characterisation is a con-
tribution in its own right because it relates tasks and plat-
forms using the fundamental concepts of the application
domain. By modelling the task-platform relationship using
domain metrics, the computational design space is made
accessible to anyone working within that domain.

These models allow domain programmer to balance their
objectives in terms they understand.

3.1.1 Domain Metrics

To find the computational design space for a task or group of
tasks within an application domain, we first need to know
what the dimensions of that design space should be, i.e., the
quantitative measurements used within the domain. We
define these quantitative characteristics of the domain metrics.

While the actual metric used will vary from domain to
domain, all fall into one of four categories

e Latency: the time between initiation and completion.

o  Throughput: the rate at which the task is completed.

e  Quality: the degree to a quantifiable goal is achieved.

e  Resource Use: the resources used to complete the task.

For example, within the domain of image filtering,
latency could be measured in the seconds required to filter
an image, while throughput could be the number of images
processed per second.

In the linear algebra arithmetic domain, quality might be
measured as the unit of least precision in the calculations
performed, while the resource use might be expressed using
the average monetary cost per matrix arithmetic operation.

3.1.2 Metric Models

To predict metrics, we require models for how the task
inputs map to the domain metrics on the target platform. We
formalise these models in (1): we seek model functions that
map p real-valued inputs to domain functions to m real-
valued metric values, i.e., F:P—M , where F'is the domain
function model, P the inputs and M the metric values

—

F=(fi,f1,....fm) : P— M PeR’,MecR",

~ €]
fk(P)Ij\fk k= 1,2,...,TTL.

As the application domain identifies in advance those
operations which are disproportionately used, a function
for mapping P to M of key domain functions for heteroge-
neous platforms can be found in advance.

For example, in the domain of image filtering, a candi-
date function for modelling would be the convolution oper-
ation used in all image filtering operations. In linear algebra
arithmetic, the arithmetic operations would be modelled.

3.1.3 Domain Variables and Parameters

We refine the metric models further in (2), P defines all pos-
sible input vectors to the domain specific operation. This
space can be divided into two disjoint subsets, valid (P;,)
and invalid (131-) inputs. ]3, are all of the inputs that will
return a result that violates the correctness of the function
as defined within the domain

L
I
I

— —

P=PUP, >N P, = (). (2

For example, in the image filtering domain, when apply-
ing a uniform blur to an image, the set of inputs that define
a non-uniformly weighted filter would be within F; for that

function. ]31, is thus all of those inputs which return a valid
result, representing the design space for that function.

By supplying the definition of “correctness”, the applica-
tion domain makes explicit what input elements may be
varied without affecting the correctness of the result. For
example, in the linear algebra arithmetic domain, an input
which specifies the maximum number of elements com-
puted in parallel can be varied without affecting the correct-
ness of the result.

We define those input elements which can be varied as
domain variables and those that cannot as domain parameters.
In our formalism, the domain definition identifies the subset
of P upon which membership of P, is defined.

3.1.4  Identifying and Populating Metric Models

The formalism above provides the criteria for potential met-
ric model functions, however for each domain function
there are an infinite number of possible metric model func-
tions. When choosing one, we found that the simplest mod-
els to be the most broadly applicable.

For example, in the linear algebra arithmetic domain, a
hypothetical metric model for latency of matrix-matrix
addition operation might be expressed as the product of the
size in the two matrices concerned (V) and the time per ele-
ment-wise operation on that platform (), i.e.,

Similarly, in image filtering, the cost metric for applying
a certain filter might be the cost per second of the platform
(8) multiplied by the latency of the image processing
(fL(S))/ i-e'/

fe(S) = BfL(S).

As the structure of F is deterministic, an online bench-
marking approach can be used to find the task and plat-
form-specific metric model coefficients. We suggest a
benchmarking procedure to generate a set of domain vari-
able and metric values, i.e., R*? and R?™™, where b is the
number of benchmarking iterations. The benchmarking
data can then be used to to solve for the metric model
function’s coefficients.

We found weighted least squares regression to be effec-
tive in solving for the metric model coefficients. By using
the variable benchmark values as weights, we reduced the
impact of “noise” present in metric measurements.
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3.2 Allocating Task to Platforms

While the characterisation described in the previous section
is useful when considering a heterogeneous platform in iso-
lation, it is less helpful when faced with a cluster of hetero-
geneous platforms that can be used cooperatively. In this
section we address how multiple computational domain
metric model functions can be combined so as to create a
unified, efficient design space.

3.2.1 The General Allocation Problem

We begin by expressing the makespan minimisation prob-
lem, as described in Section 2.2.2, as a binary valued integer
linear program in (3).

Each non-zero element of the binary allocation matrix (A)
represents an allocation of one of the t tasks in a workload
to one of the u platforms, ie., if A;; =1, then task j has
been allocated to platform 4. The relative latency matrix (L)
gives the latency of each task upon each platform. Hence,
similar to A; j, L;; is the estimated relative latency of task j
upon platform i

minimise
A{0,1}#XT

G(A,L) LeRMT,

i (3)
subject to ZAW': 1 j=12,...,1,
=1

where

G(A,L) = max(H(A, L)),
H(A,L)=(AoL)-1.

Reflecting the makespan minimisation problem’s objec-
tive, we seek to minimise G(A, L) while ensure that each
task is completed, hence the constraint that the sum of each
task entry, i.e., a column of A4, is 1.

This representation contains contains two reduction
functions: first, the task latency reduction (H(A, L)), that is
given by the element-wise multiplication or Hadamard
product (A o L), dot multiplied by a vector of ones (1); sec-
ond, the platform latency reduction (G(A, L)), that finds the
maximum latency amongst the platforms for that allocation.

These reduction functions map the allocation and task
latency matrices (A, L) to a vector of platform latencies,
with an entry for each platform, and by which the vector of
platform latencies are mapped to a scalar makespan value.

We now generalise this program, making use of the
notion of domain metric models given in (1). We assume
that the valid variables ]3“ for each of the u platforms are
already known or can be easily approximated for each of
the 7 tasks. In (4) we seek an allocation (A) so that we opti-
mise the metric (M) for all tasks, as mapped by the task

and platform reduction functions (F'(A4, P,), Hi(A, P,) and
G1(A, P,)) into a scalar value

optimise  Gy(A,P,) P, e RM™P
Ae{0,1}77

u (4)
subject to ZAU: 1 j=12,...,1,

=1
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where

Gi(A,P,)) : My — M, M, eR* M € R,
ﬁk(A,P,,) M — Mk M, € IR'“XT,
Fk(A,Pv) . (147 Pv) — Mk

3.2.2 Splitting the Atomicity of Tasks

Similar to the problem of heterogeneous characterisation,
knowledge from the application domain can help find an
efficient solution of the allocation problem. As structure of
tasks is known in advance, the degree of parallelism within
a task is known. As a result, allocation approaches can
incorporate this information so as to allow for a task to be
divided into subtasks while still providing a correct result.
Making parallelism explicit enables a greater degree of
work sharing between distributed computing resources, as
discussed in Section 2.

In this formulation, if the degree of parallelism is suffi-
ciently large, this allows the elements of the allocation
matrix, A, to be “relaxed”, i.e., to be real-valued, and hence,
the problem becomes linear and more tractable, as
expressed in (5)

Gk(A, P, v)

optimise P, € RM™P,

AT

n (5)

subject to ZAM =1 j=12,...,t
=1

1=

3.2.3 Multimetric Pareto Surfaces

As the metrics under consideration are also known ahead of
execution, additional constraints may be added to the opti-
misation program for every other metric being considered
(M,), as described in (6). This program requires that the
allocation also satisfies all of the metric values specified in
addition to optimising M.

optimise Gi(A,P,) P, € R**™,
AcR!*T
I
subject to ZAZ'J =1 j=12,...,1, (©)
=1
G.(A,P)=G, z#kax=12,....,m.

The multimetric optimisation program can be used to
generate a Pareto surface, representing the heterogeneous
computing platforms in terms of domain metric trade-offs.
These trade-offs are achieved by changing the allocation of
tasks to platforms.

For the metric Pareto surface to be populated, a range of
values are required for all metrics that satisfy the program.
This ranges of metrics can be found using the e-constraint
method, as described by Kirlik and Sayin [24].

This multimetric Pareto surface represents the culmina-
tion of our application of domain knowledge to heteroge-
neous computing. Our domain specific approach abstracts
the allocation of task to platforms as the balancing of
domain metrics. Hence, programmers such as Julia would
be seamlessly able to use the capabilities of their heteroge-
neous platform by merely balancing their objectives.
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Fig. 2. Overview of Monte Carlo derivatives pricing.

4 CASE STuDY: DERIVATIVES PRICING

In this case study, we show how the domain specific model-
ling and allocation approach that we developed in the pre-
vious section can be applied to a new domain. We use the
derivatives pricing domain, as we have done in other
work [18], in the broader area of computational finance,
given its importance in global commerce.

We first describe the derivatives pricing domain, we then
introduce the metric models of latency and accuracy that we
use in our evaluation, and finally how the associated alloca-
tion problem can be solved using three different methods.

4.1 Derivative Pricing Application Domain

In this section we introduce the computational finance appli-
cation domain, derivatives pricing, that we use as an exam-
ple in the explanation of our approach and experiments to
justify our claims. First, we describe derivatives pricing in
general, and then define it as a computational domain.
Finally, we describe an implementation of the domain.

4.1.1 Derivatives Pricing Background

Computational finance is an important activity in modern
commerce. The problems in the area are concerned with the
quantitative measurement of uncertainty or risk. Deriva-
tives pricing is one of the largest activities in this area, with
~ $100 trillion of derivatives products currently active.
Derivative pricing is also computationally intensive, and as
a result is a major consumer of high performance comput-
ing, including multicore CPUs and GPUs.

An example of a derivative is an option contract. An
option is contract where a holder pays a premium to the
writer in order to obtain rights with regards to an underly-
ing, an asset such as a stock or commodity. This right either
allows the holder to buy or sell the underlying at a defined
strike price at a defined exercise time. The holder has
bought the right to exercise the transaction if they so choose,
and is in no way obligated to so. In derivatives pricing, the
intrinsic value of the option is the payoff, the difference
between the strike price and spot price of the underlying at
the exercise time, or zero, whichever is higher [25].

The popular Monte Carlo technique for option pricing
uses random numbers to create scenarios or simulation
paths for the underlying based upon a model of its spot
price evolution. The average outcome of these paths is then
used to approximate the payoff [25], as illustrated in Fig. 2.
Although computational expensive, this technique is robust,
capable of tolerating underlying models with many more

stochastic variables than competing methods [5], [25].
Another advantage is that it is amenable to parallel execu-
tion. In fact, Monte Carlo is the canonical “Embarrassingly
Parallel” algorithm [26].

4.1.2  Application Domain

We now describe derivative pricing as an application
domain in terms of types and functions.

The Underlying and Derivative Types: The data in an option
pricing task may be subdivided into two components, the
derivative contract which is being priced and the underly-
ing asset from which that derivative derives its value. The
underlying encapsulates the probabilistic model, such as
the Black-Scholes or Heston, being used to model the behav-
iour of the asset. The derivative embodies the details of the
option contract both during the lifetime of the option as
well at its expiration.

The communication within a task can be formulated as a
directed, acyclic graph, in which underlyings feed their pri-
ces to the derivatives which depend upon them.

Pricing Function: The option pricing domain’s sole func-
tion is finding the value of a type. Hence, the pricing func-
tion is typically only applied to the derivative type, as by
definition an underlying type can provide its price at any
point in time. Different techniques such as Monte Carlo or
Tree-based methods could be used to implement the pricing
function, provided the end result is the price of the deriva-
tive under consideration.

4.1.3 Domain Implementation

We now describe the Forward Financial Framework! (F3),
an open source, financial domain application framework
that we have developed, that implements the derivatives
pricing domain.

Task Description: F* is implemented at the high level as a
Python library [6]. A domain user, a financial engineer such
as Julia, may use F*¥’s classes to describe their derivatives
pricing computations. There are three fundamental base
classes that mirror the key concepts in the domain: deriva-
tives, underlyings and solvers.

The underlying and derivative objects capture the attrib-
utes and behaviours of the underlying and derivative types
as described above. The solver class is a collection for the
derivatives that the programmer wishes to price as well as
the platforms they wish to use.

Heterogeneous Implementations: The solver class sup-
ports three behaviours upon heterogeneous platforms:
code generation, compilation and execution. F* uses a
wide array of back-end technologies: multicore CPUs
using POSIX C; GPUs, Xeon Phi coprocessors and Altera
FPGAs using the OpenCL standard [27]; Maxeler FPGAs
using Maxeler’s Max].

All of the platform back-ends use a host-accelerator
configuration, where a high performance coprocessor or
subsystem is managed by a commodity CPU host. Commu-
nication between I and platforms use the Secure Shell
(SSH) protocol, allowing for tasks to be executed on remote
platforms via TCP/IP networks.

1 https:/ / github.com/Gordonei/ForwardFinancialFramework
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4.2 Financial Latency and Accuracy Metric Models
As described in the previous section, for our example
domain, pricing is the only function required. In this
section, we develop the metric models, as per (1), for the
metrics of latency, (7), and price accuracy, (8), for the pricing
function as implemented using the Monte Carlo algorithm
in F3. This is in contrast to our other work, where we devel-
oped a financial cost metric model [18].

4.2.1 Latency Model

The latency between when a pricing operation is initi-
ated and when it returns a price is fundamentally impor-
tant within the financial domain [25]. This is because
the time at which prices are received affects how traders
use those prices. Minimising the latency of the pricing
operation is desirable, as this confers first-mover
advantage.

We have used a simple, linear latency model in (7), a
function of a single domain variable, the number of simula-
tion paths (n), i.e, n€Z,n € P; The linear nature of the
model reflects the O(N) complexity of the Monte Carlo
Algorithm. The model’s coefficient (8) translates to the time
spent per Monte Carlo path. Similarly, y, the constant com-
ponent of the latency metric model, captures the fixed time
spent initialising the computation, as well as any time spent
communicating the task to, and returning the result from,
the target platform

frln)=Bn+y. (7

4.2.2 Accuracy Model

In the financial domain, the accuracy of a computed
price is expressed in probabilistic terms. When using the
Monte Carlo technique, the size of 95 percent confidence
interval, as measured in currency of pricing (i.e., $) is
used. The accuracy measure is the size of the finite inter-
val around the computed price for which there is a 95
percent confidence that the true value lies within that
interval. As small a confidence interval as possible is
desired, as this means less variance in the price has to
be accounted for.

The accuracy model that we used is based upon the con-
vergence of the Monte Carlo algorithm, which is given by
the inverse square root of the paths, scaled by a coefficient
(o). The model is given in (8)

[

®)

fo(n) =an”

4.2.3 Combined Model

To relate the two domain metrics of latency and accuracy,
we can solve for n and use it to relate (7) and (8) into a
trade-off between the latency and accuracy (c), as

fule) =8¢+, 9)
where

8§ = Ba’.

JANUARY 2017

4.3 Derivative Pricing Task Allocation

We can now formulate the allocation problem using the
derivative pricing metric models from the previous sec-
tion, as well as outline three approaches for solving the
problem.

4.3.1  Reformulating the Allocation Problem

In (10) the unified domain metric model described in (9) has
been applied to the general, constrained allocation problem
formulated in (6). The vector ¢ gives the required accuracies
for the tasks, while y is the task-platform constant matrix.
Similarly, 6 : @ is the element-wise division of the delta
coefficients by the required accuracies of the tasks. In this
case, we have not to had to add an additional accuracy con-
straint, as the unified metric model has already captured
this constraint

minimise  G(4,¢)
AR/ T
i (10)

subject to ZA,L-,jzl i=12...,1,
i=1

=4 T
ceRL

i=

where

G1(A,?) = max(HL(A, ),
Hy(A,@)=(8:F0A+yolA])- 1,
e R,y e RE.

An important feature of the formulation given in (10) is
its non-linearity as a result of the ceiling function in
Hy (A, ). This reflects (7) and (9), as there is a constant value
for each platform-task entry, regardless of the scale of the
allocation.

4.3.2 Proportional Allocation Heuristic

The first allocation approach, the proportional allocation
heuristic, is given in (11). The heuristic allocates tasks
inversely proportionally to the individual makespans of all
of the platforms, attempting to balance tasks according to
the relative capabilities of the different platforms

-1
- L dN 1
Al,j—<iZT> i=1,2,... 1,2,...,7, (11)

NS

L =H.(1,7).

The heuristic only require an estimate of the relative
latency of all tasks upon each platform. The proportional
allocation heuristic works well provided the elements of y
are significantly smaller than the elements of §: & for all
platforms. If not, the tasks’ cumulative constants dominate
each platform’s makespan, regardless of allocation. Theoret-
ically, if there were no constant components, i.e., no setup
time, then this heuristic would return the optimal allocation.

4.3.3 Machine Learning Allocation

The second approach uses the heuristic as a starting alloca-
tion of tasks. The platform reduction function G (A,¢) is
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then specified as the objective function for a time-con-
strained, global optimisation algorithm, the simulated
annealing algorithm provided in SciPy [28], combined with
a “polishing”, convex optmisation algorithm, Danzig’'s Sim-
plex algorithm, also available in SciPy.

As this approach incorporates domain specific plat-
form and task information as well as the heuristic, it
should at worst confirm the heuristic, and at best find
the most optimal allocation. As we will show in Section 6,
the objective function’s linearity is a key determinate of
the allocation optimality. Furthermore, another signifi-
cant factor is problem size, as this problem suffers from
the curse of dimensionality with respect to both x and .

4.3.4 Mixed Integer Linear Programming Allocation

The MILP approach uses the formulation of the domain
allocation problem as the input to an open source, con-
strained integer programming framework, SCIP [29]. SCIP
applies global optimisation techniques as well as a variety
of mathematical transformations and heuristics to solve the
constrained problem.

SCIP accepts problems in a form very similar to (10),
expressed in Zuse Institut Mathematical Programming Lan-
guage (ZIMPL) [30], which F? is capable of generating.
However ZIMPL/SCIP does not allow for non-linear objec-
tive and constraint functions. This requires the problem to
be reformulated as given in (12), adding additional varia-
bles (G, and B) and constraints to capture the non-linear-
ities in the problem

minimise

Gr.AB

G, GreR,,AcRYT,Be{0,1}"7,

n
subject to ZAM =1 j=12,...,1,
=1
Hp;(A,6) <Gp
A < Bij

(12)

ZeR,i=1,2,...,1,
i=1,2,...,0,7=12..1

where
ﬁL(Aﬁ):(S:EQoAeroB)«l.

Although binary integer linear programs are known to be
NP-complete [21], there has been progress in solving these
problems efficiently [23].

5 EVALUATING DERIVATIVE PRICING METRICS

In this section, we evaluate our claim that the derivatives
pricing metric models are able to characterise tasks on
platform.

To do so we need to evaluate the following two proper-
ties for the latency and accuracy models using a large,
diverse set of platforms and tasks: Incorporation: When pro-
vided with additional information, the domain metric
model predict the run-time value of that domain metric
more accurately. Extrapolation: For a given amount of bench-
marking, the domain metric values predicted by the models
remains reasonably close to those seen at run-time for an
increasing problem size.

To assess the degree to the properties were achieved,
we measured the relative error (Ej) as given in (13),
where the absolute difference between the predicted

TABLE 1
Evaluation Workload of 128 Derivative Pricing Tasks

Task . . Computational
Designation Number Underlying Option  Operations

(KFLOP / path)
BS-A 10 BS A 139.267
BS-B 10 BS B 139.266
BS-DB 10 BS DB 143.360
BS-DDB 5 BS DDB 143.361
H-A 25 H A 319.492
H-B 29 H B 319.491
H-DB 29 H DB 323.585
H-DDB 5 H DDB 323.586
H-E 5 H E 315.395

Underlying types are Black-Scholes (BS) and Heston (H) model-based. Deriva-
tive types are Asian (A), Barrier (B), Double Barrier (DB), Digital Double
Barrier (DBB) and European Options (E).

metric value (fi(n)) and the run-time value (f;,) is
divided by the run-time value. The run-time metric value
is measured when the task is run with the specified num-
ber of paths (n)

‘fk(n) — fin
o .

- (13)
fk’,'n

5.1 Experimental Setup
5.1.1 Derivatives Pricing Tasks

Table 1 provides an overview of the 128 option pricing tasks
that were used to evaluate the financial domain metric mod-
els. In addition to the types of underlying and derivatives
used, the total amount of computational work for each task
is specified.

The domain parameters for the pricing task operations,
such as the proprieties of underlying model, were generated
using uniform random numbers within the values of the
Kaiserslautern option pricing benchmark [31]. We used a
rejection procedure to keep the relative complexity of the
pricing tasks within an order of magnitude.

5.1.2 Heterogeneous Platforms

An overview of the heterogeneous platforms that we used
are described in Table 2. The first class of platform heteroge-
neity is device type and manufacturer - we used a wide
array of multicore CPUs, GPU and FPGA-based computa-
tional platforms from a variety of vendors. The other is the
diversity of interconnections used between the computa-
tional platforms, achieved with varied geographic locations.

The computational characteristics of the platforms are
also described in Table 2. We describe the compute capabili-
ties of the experimental platforms using the Kaiserslautern
option pricing benchmark [31] and the Network Round-trip
Time (RTT) as measured by the ping network utility.

As the Monte Carlo algorithm being used is amenable
to parallel execution, it is unsurprising that GPUs provide
the best application performance, although an important
caveat is that these performance figures are of implemen-
tations produced by F?. A prominent data-point in terms
of network latency is the Remote Server and Phi, which
have orders of magnitude longer communication times
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TABLE 2
Overview of Experimental Heterogeneous Computing Platforms
Device Device Device Device Name Network Geographic Application ~ Network
Category Designation Vendor Location Location Performance Round-trip
(GFLOPS) Time (ms)
CPUs Desktop Intel 1 Core 17 2600 Localhost ICL, London, UK 5.916 0.024
Local Server AMD R Opteron 6272 LAN ICL, London, UK 27.002 0.380
Local Pi ARMO 11 76]ZF- -S LAN ICL, London, UK 0.049 2.463
Remote Server Intel R Xeon E5 2680 WAN UCT, Cape Town, ZA 11.523 3,300.000
AWS Server EC1 Intel . Xeon " E5-2680 WAN AWS, USA East Region 12.269 88.859
AWS Server EC2 Intel R Xeon ~E5-2670 WAN AWS, USA East Region 4913 88.216
AWS Server WC1  Intel | Xeon " E5-2680 WAN AWS, USA West Region 12.200 157.100
AWS Server WC2  Intel R Xeon E5®267O WAN AWS, USA West Region 4.926 159.578
GCE Server Intel Xeon WAN GCE, USA Central Region 6.022 111.232
GPUs Local GPU 1 AMD®  FirePro W5000 LAN ICL, London, UK 212.798 0.269
Local GPU 2 NV1d1a Quardo .K4000 LAN ICL, London, UK 250.027 0.278
Remote Phi Intel” Xeon Phl 3120P WAN UCT, Cape Town, ZA 70.850 3,300.000
AWS GPU EC NV1d1a Gr1d GK104 WAN AWS, USA East Region 441.274 88.216
AWSGPUWC  Nvidia® Grid * GK104 WAN AWS, USA West Region 406.230 159.578
FPGAs Local FPGA 1 Xllmx® Virtex :}6 475T LAN ICL, London, UK 114.590 0.217
Local FPGA 2 Altera Stratix V D5 LAN ICL, London, UK 161.074 0.299

than the other platforms due to being located in Cape
Town, South Africa.

We expect the compute capabilities of platforms to deter-
mine the coefficient of the latency models (8) while the net-
work latency will determine the constant coefficient, (y).

5.2 Model Error Results
5.2.1 Latency Model

The latency model results are given in Figs. 3 and 4. The
latency models were evaluated on a per platform basis, as
well as the geometric mean of the three platform categories.

The mean error figures for all of the tasks upon the plat-
form reported, with the error bars being too small to plot.
The independent variable is the ratio of the Monte Carlo
benchmark versus run-time paths, so as to report on all
tasks across each platform.

Fig. 3 illustrates that as a longer benchmarking procedure
is performed relative to the total fixed run-time of 10
minutes (or 4.69 seconds per task) being predicted by the
model, the models became more accurate. Fig. 4 shows how
the models scale as the run-time prediction target is
increased for a fixed benchmarking time of 4.69 seconds per
task or 10 minutes in total, and an increasing run-time tar-
get. The remote Phi and server models’ poor performance
are notable data points.

5.2.2 Accuracy Model

The accuracy model results are given in Fig. 5 and 6. The
accuracy model results are presented as minimum, geo-
metric mean and maximum of the model results within
the pricing task categories. Similar to the latency model,
the ratio of benchmark to run-time paths is the indepen-
dent variable.

Fig. 5 shows how the accuracy models become increas-
ingly predictive with additional benchmarking. For all of
the task categories, the minimum, mean and maximum
errors all decrease as more benchmarking is performed.
Fig. 6 shows how the models remain stable as the run-time

target is increased. Hence, similar to the latency model
results, the models scale well for more than an order of
magnitude.

5.3 Discussion

The incorporation property of the models is demonstrated
in Figs. 3 and 5. This means that the predictive capability of
the models improves as additional information is provided
to the models.

As Figs. 4 and 6 illustrate, the models also have the
extrapolation property. There is a relatively minor increase
in latency and accuracy error for run-times considerably
longer than the benchmarking time.

The relatively poor latency model performance of the
Remote Phi and Server platforms is explained by the
benchmarking time being too short to accurately solve for
the true coefficient and constant values. This is due to
long network round-trip time that both platforms experi-
enced, where the almost all of the benchmarking time is
spent on communication.

The tasks with Heston underlyings present a relatively
high maximum accuracy error, between 10 and 100 percent.
However, as can be seen by the task category geometric
mean these error average out to a considerably lower figure,
allowing for these models to still be useful for modelling
groups of tasks.

6 DOMAIN ALLOCATION APPROACH EVALUATION

In this section we describe our evaluation of the allocation
approaches that make use of domain knowledge provided
through the metric models, machine learning and MILP.
We first characterise the performance of the domain alloca-
tion approaches with respect to problem size and problem
non-linearity using synthetic data. We then verify this char-
acterisation by applying the different allocation approaches
to the tasks and platforms described in Tables 1 and 2.

We report on the time required by the domain alloca-
tion approach algorithms as well as the quality of the



INGGS ETAL.: ADOMAIN SPECIFIC APPROACH TO HIGH PERFORMANCE HETEROGENEOUS COMPUTING 11

1000 Multicore CPUs 1000 *—% AWS Server WCI~ #—# AWS Server ECI
O-OLocal Server g% AWS Server WC2 BB AWS Server EC2
§ § &--4 Remote Server
T 100 = 100
g g
H 3|
o
Z 10 g 10
= £
& &
g =
) 1 3 1
= =
0.1 0.1
0.05 0.1 0.2 03 04 05 1 0.05 0.1 02 03 04 05 1
Runtime to Benchmark Ratio (Benchmark Paths/Runtime Paths) Runtime to Benchmark Ratio (Benchmark Paths/Runtime Paths)
(a) Device Categories (b) CPUs
1000 B--B Remote Xeon Phi 1000
S S
e S 100
8 100 % AWS WC GPU 5
&) g
> 83}
o
Z 10 =z 10
5 g
Q —
& &
g =
5 1 s 1
= =
0.1 0.1
0.05 0.1 0.2 03 04 05 1 0.05 0.1 02 03 04 05 1
Benchmark to Runtime Ratio (Benchmark Paths/Runtime Paths) Runtime to Benchmark Ratio (Benchmark Paths/Runtime Paths)
(c) GPUs (d) FPGAs
Fig. 3. Error of latency models for a total run-time target of 10 minutes (é{f:f{) and varying benchmark time, evaluating model incorporation.
100

Mean Relative Error (%)
Mean Relative Error (%)

0.1 #—% AWS Server WC1 ¢—& AWS Server EC1
O-OLocal Server s— AWS Server WC2 Bl AWS Server EC2
44 Remote Server

001y 2 I 10 20 oony 2 3 4 s 10 20
Runtime to Benchmark Ratio (Benchmark Paths/Runtime Paths) Runtime to Benchmark Ratio (Benchmark Paths/Runtime Paths)
(a) Device Categories (b) CPUs
100 100
9 g
£ g
A 3|
-
g 2
2 g
S BB Remote Xcon Phi -
o <
= S o1
#-% AWS WC GPU
001
1 I 10 20 ooy 2 3 4 s 10 20
Runtime to Benchmark Ratio (Runtime Paths/Benchmark Paths) Runtime to Benchmark Ratio (Benchmark Paths/Runtime Paths)
(c) GPUs (d) FPGAs

Fig. 4. Error of latency models for a fixed benchmark total time of 10 minutes (éfsli) and varying run-time targets, evaluating model extrapolation.



12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28,

HA HB HA HB

(a) 1:8 (b) 1:4

NO. 1, JANUARY 2017

BS-A

HA HB HA HB

(c) 1:2 (d) 1:1

Fig. 5. Percent error of accuracy models for a fixed run-time target and varying benchmark time, evaluating model incorporation. Ratio is expressed
as Benchmark Paths : Run-time Paths. The innermost region represents the minimum error, the middle region the geometric mean relative error and

the outermost the maximum.
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Fig. 6. Percent error of accuracy models for a fixed benchmark time and varying run-time, evaluating model extrapolation. Ratios and the ordering of

the regions are the same as in Fig. 5.

solution returned with respect to the proportional alloca-
tion heuristic. For an allocation approach to be accept-
able, it needs to cope with a wide variety of allocation
problems in we what we heuristically define as a reason-
able amount of time, 10 minutes, while providing a sig-
nificant improvement over the allocation returned by the
heuristic approach.

6.1 Experimental Setup
6.1.1  Synthetic Data Generation Procedure
Drawing upon Braun et al’s work [9], we have used the fol-
lowing procedure (s(t,u,0z,6,, ., w,,V¥)) to generate the
synthetic co-efficient (§) and constant (y) matrices so to eval-
uate the different approaches to allocation

(1) Construct the baseline vector (¥) and initial matrix
(Y). & is T uniformly distributed integer elements, bounded
by the task heterogeneity factor (6;). Y, is i x t uniformly
distributed integer elements, bounded by the platform het-
erogeneity factor (6,,)

I‘/€[179T] j:{1727"'7r}7

Yijell,0,] i={1,2,...,u}t,j={1,2,...,t}.

(2) Construct the § matrix by multiplying the elements of
eachrow of Y and of Z. i.e.,

(SLJ:.IZJY;,J i:{l,Q,...,M},j:{1,2,...,1'}.

(3) Sort the first Tw, columns of the § matrix, and the first
nw, rows, where w, and w,, are the degree of task and plat-
form consistency.

(4) Construct the y matrix by repeating steps 1-3, how-
ever then multiply the resulting matrix by the task constant

to coefficient ratio (¥), i.e., the y to g ratio in the latency met-
ric model.

6.1.2 Procedure Parameter Values

The parameters varied in our experiments, in conjunction
with the procedure above are provided in Table 3. The four
cases consider a range of different scenarios, from
completely homogeneous, consistent to extremely heteroge-
neous and inconsistent platforms and tasks, using the val-
ues from Braun et al’s study [9].

6.2 Allocation Characterisation Results
6.2.1 Synthetic Data Characterisation

The results of the allocation characterisation can be seen in
Fig. 7. For the allocation times (Figs. 7a and 7b), a timeout of
600 seconds (or 10 minutes) was set, the same time given to
the benchmarking described in the previous section.

Similarly for the quality of the solution relative to the
proportional heuristic (Figs. 7c and 7d), we found that both
the MILP and machine learning task allocations’ improve-
ments over the heuristic are a function of problem variables
and constant to coefficient ratio.

TABLE 3
Synthetic Task-Platform Generation Parameters
Case Designation 0, wy, 0- W,
Hom-Con 10 1.0 100 1.0
Het-Con 100 1.0 3,000 1.0
Het-Mix 100 0.5 3,000 0.5
Het-Inc 100 0.0 3,000 0.0

Columns are platform and task heterogeneity (0,,,6.), and platform and task
consistency (w,, w.).
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Fig. 7. Characterisation of allocation approaches using synthetic data.

6.2.2  Practical Verification 6.3 Discussion

Broadly, the machine learning-based task allocation
approach was soon limited by the timeout, as evidenced
by Fig. 7a, while the MILP task allocation’s time grows
exponentially as a function of the number of variables. As
the ratio between the coefficient (8) and constant (y) com-
ponent is varied in Fig. 7b, there is a peak latency centred
around one, reflecting the considerable linear and non-
linear allocation problems that both have to be solved

While the characterisation of the allocation approaches
using synthetic data provides insight, we have verified
these these results with real platform and task data in Fig. 8.
We put the portfolio of pricing tasks in Table 1 through the
allocation approaches for the platforms in Table 2 over a
range of accuracies. We then ran the generated task alloca-
tions, and measured the domain metrics of latency and
accuracy.

1 2 .
Machine Learning E
ol Proportional Heuristic
D
>
g
=
3
<
0.01
—— Verification
- Model Prediction MILP |
0.001 .
1 10 100 1000 10 000
Latency (s)

Fig. 8. Allocation approaches using heterogeneous platforms from Table 2 and derivatives pricing tasks from Table 1. Smaller latency and accuracy
values are better.
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Fig. 9. Heterogeneous task-platform metric curves. Smaller accuracy
and latency values are better.

and balanced. The machine learning approaches perform
well at this inflection point, while the MILP approach is
at its relative worst.

In terms of improvement over the heuristic allocation,
Figs. 7c and 7d, the trends can be explained by the potential
for improvement. The linear trend with respect to problem
size is due to the increased potential for improvement that
larger problems allow. Similarly, for the constant to coeffi-
cient ratio, as the constant becomes more dominant, there is
increased scope for improvement as the heuristic is further
from its optimal condition.

Fig. 8 illustrate that the allocation approaches using the
metric models are close to what is measured in reality. The
differences between the predictions and run-time measure-
ments are well within the error of the metric models.
Furthermore, both the domain knowledge-based machine
learning and MILP-based allocation approaches are orders
of magnitude more efficient than that suggested by the pro-
portional heuristic for problems with strong non-linear
characteristics, i.e., derivatives pricing tasks with 95 percent
confidence intervals greater than $0.005.

7 CONCLUSION

In this paper we have described and demonstrated in prac-
tice that a domain specific approach to heterogeneous com-
puting offers two features beyond portable execution.

First, using image filtering, linear algebra arithmetic and
derivatives pricing as example domains, we described how
domain metric models derived from the application domain
provide a natural means to characterise a task on a hetero-
geneous platform.

We evaluated the metric models of latency and accuracy
for the derivative pricing domain practically. We found
that when using an online benchmarking procedure, these
domain metric models incorporate additional information to
improve predictions, and extrapolate well as tasks increase
in scale.

These metric models are an accessible way to visualise
the design space of the available heterogeneous platforms
for domain programmers, such as Julia, as illustrated in
Fig 9. As is to be expected, when the accuracy requirement
is low, constant communication time dominate and the plat-
form makespans are geographically ordered, but when high
accuracy is required, the compute dominates and the

JANUARY 2017
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Fig. 10. Differing domain specific task allocation approaches. Smaller
accuracy and latency values are better.

makespans order according to the measured computational
capability of the platforms.

Second, we described how the metric models for multi-
ple platforms can be combined into a constrained optimisa-
tion program. We also showed domain specific knowledge
can allow this allocation to be relaxed, transforming the
binary problem to a more tractable, mixed integer form.

We described and evaluated three approaches for solving
this allocation problem, heuristic, machine learning and
MILP. Our evaluation, making use of both synthetic data as
well as the derivatives pricing examples, demonstrated that
both MILP and machine learning can produce viable task
allocation in a practical amount of time whilst outperform-
ing the heuristic approach by up to two orders of magni-
tude, as illustrated in Fig 10.

Beyond the practical benefits, our domain specific
methodology makes distributed, heterogeneous comput-
ing platforms accessible to domain users, such as Julia in
the Introduction. Our approach shows how to abstract
away details of implementation into choices about the
nature of computational results. We only require that
Julia balances her objectives to use heterogeneous com-
puting effectively.

Future Work

Future directions for this work include increasing both the
allocation problem sizes as well as the number of platforms
utilised. A further direction is in increasing the degree of
heterogeneity, both in terms of the problems considered as
well as more varied computing resources.

Another area of ongoing work is optimisation of the
MILP software used. Improvements being considered are
seeding the optimiser with the proportional heuristics pro-
posed in this paper, as well as ordering the heuristics
applied within the optimiser more carefully.
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