668 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO.3, MAY/JUNE 2017

Leveraging FPGAs for
Accelerating Short Read Alignment

James Arram, Thomas Kaplan, Wayne Luk, and Peiyong Jiang

Abstract—One of the key challenges facing genomics today is how to efficiently analyze the massive amounts of data produced by
next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialized
processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this
technology for accelerating genomic data analysis is however largely unexplored. In this paper, we present a runtime reconfigurable
architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the
development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and
approximate alignment with up to two mismatches. Our design is based on the FM-index, with optimizations to improve the alignment
performance. In particular, the n-step FM-index, index oversampling, a seed-and-compare stage, and bi-directional backtracking are
included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with eight Altera Stratix-V FPGAs.
Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and
nine times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.

Index Terms—FM-index, FPGA, runtime reconfiguration, short read alignment

1 INTRODUCTION

N recent years the advances in throughput of next-

generation sequencing (NGS) platforms has far exceeded
Moore’s Law [11]. The latest NGS platforms available are
able to generate Terabytes of data in a single run, and their
throughput is expected to increase 3-5x each year. This rap-
idly growing amount of sequencing data has put consider-
able strain on the computing systems used for subsequent
analysis, with many sequence analysis pipelines requiring
hours or even days to transform the raw data into appropri-
ate information for diagnosis or research.

The bottleneck of most sequence analysis pipelines is
short read alignment. In this stage the short fragments
of DNA produced by NGS platforms, called reads, are
mapped to locations in a known reference genome, as
shown in Fig. 1. Due to incorrect base calls and genetic
diversity between the sample DNA and reference genome,
approximate alignment must also be considered. This is
achieved by permitting a number of mismatches, insertions
and deletions in the reads.

There currently exist many software tools for short
read alignment, including Soap2 [15], BWA [14], and Bow-
tie2 [13]. Despite featuring highly optimised algorithms,
these tools can take many hours to align the short read data.
For example, Soap2 takes over 5 hours to align 300M
reads when run on a system with dual 12-core Intel Xeon

o J. Arram, T. Kaplan, and W. Luk are with the Department of Computing,
Imperial College London, London SW7 2BZ, United Kingdom.
E-mail: {jmall, wl}@imperial.ac.uk, tk2112@doc.ic.ac.uk.

e P. Jiang is with the Department of Chemical Pathology, The Chinese
University of Hong Kong, Hong Kong. E-mail: jiangpeiyong@cuhk.edu.hk.

Manuscript received 10 May 2015; revised 22 Jan. 2016, accepted 3 Feb. 2016.
Date of publication 29 Feb. 2016; date of current version 1 June 2017.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TCBB.2016.2535385

processors and 100 GB of RAM. A common solution for
accelerating alignment is to use extensive computational
resources. Examples of this are the 1,000 genome project [1]
which uses a 1192-processor cluster, and the BGI Bio-
cloud [4] computing platform which has a current total of
14,774 processors delivering 157T flops of performance.
Given the projected advances in throughput of NGS plat-
forms, the cost of building and running such systems is
becoming increasingly impractical.

Reconfigurable hardware, such as the Field-
Programmable Gate Array (FPGA), is a promising candidate
for accelerating short read alignment. The multiple levels of
exploitable parallelism can provide substantial application
speed-up, whilst the low operational clock frequencies allow
reduced energy consumption, and high rack unit densities.
There are various efforts related to accelerating short read
alignment using FPGAs [9], [20]. Although these designs
perform alignment faster than most of the software tools cur-
rently available, their speed often comes at the cost of accu-
racy and functionality. As a result, few FPGA-based tools
have been fully integrated into sequence analysis pipelines.

In this work we show how FPGAs can be leveraged to
accelerate short read alignment. The major contributions of
this work include:

e A runtime reconfigurable architecture for accelerating
short read alignment using FPGAs. This architecture
exploits the reconfigurability of FPGAs to allow the
development of fast yet flexible alignment designs.

e An application of this architecture to develop an
alignment design which supports exact and approxi-
mate alignment with up to two mismatches. Our
design is based on the FM-index, with optimisations
to improve the alignment performance. In particular,
the n-step FM-index, index oversampling, a seed-

1545-5963 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ARRAM ET AL.: LEVERAGING FPGAS FOR ACCELERATING SHORT READ ALIGNMENT 669

Reference genome

ale[r[r]afcle]T]

=l

[Tlclclclafalc]c[AlG

Reads Sequencing error

IﬂddﬂAMNNMNC [elr]r]alc]

[clelelsfa] [cfalcfc]a]

lelc[alalc| [als]c]alq]

Genetic diversity

[rlralcls]

(@)

[r]afcla[T]

Fig. 1. Alignment of reads to a reference genome.

and-compare stage, and bi-directional backtracking
are included.

e An implementation of our design on a Maxeler
MPC-X2000 system. The performance is evaluated
and compared to the fastest software alignment tools
currently available.

2 BACKGROUND

In this section we present background information on the
FM-index and its search operation. In addition, we provide
a brief overview of FPGAs.

2.1 FM-Index

The FM-index [10] is a full-text compressed index which
supports substring searching in linear time with respect to
the substring length. The FM-index is built upon the
Burrows-Wheeler transform (BWT) [5], a permutation of a
text generated from its Suffix Array (SA) [18].

The SA of a text R is a lexicographically sorted array of
the suffixes of R, where each suffix is represented by its
position in R. The SA interval (low, high) covers a range of
indices in the SA where the suffixes have the same prefix.
The pointer low gives the index in the SA where the pattern
is first found as a prefix, and the pointer high gives the
index after the one where the pattern is last found. Fig. 2a
illustrates the construction of the SA for a text. In this exam-
ple the SA interval for the substring A is (1, 4). The result of
searching for a substring can be represented as a SA inter-
val. If low < high, the substring occurs in the text. Con-
versely, if low > high, the substring does not occur.

The FM-index is built upon the BWT, a transformation
which generates a permutation of the symbols in a text.
Each position in the BWT is computed using the relation-
ship: BWT; = R[(SA; — 1)mod|R|]. Fig. 2a illustrates the
construction of the BWT from the SA of a text. The FM-
index supports substring searching through two functions
performed on the BWT. Count(s) returns the number of
symbols in the BWT which are lexicographically smaller
than the symbol s. Occ(s, i) returns the number of occur-
rences of the symbol s in the BWT from positions 0 to ¢ — 1.
The values of these functions are precomputed and stored
as arrays, as shown in Fig. 2b. To compress the size of the
FM-index, the Occ array is sampled into buckets of width d.
In this procedure the Occ values are stored every d positions
as markers, reducing the array size by a factor of d. The Occ
values omitted are reconstructed by summing the previous
marker and the result of counting the occurrence of the
remaining positions directly from the BWT. To simplify
the search operation the Count value for each symbol

) A | B N
(a) R = BANANAS ojlofo]o
i | SA suffix 111010
0 6 S 211101
1 5 AS 3111012
2 3 ANAS 41112
3 1 ANANAS 50111112
4 0 BANANAS 6 2 1 2
5 4 NAS 713|112
6 2 NANAS
BWT = ANNBSAA Count(s)
A | B N
11475
(¢c) FM-index (d = 4)
0 1
Markers Markers
A B N A B N
11415 2157
BWT BWT
(AwIn[s]|[5[a]a]-]

Fig. 2. Generating the FM-index. Note $ is the terminal symbol, the
smallest symbol lexicographically.

can be added to the corresponding markers. The markers
and the section of the BWT covered are then interleaved to
form the FM-index structure, as shown in Fig. 2c.

Algorithm 1. FM-index Search Operation

Input: substring (), FM-index F' with bucket width d, and the
suffix array of the text R

Output: positions in R where @ occurs

Procedure: ®(F, s, 1) —returns Occ(s,) from FM-index bucket F'

i> initialise suffix array interval

1: low 0

2: high < max(Occ;)

3: fori — |@Q| —1to0do > update suffix array interval
4: low — O(Fllow/d],Q;, low)

5: high — ®(F[high/d], Q;, high)

6: if low > high then > terminate if symbol not matched
7 end

8: endif

9: end for

10: for i < low to high — 1 do
11: positions « SA;
12: end for

13: procedure ® F, s, i

14 marker — (F — Markers]s])
15: count — 0

16: forj« Otoj < i mod d do
17: if s = (F — BWT)) then

> get reference positions

> get Occ(s, 1) from F bucket
> get marker value

> count from BWT

18: ent «— ent + 1
19: end if
20: end for

21: return marker + count
22: end procedure

The FM-index search operation is described in Algo-
rithm 1. Concisely written, low and high are first initialised

670 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO.3, MAY/JUNE 2017

Substring: ANA
Text: BANANA
Iteration 1

Iteration 2

symbol = A symbol = N
(0,7) = (1,4) (1,4) = (5,7)

Iteration 3 Convert

symbol = A SA Interval — Pos
(5,7) — (2,4) (2,4)=3,1

Fig. 3. FM-index search operation example.

to the minimum and maximum indices of the Occ array
respectively. Then moving from the last symbol in the read
to the first (a backward search), the SA interval is updated
using the equations in lines 4 and 5. After the final update,
the SA interval gives the range of indices in the SA
where the suffixes have the substring as a prefix. These
indices are then converted to reference genome positions
using the SA. Fig. 3 illustrates an example of the FM-index
search operation. Backtracking can be used to extend the
search operation to support approximate alignment. In this
approach the short read is permuted using edit operations
(substitutions, insertions or deletions). A stack is used to
store the position and symbol of each edit. If the permuted
read is unable to be aligned, the state is restored from the
stack and a new edit operation is performed.

2.2 Field-Programmable Gate Arrays

FPGAs are integrated circuits composed of a matrix of con-
figurable logic blocks and interconnects. These logic blocks
and interconnects can be programmed to create a digital cir-
cuit functionally equivalent to an application or procedure.
The circuit design is typically coded in a hardware descrip-
tion language, which is subsequently mapped into an FPGA
configuration. FPGAs support runtime reconfiguration,
which is the ability to dynamically switch between configu-
rations. This feature allows developers to change the func-
tionality of the FPGA on-the-fly. The advantages of using
FPGAs for application acceleration are: 1) substantial
speed-up can be achieved through highly parallel custom
computations, and 2) energy and power consumption is
much lower than that for a CPU.

3 RELATED WORK

There currently exist many software tools for short read
alignment, including Soap2 [15], BWA [14], and Bow-
tie2 [13]. These tools use either index based algorithms,
such as the FM-index, or dynamic programming algo-
rithms, such as the Smith-Waterman algorithm [21], to per-
form alignment.

As a response to the rapidly increasing NGS platform
throughput, GPU-based tools have been developed to
improve the alignment performance. Notable GPU-based tools
include Soap3-dp [17] and CUSHAW [16], which are reported
to perform up to 10 times faster than the CPU-based tools.

There are various efforts related to accelerating sequence
alignment using FPGAs, among which accelerating the
Smith-Waterman alignment algorithm is the most common
approach. Here we summarise the novel aspects of some
notable efforts.

TABLE 1
Architecture Analysis Symbol Definitions

Symbol Definition

Alignment time

Total resources available on the FPGA fabric
Population of a given module on the FPGA fabric
Number of resources required by a given module
Number of data items processed by a given module
Time for a given module to process an item of data
FPGA reconfiguration time

' Data transfer time to the FPGA device

e

=

~~ o+~

Olson et al. [20] accelerate the Smith-Waterman algo-
rithm using FPGAs. In this work, both the seed location and
score table computation are performed in hardware. The
design is partitioned into 8 Pico M-503 boards, each com-
prising a single Xilinx Virtex-6 FPGA. This eight-FPGA sys-
tem can align 50 million reads in 34 seconds.

Fernandez et al. [8], [9] accelerate the FM-index using
FPGAs. In the first work, the index of a small reference
genome is stored in on-chip BRAM. The design is imple-
mented on a single Xilinx Virtex-6 FPGA and can exactly
align 1,000 reads in 60.2us. In the second work, their previ-
ous design is extended to allow for approximate alignment.
Here multiple exact alignment modules align the permuted
reads. The design is implemented on the Convey HC-1 plat-
form and can align 18M reads in 138 seconds.

This work expands on our previous efforts in accelerat-
ing sequence alignment using FPGAs [2], [3]. In these efforts
we present: 1) a hardware acceleration of the FM-index
for exact and approximate alignment, and 2) design space
exploration for FPGA-based alignment architectures. This
work consolidates our previous efforts, and presents a new
alignment design which supports exact and approximate
alignment with up to 2 mismatches.

4 RUNTIME RECONFIGURABLE ARCHITECTURE

In this section we present a runtime reconfigurable archi-
tecture for accelerating short read alignment using
FPGAs. This architecture exploits the reconfigurability of
FPGAs to allow the development of fast yet flexible align-
ment designs. Table 1 defines the symbols used in our
architecture analysis.

4.1 Motivation

In previous related efforts, the FPGA fabric is configured
with a design functionally equivalent to an alignment
algorithm. These designs are typically composed of sev-
eral interlinked modules which correspond to the stages
that make up the alignment algorithm. For example, a
dynamic programming design could consist of modules
for seed location, score table calculation, and trace-back.
Since the FPGA fabric is configured with a single design,
we define this a static architecture. Fig. 4a illustrates a
static architecture for an alignment design comprising
three modules. The population of a given module and
best case alignment time for a static architecture are given
by Equations (1) and (2) respectively. Note that in a static
architecture the modules process the data concurrently,

ARRAM ET AL.: LEVERAGING FPGAS FOR ACCELERATING SHORT READ ALIGNMENT 671

Static Architecture Time

Module 1

Module 2

Module 3

Input —|

Module 1
II

Input —|

» Output

Il odule 1 I

FPGA Configuration 1 FPGA Configuration 1

Run-time Reconfigurable Architecture

I Module 2 I
II Module 2 I
Module 2

FPGA Configuration 2

I Module 3 I
Module 3
Module 3

FPGA Configuration 3

(a) Static architecture.

Fig. 4. FPGA alignment architectures.

thus the best case alignment time is the longest module
process time.

A—S, P .p
B: Z:&z J oI (1)
(]
Nity Noto
T= —=). 2
maX(Pl’Pg’ > 2

We observe a number of limitations which can reduce the
alignment performance for designs with a static architecture:

1) There may be insufficient resources available on the
FPGA fabric to fit the entire alignment design. In this
case a subset of the modules must be performed in
software, which reduces the overall performance
according to Amdahl’s Law.

2) In order to improve the throughput, slower modules
are replicated on the FPGA fabric. With limited
available resources it may be impossible to replicate
these modules the required amount of times, result-
ing in an unbalanced pipeline of modules.

3) Alignment algorithms feature many data hazard
points where the processing of an item by a given
module is dependant on the result from a previous
computation; consequently, some modules may exist
in an idle state for the majority of the runtime. These
idle modules consume FPGA resources which could
be better utilised in increasing the module popula-
tion of the more computationally intensive stages.
For example, in an FM-index-based design a short
read is only approximately aligned if it cannot be
exact aligned. Given the typical error rates observed,
approximate alignment modules consume the major-
ity of the FPGA resources but only process a small
fraction of the data.

4) Changes to the alignment parameters, such as the
number or type of edits permitted require modules
to be modified; consequently, the entire design must
be rebuilt which can take many hours or even days
to perform. An alignment design with a static archi-
tecture can therefore only target a small portion of
the parameter space.

4.2 Runtime Reconfigurable Architecture Overview

In this work we propose a runtime reconfigurable architec-
ture for accelerating short read alignment using FPGAs. In
this architecture each module in the alignment design is
mapped to its own FPGA configuration, where it is repli-
cated as many times as possible according to the resources

(b) Run-time reconfigurable architecture. Note: I.D denotes intermediate data.

available on the FPGA fabric. Runtime reconfiguration is
used to dynamically switch between the configurations.
Fig. 4b illustrates a runtime reconfigurable architecture for
an alignment design comprising three modules. Since each
configuration contains only a single module type with no
interconnections, the performance is not reduced by the lim-
itations observed for a static architecture.

The runtime reconfigurable architecture has the following
operation cycle: for each stage in the alignment algorithm the
corresponding configuration is loaded onto the FPGA fabric.
Input data, or intermediate data from the previous stage are
streamed to the FPGA where they are processed in parallel
by the modules. Output data are stored in off-chip memory
directly attached to the FPGA device, or host memory. The
configuration corresponding to the next stage in the align-
ment algorithm is then loaded onto the FPGA fabric and the
process is repeated until the final stage is complete.

The population of a given module and the alignment
time for a runtime reconfigurable architecture are given by
Equations (3) and (4) respectively. The population of each
module in the alignment design is maximised at the cost of
concurrent execution; consequently, high performance is
achieved through the parallel processing of data by the
modules. The overheads of the runtime reconfigurable
architecture are the reconfiguration time, and the data trans-
fer time. Given that reconfiguration takes only a few sec-
onds, and the streaming interface bandwidths are in the
order of GB/s, these overheads do not substantially impact
the alignment time.

P; _4 (3)

i
Niti
T = t t:). 4
;(B +r+t))

A runtime reconfigurable architecture allows increased
alignment flexibility compared to a static architecture. Con-
figurations can be dynamically re-ordered, inserted and
deleted without having to rebuild the design. For example,
if the alignment percentage is below an acceptable value,
additional configurations can be dynamically inserted to
the alignment design to process the remaining short reads.
With a comprehensive library of configurations, a runtime
reconfigurable architecture can efficiently target a large por-
tion of the parameter space.

5 ALIGNMENT DESIGN

In this section we present a short read alignment design
which supports exact and approximate alignment with up

672 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO.3, MAY/JUNE 2017

/1) Split read into 3 seeds: 2) Align seeds to reference genome: \

L/3 21/3 X v
[A [8 [c | Ref —! ‘

A —
B

A C

3) Collate and normalise positions: 4) Compare read and reference at positions:

Seed Pos Ref@X —
A X Read ——y—
B X+/3 | — | x
A % Ref@Y ——————
C Y+2L/3 Read — %

_

Fig. 5. Seed-and-compare stage.

to two mismatches. Our design is based on the FM-index
search operation, with optimisations to improve the align-
ment performance.

5.1 Design Overview

The proposed alignment design comprises four stages: exact
alignment, seed-and-compare, one mismatch alignment,
and two mismatches alignment. The reads are first proc-
essed by the exact alignment module. For most sequencing
data, approximately 70 percent of the reads should exactly
align to the reference genome. Any unaligned reads are
processed by the seed alignment module, which splits the
reads into three non-overlapping seeds and independently
aligns them to the reference genome. The computation then
branches according to the total number of positions the
seeds align to, denoted by n,.s: 1) If n,,, is zero, the short
read is unable to be aligned to the reference genome with
up to two mismatches, therefore it is omitted from any fur-
ther processing, 2) If n,,, is less than a specified threshold
value, the short read is directly compared to the reference
genome at each position using the compare module, 3) If
Nyes €xceeds the threshold value, the short reads are proc-
essed by the one and two mismatch stages. The threshold
value is used to balance the amount of processing done by
the compare module and the one and two mismatch align-
ment modules. For a position threshold of 5, we observe
that the majority of reads can be aligned using the compare
module. This reduces the of the amount of processing done
by the comparatively slower one and two mismatch align-
ment modules. Fig. 5 illustrates the seed-and-compare
stage. Aside from the compare module, all the modules are
based on the FM-index search operation.

5.2 Algorithmic Optimizations
In this section we present several algorithmic optimisa-
tions that are included to improve the performance of the
proposed alignment design. These optimisations target
two bottlenecks of the FM-index search operation: 1) ran-
dom memory access to the index, and 2) the large search
space when using a backtracking approach for approxi-
mate alignment. Table 2 defines the symbols used in the
optimisation analysis.

n-step FM-index. In the FM-index search operation, two
memory accesses (F[low/d] and F[high/d]) are required to
update the SA interval for each symbol in the read; conse-
quently, 2L memory accesses are required to exact align a

TABLE 2
Optimization Analysis Symbol Definitions

Symbol Definition

Number of symbols in read

Number of symbols in reference genome
Alphabet size of reference genome

Step size

Number of symbols before low and high point
to the same FM-index bucket

FM-index bucket width

Bucket sampling factor

Number of mismatches permitted

b S My

T X

read. Due to its large size, the FM-index is stored in off-chip
DRAM. Given that the access latency to off-chip DRAM is
in the order of hundreds of cycles, and the access pattern
is random, the performance of the search operation is
memory-bound.

To reduce the number of memory accesses, we utilise the
n-step FM-index [6]. This is an algorithmic modification to
the FM-index structure which allows the SA interval to be
updated for n symbols in each step; consequently, the num-
ber of memory accesses is reduced from 2L to 2L/n. The
n-step FM-index is constructed by first computing n BWTs
using the relationship: B;; = R[(SA; — j)mod |R|], where
j=1,...,n. The BWTs are then merged to create a single
BWT with an increased alphabet size. The n-step FM-index
is then generated using the same procedure described in
Section 2.

The n-step FM-index search operation is shown in Algo-
rithm 2. Note that if L is not divisible by n, the SA is first
updated for the remainder symbols using precomputed val-
ues. The trade-off for the n-step FM-index is the increase in
index size. The index size is calculated using Equation (5).
For the Human genome, with R=3G, % =4,n=3,and d =
128, the index size is 8.7 GB.

_4-R-3X" N R - ceil(log, (2" + 1))

M
d 8

Bytes. (5)

Algorithm 2. n-step FM-index Search Operation

Input: substring @, n-step FM-index F with bucket width d and
step size n

Procedure: merge(si, ..., s,) — merge symbols from left to right

1: fori «— |Q| — 1to 0 step —n do > update suffix array interval
2: s« merge(Qi—ni1,-..,Q;) 1> merge n substring symbols

3: low — P(F[low/d], s, low)

4: high — ®(F[high/d], s, high)

5. if low > high then > terminate if symbol not matched
6: end

7: endif

8: end for

Index oversampling. With each update of the SA interval,
the values of low and high converge. After several iterations
it is often the case that low and high are sufficiently close
that F[low/d] and F[high/d] point to the same index bucket.
In this case only one memory access is required to update
both low and high. If F[low/d] and F[high/d] always point to
the same index bucket after X symbols have been aligned,

ARRAM ET AL.: LEVERAGING FPGAS FOR ACCELERATING SHORT READ ALIGNMENT 673

then the total number of memory accesses is reduced from
2L to 2X + (L — X). The value of X is dependent on the
size of the reference sequence. Tests using the Human-
genome as a reference sequence indicate that the average
value for X is 13, therefore for a sequence of 100 symbols,
the number of memory accesses is reduced by 1.8 times.

To eliminate cases where the values of low and high are
sufficiently close, but F[low/d] and F[high/d] point to adja-
cent buckets, the index is oversampled by a factor of f. In
this procedure, the Occ values are stored every d/ f symbols,
however the BWT size remains d symbols. The trade-off is
that the index size increases by a factor of f, however this
can be mitigated by increasing the bucket width. If
high — low < d/f, then F[low/d] and F'[high/d] will point to
the same index bucket; consequently, only one memory
access is required to update the suffix array interval for
each of the remaining symbols. The SA interval update is
modified according to Algorithm 3.

Algorithm 3. Oversampled n-step FM-index Search
Operation

Input: substring (), oversampled n-step FM-index F with
bucket width d, step size n, and oversampling factor f

1: fori — |Q| — 1to O step -ndo > update suffix array interval
2: s merge(Qiny1,.. -, Qi)

3: low — P(F[low/d], s, low)
4: if high — low > d/ f then > point to different buckets
5: high «— ®(F[high/d], s, high)

6: else I> point to same bucket
7: high — ®(F[low/d), s, high)

8: endif

9:

end for

Bi-directional backtracking. The FM-index search operation
is extended with backtracking to support approximate align-
ment. An exhaustive search is used to detect all possible
alignment hits. In this approach all possible read permuta-
tions must be tested, therefore the worst case time complex-
ity is O(S"L**!). To improve the approximate alignment
performance, we prune the search space by constraining the
edit positions and using a bi-directional search [12].

To support search operations in both directions (forward
and backward), the FM-index is generated for both the ref-
erence genome and its reverse. In a backward search, the
FM-index generated from the reference genome is used,
and in a forward search the FM-index generated from its
reverse is used. To prune the search space the edit positions
are constrained. For example, if one edit is permitted, the
edit position can either exist in: 1) the first half of the read,
or 2) the second half. For case 1) the second half of the read
must exact align. A backward search is used to update the
SA interval for the second half of the read. The backward
search is then extended to the first half of the read, however
an edit is considered at each position. For case 2) the first
half of the read must exact align. A forward search is used
to update the SA interval for the first half of the read. Then
the forward search is extended to the second half of the
read, however an edit is considered at each position. The
advantage of this approach is that long sections of the read
can be exact aligned first, reducing the SA interval size
and the search space. In general, for k£ permitted edit

a2 N

DRAM: FM-index

¢

| Memory Controller |

F[high/d]

Fllow/d]
A

A A

Exact Align
Module

Input Output

A

FPGA | Host Interface |

- :

Host CPU |/

Fig. 6. Exact alignment configuration. Arrows indicate data streams
between the design components.

operations, the short read is split into &+ 1 sections. The
short read is then tested for k edit operations using a series
of phases which aim to maximise the length of the section
exact aligned first.

6 HARDWARE IMPLEMENTATION

In this section we present the implementation details of our
alignment design. Hardware optimisations are presented
which improve the alignment performance.

6.1 Module Designs

Modules are developed for each stage in the alignment
design. Each module is mapped to its own FPGA configura-
tion, where it is replicated as many times as possible accord-
ing to the resources available on the FPGA fabric. Our
hardware design targets computing systems with FPGA
coprocessor boards. The host CPU reads in the short read
data from disk and offloads the reads to the FPGA for align-
ment. The results are transferred back to the host and writ-
ten to disk.

FM-Index Modules. The host packages the short reads into
packets composed of; a read identifier, read length, and the
read symbols (encoded using 2-bits). The host sends these
packets to the FPGA, which performs the FM-index search
operation. After all the read symbols have been aligned, the
final SA interval is transferred back to the host, where it is
converted to reference genome positions. Fig. 6 illustrates a
high-level overview of the exact alignment configuration.

The FM-index is stored in off-chip DRAM attached to the
FPGA device. Accessing DRAM takes hundreds of cycles,
which coupled with the step interdependence of the FM-
index search operation results in a non-filled pipeline of
operations. To improve the module performance, the proc-
essing of multiple reads is interleaved such that in each
pipeline stage a different read is processed; consequently,
the pipeline is completely filled, increasing the throughput.
Furthermore, the DRAM memory controller is constantly
processing commands, maximising the memory bandwidth
utilisation. Interleaving is implemented using a circular
buffer, where the buffer size is made equal to the total

674 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO.3, MAY/JUNE 2017

memory controller

/ Iow/dI 4 highvd Flhigh/d] \

Fllow/d] i
2 _Sar_ne": ;
| Bucket? ! |
low T T high v ;
Merged symbols | Update
Short >
Read low high
Batch
Buffer v l
y--N-.
* | End? 1
Input ! Lo -
i | Output
1 * p

host interface

%

Fig. 7. Exact match module block diagram. Note dashed lines indicate
logic controlling the state of the stream.

module latency. The trade-off is that additional logic and
BRAM resources are required to store the batch of reads
and their corresponding alignment state. The additional
resources can be reduced by minimising the module
latency. For example, counting the occurrences of a symbol
directly from the BWT is transformed into a Hamming
weight computation in order to reduce resource usage.

In each cycle, two memory commands are sent to the
memory controller requesting Fllow/d] and Flhigh/d]. A
custom memory command generator is developed so that
the index oversampling optimisation can be realised in
hardware. For the F[high/d] memory stream, a control bit is
used to disable the command when low and high point to
the same bucket. In this case the bucket corresponding to
Fllow/d] is used to update both low and high, reducing the
number of memory commands processed. Multiplexers are
used to select the appropriate input and computation result
based on the values of low and high. Fig. 7 shows a block
diagram of the exact alignment module.

For the one and two mismatch alignment modules, addi-
tional control logic is used to enable bi-directional back-
tracking. Circular buffers are used to store the state
(symbol, position, low and high) for each mismatch permit-
ted. These states, along with the updated values of low and
high are used to control the backtracking. Both modules are
designed to find all possible alignment hits for the given
number of mismatches. Since the number of alignment hits
for each short read is non-deterministic, the host is unable
to synchronise with the FPGA based on the number of out-
put bytes received. The alignment results are therefore
stored first in off-chip DRAM, then streamed to the host
after processing has finished. Both modules therefore
require an additional stream to DRAM to write the align-
ment results.

Compare module. The compare module performs an equal-
ity test of the short read and reference genome at each posi-
tion in parallel. The host transfers packets to the FPGA
composed of, a read identifier, read length, the read sym-
bols, and the reference genome segment symbols. The
FPGA directly compares the read and reference symbols in
each position, storing the number of mismatches, and
the corresponding position and symbol for up to two mis-
matches. The result is transferred back to the host CPU,
where the validity of the alignment position is determined
based on the number of mismatches found.

Infiniband

ﬁ

SWITCH FABRIC

MaxRing

f-u

FPGA

Fig. 8. Maxeler MPC-X2000 architecture [19].

7 EVALUATION

In this section we evaluate the performance of our FPGA-
based alignment design, and provide comparisons to the
fastest software alignment tools currently available.

7.1 Experiment Setup
Our alignment design is implemented on a Maxeler MPC-
X2000 system [19] with eight dataflow engines (DFEs). Each
DFE comprises a single Altera Stratix V FPGA (28 nm fea-
ture size) connected to 48 GB of DRAM. The DFEs are con-
nected to a CPU host machine via Infiniband. The Maxeler
development process involves expressing the to-be-
accelerated computation as a dataflow graph using the
Max] language. The MaxCompiler then transforms the data-
flow graph into low-level hardware. Fig. 8 illustrates the
MPC-X2000 architecture.

The FM-index is constructed with a bucket width
d = 128, step size n = 3, and a sampling factor f = 2. These
values are chosen to maximise the step size whilst ensuring
that: a) the index fits in DRAM, and b) the bucket size is
optimal with respect to the DRAM burst size. Figs. 9 and 10
show how both the FM-index and bucket size vary with the
bucket width and step size respectively. With the parameter
values chosen, the FM-index size is 34 GB, and the bucket
size is 384 Bytes, which matches the burst size of the Max-
eler DFEs. The FM-index is static throughout alignment,
therefore it only needs to be transferred to DRAM once for
many alignment jobs to be performed. For hardware plat-
forms with soft memory controllers, partial reconfiguration
can be used to retain the data in memory when a reconfigu-
ration is performed.

250 +
200

150 -

n=3
50

n=2

n=1

0 v v v v

64 128 256 512
Bucket width d

FM-index size (GB)

Fig. 9. FM-index size as a function of the bucket width d and step size n.
Note that the sampling factor f = 2, and the size accounts for both the
FM-index of the reference genome and its reverse.

ARRAM ET AL.: LEVERAGING FPGAS FOR ACCELERATING SHORT READ ALIGNMENT 675

1600 - n=4a
1400 -
1200 -
1000 -
800 -

600 -

Bucket size (Bytes)

400

200 -

p
@
4

0 =
64 128 256 512
Bucket width d

Fig. 10. FM-index bucket size as a function of the bucket width d and
step size n.

The resource usage and achievable clock frequency for
each hardware configuration is shown in Table 3. The FM-
index-based configurations show relatively low resource
usage as only a single module is instantiated on the FPGA
fabric. This limitation is specific to the Maxeler platform:
each DFE supports a single channel to off-chip memory;
consequently, no additional performance is observed when
instantiating multiple modules as the memory bandwidth is
saturated. To improve the performance, the memory mod-
ules can be decoupled, allowing up to six independent
memory channels per DFE. Although this modification has
not been implemented yet, we use it to provide an upper
bound performance estimate for the MPC-X2000. Measure-
ments indicate that the achievable memory bandwidth per
DFE is 4.2 GB/s, which is 11 percent of the theoretical peak.
For hardware platforms with random access speeds close to
that of sequential access, we expect the performance of our
design to substantially increase.

The performance of our hardware-accelerated alignment
design is compared to the software tools listed in Table 4.
The CPU-based tools are run on a 1 U system with dual Intel
Xeon E5-2640 s (22 nm feature size) and 64 GB of DDR3-
1333. Soap3-dp is run on an NVIDIA Tesla C2070 GPU. For
this evaluation both simulated and real experimental
sequencing data are aligned. The real experimental data is
taken from the ERP001652 [7] study which comprises 10M
reads of 100 bases. The runtime options for each tool are set
to report the best alignment hits with up to two mismatches.
Given the size of the data sets evaluated, we do not include
the FPGA reconfiguration time (~4s) and the FM-index
transfer time (~50s) in our runtime measurements, as it
would introduce a large negative bias. Furthermore, in all
runtime measurements, including the software tools, disk
IO time is omitted.

TABLE 3
Module Resource Usage on a Altera Stratix V FPGA

Alignment Clock LUT FF BRAM
Configuration (MHz) k) k) k)
Exact 200 68 (26%) 129 (25%) 0.6 (22%)
Seed 200 74 (28%) 142 (26%) 0.9 (33%)
Compare (x8) 200 86 (33%) 219 (40%) 1.2 (46%)
One mismatch 150 74 28%) 136 (25%) 0.9 (33%)
Two mismatches 150 75(28%) 136 (25%) 0.9 (33%)

Note that the memory controller is run at 800 MHz.

TABLE 4
Alignment Tools Used in Evaluation
Tool Version Options
BWA aln+samse 0.7.12 -n2-plé
Bowtie2 2.2.6 —very-fast -p 16
Soap2 221 -v2-pl6
Soap3-dp 2.3.177 -s2

Note that 16 threads were used for all the CPU-based tools tested,
and up to two edits were permitted where available.

7.2 Results
The performance of our alignment design is evaluated for
exact, one mismatch, and two mismatches alignment. In
each test 10M short reads of 100 bases are directly sampled
from Hg19. Mismatches are then inserted at random posi-
tions in the reads according to the number being tested.
Fig. 11 shows that for exact match, one mismatch, and two
mismatches alignment, our design is faster than all the soft-
ware tools tested. The largest performance improvement is
for exact alignment which is 112 times faster than Soap2,
and 42 times faster than Soap3-dp. For one and two mis-
matches alignment our design is 31 and 23 times faster than
Bowtie2 respectively, and 18 and 15 times faster than
Soap3-dp respectively.

The n-step FM-index is the largest contributing factor to
the hardware performance, providing a three times improve-
ment over the base algorithm. The performance improve-
ment from index oversampling is difficult to quantify as it
depends on the reference sequence length. When the Human
genome is used as a reference sequence the performance
improves by 1.8 times. For the seed-and-compare optimisa-
tion a position threshold of 5 is used to ensure that software
tasks, such as generating the hardware input, do not become
a bottleneck. Over 70 percent of the short reads are aligned in
the seed-and-compare stage, reducing the amount of work
done by the comparatively slower one and two mismatches
alignment modules. The largest performance improvement
is for two mismatches alignment, which is 1.6 times faster
when the seed-and-compare stage is included.

The performance of our alignment design is evaluated
on real experimental data from the ERP001652 study. The
sequenced data comprises 10M reads of 100 bases, where
73 percent of the short reads exactly align, 13 percent align
with one mismatch, and 3 percent align with two mis-
matches. Table 5 shows that our design is faster than all the
software tools tested. In particular, our design is 28 times
faster than Bowtie2, and nine times faster than Soap3-dp.
mBWA

Soap2 mBowtie2 M Soap3-dp Our Design

242 250

166 164

Runtime (s)

0 1 2
Number of mismatches

Fig. 11. Run-time for exact, one mismatch and two mismatches
alignment.

676 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO.3, MAY/JUNE 2017

TABLE 5
ERP001652 Data Set Alignment Performance

TABLE 6
Device Energy Consumption

Tool Accuracy Runtime (s) Speed-up Tool Device Power (W) Energy Consumption (kJ)
BWA 90.1 273.4 1.0 BWA 180 24.6

Soap2 89.4 188.9 14 Soap2 180 17.0

Bowtie2 96.3 175.0 1.6 Bowtie2 180 15.7

Soap3-dp 89.4 56.3 4.9 Soap3-dp 238 13.4

Our design 89.4 6.3 43.4 Our design 86 (average) 0.54

Upper bound estimate 89.4 1.1 248.5

The bottleneck of our design is the seed-and-compare stage
which accounts for 40 percent of the runtime. This bottleneck
can be reduced by making the position threshold smaller,
however this increases the runtime as more work is done by
the one and two mismatches alignment modules. For the
upper bound performance estimate it is assumed that there
are enough resources on the FPGA fabric to support six inde-
pendent memory channels. If each memory channel can sus-
tain the same bandwidth observed in our current design, a
six times performance improvement would be expected.
Note that issues such as meeting timing and resource limita-
tions could reduce the achievable improvement.

The accuracy of our design for up to two mismatches is
measured to be identical to that of Soap2 and Soap3-dp. These
tools have the same alignment strategy as our design: the
short reads are first tested for exact alignment, followed by
one mismatch alignment, and then two mismatches align-
ment. The greater alignment accuracy observed for BWA and
Bowtie2 can be attributed to gaps being natively supported,
and the tool not supporting precise control over the number
of mismatches permitted respectively. Since the reconfigura-
ble architecture is completely modular, a dynamic program-
ming module can be added to support gapped alignment.

Given that the runtime scales linearly with the read
count, the alignment time can be linearly extrapolated to
that for a typically sized workload of 300 M reads. Our
design could align this sized workload in just over 3
minutes, which would significantly reduce the time taken to
analyse sequencing data. One concern is that disk IO time
would become the bottleneck of the alignment stage, how-
ever our design can be easily adapted to read compressed
sequencing data formats such as gzip and reference-based
compression formats.

Table 6 shows the energy consumption for our design
and the software tools. The CPU and GPU device power
values are taken from the vendors’ product information,
whilst the FPGA device power is measured from the MaxOS
operating system. The values in Table 6 indicate that our
design consumes over an order of magnitude less energy
than the software tools tested. This can be attributed to the
low operational clock frequency, coupled with the compara-
tively short alignment time. With relatively small energy
consumption, form factor and cooling requirements, our
design is a promising candidate for integration in data
centres and clinical settings.

8 CONCLUSION

In this work we show that a runtime reconfigurable archi-
tecture can be used to accelerate short read alignment. This

architecture exploits the reconfigurability of FPGAs to
enable the development of fast yet flexible alignment
designs. We apply this architecture to develop a short read
alignment design which supports exact and approximate
alignment with up to two mismatches. Our design is based
on the FM-index search operation, with optimisations to
improve the alignment performance. In particular, the
n-step FM-index, index oversampling, bi-directional back-
tracking and a seed-and-compare stage are included. Meas-
urements show that when aligning 10M reads from the
ERP001652 study, our design is 28 times faster than the
CPU-based Bowtie2 and nine times faster than the GPU-
based Soap3-dp. Future work involves applying our work
to real sequence analysis pipelines, and automating the
implementation of such pipelines from a high-level descrip-
tion. For enquiries regarding the availability of our design,
please contact the first author.

ACKNOWLEDGMENTS

The authors would like to thank Dennis Lo, Rossa Chiu, and
Alex Ross for their advice and encouragement. This work
was supported in part by Maxeler University Programme,
Altera, UK EPSRC Project EP/1012036/1, the European
Union Horizon 2020 Research and Innovation Programme
under grant agreement number 671653, and the HiPEAC
NoE.

REFERENCES

[1]1 G. R. Abecasis, D. Altshuler, and A. Auton, “A map of human
genome variation from population-scale sequencing,” Nature,
vol. 467, no. 7319, pp. 1061-1073, Oct. 2010.

[2]]J. Arram, et al., “Hardware acceleration of genetic sequence
alignment,” in Proc. Appl. Reconfigurable Comput., 2013,
pp- 13-24.

[3] J. Arram, et al., “Ramethy: Reconfigurable acceleration of bisulfite
sequence alignment,” in Proc. Field-Programmable Gate Arrays,
2015, pp. 250-259.

[4] (2016). BGI-Biocloud. [Online]. Available: http://biocloud.cngb.
org/.

[5] M. Burrows and D. Wheeler, “A block-sorting lossless data com-
pression algorithm,” Digital Equipment Corporation, Palo Alto,
CA, USA, Tech. Rep. 124, 1994.

[6] A.Chacén, et al., “n-step FM-index for faster pattern matching,”
Procedia Comput. Sci., vol. 18, pp. 70-79, 2013.

[7] (2016). ENA short reads. [Online]. Available: http://www.ebi.ac.
uk/ena/data/view/ERP001652.

[8] E. Fernandez, et al., “String matching in hardware using the FM-
index,” in Proc. Field-Programmable Custom Comput. Machines, May
2011, pp. 218-225.

[9] E. Fernandez, et al. “Multithreaded FPGA acceleration of DNA

sequence mapping,” in Proc. High Perform. Extreme Comput., Sep.

2012, pp. 1-6.

P. Ferragina and G. Manzini, “An experimental study of an

opportunistic index,” in Proc. Annu. ACM-SIAM Symp. Discrete

Algorithm, 2001, pp. 269-278.

[10]

ARRAM ET AL.: LEVERAGING FPGAS FOR ACCELERATING SHORT READ ALIGNMENT 677

[11] S. D. Kahn, “On the future of genomic data,” Sci. (Washington),
vol. 331, no. 6018, pp. 728-729, 2011.

[12] T. W. Lam, et al., “High throughput short read alignment via bi-
directional BWT,” in Proc. IEEE Int. Conf. Bioinformatics Biomed.,
Nov. 2009, pp. 31-36.

[13] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment
with bowtie 2,” Nat. Methods, vol. 9, no. 4, pp. 357-359, Apr. 2012.

[14] H. Li and R. Durbin, “Fast and accurate short read alignment
with burrows-wheeler transform,” Bioinf., vol. 25, no. 14,
pp- 1754-1760, Jul. 2009.

[15] R. Li, et al., “Soap2: An improved ultrafast tool for short read
alignment,” Bioinformatics, vol. 25, no. 15, pp. 1966-1967, 2009.

[16] Y. Liu, et al., “CUSHAW: A CUDA compatible short read aligner
to large genomes based on the burrows-wheeler transform,”
Bioinf., vol. 28, no. 14, pp. 1830-1837, Jul. 2012.

[17] R. Luo, et al., “SOAP3-dp: Fast, accurate and sensitive GPU-based
short read aligner,” PLoS ONE, vol. 8, no. 5, p. e65632, 2013.

[18] U. Manber and G. Myers, “Suffix arrays: A new method for on-
line string searches,” in Proc. 1st Annu. ACM-SIAM Symp. Discr.
Algorithms, 1990, pp. 319-327.

[19] (2016). Maxeler Technologies. [Online]. Available: http://www.
maxeler.com/products/mpc-xseries/.

[20] C. Olson, et al., “Hardware acceleration of short read mapping,”
in Proc. Field-Programmable Custom Comput. Mach., Apr. 2012,
pp- 161-168.

[21] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” . Mol. Biol., vol. 147, no. 1, pp. 195-197,
Mar. 1981.

James Arram received the BSc degree in physics from Bristol Univer-
sity, Bristol, United Kingdom, and the MSc degree in computing science
from Imperial College London, London, United Kingdom. He is currently
working toward the PhD degree in the Department of Computing, Impe-
rial College London. His research interests include FPGA-based accel-
eration of genomic data analysis, and compression.

Thomas Kaplan received the BEng degree in computing from Imperial
College London, London, United kingdom. He is currently working at
Fidelity International, Pembroke, Bermuda.

Wayne Luk is a professor of computer engineering at Imperial College
London. His current research interests include theory and practice of
customizing hardware and software for specific application domains
such as genomics and climate modelling, and high-level compilation
techniques and tools for high-performance computers and embedded
systems. He is a fellow of the Royal Academy of Engineering, the IEEE,
and the BCS. He received the Research Excellence Award from Imperial
College London, and 11 awards for his publications from various interna-
tional conferences.

Peiyong Jiang received the PhD degree from the Department of Chem-
ical Pathology, The Chinese University of Hong Kong, Hong Kong. He is
currently an assistant professor and a bioinformatician in the Depart-
ment of Chemical Pathology, The Chinese University of Hong Kong.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

