
178 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

An FPGA Architecture and CAD Flow Supporting
Dynamically Controlled Power Gating

Assem A. M. Bsoul, Student Member, IEEE, Steven J. E. Wilton, Senior Member, IEEE,
Kuen Hung Tsoi, and Wayne Luk, Fellow, IEEE

Abstract— Leakage power is an important component of
the total power consumption in field-programmable gate
arrays (FPGAs) built using 90-nm and smaller technology nodes.
Power gating was shown to be effective at reducing the leakage
power. Previous techniques focus on turning OFF unused FPGA
resources at configuration time; the benefit of this approach
depends on resource utilization. In this paper, we present an
FPGA architecture that enables dynamically controlled power
gating, in which FPGA resources can be selectively powered down
at run-time. This could lead to significant overall energy savings
for applications having modules with long idle times. We also
present a CAD flow that can be used to map applications to the
proposed architecture. We study the area and power tradeoffs by
varying the different FPGA architecture parameters and power
gating granularity. The proposed CAD flow is used to map a set
of benchmark circuits that have multiple power-gated modules
to the proposed architecture. Power savings of up to 83% are
achievable for these circuits. Finally, we study a control system of
a robot that is used in endoscopy. Using the proposed architecture
combined with clock gating results in up to 19% energy savings
in this application.

Index Terms— Computer aided design, field-programmable
gate arrays, power gating, static/leakage power.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) have
become ubiquitous in applications, such as telecommu-

nications, digital signal processing, and scientific computing.
In the mobile devices market, however, FPGAs have had
limited penetration, partially due to their high power
consumption. Compared with application-specific integrated
circuit (ASIC) implementations, FPGA implementations
consume 12× more power on average [1]. To bring recon-
figurable technology to these hand-held applications, new
programmable devices that consume significantly less power
are required.

Many researchers have proposed techniques for reducing
the power dissipation of FPGAs based on the methods that

Manuscript received June 11, 2014; revised September 27, 2014; accepted
December 28, 2014. Date of publication February 12, 2015; date of
current version December 24, 2015. The work of A. A. M. Bsoul and
S. J. E. Wilton was supported in part by Altera Toronto Technology Center,
Toronto, ON, Canada, and in part by the Natural Science and Research Council
of Canada. The work of K. H. Tsoi and W. Luk was supported in part by
the U.K. Engineering and Physical Sciences Research Council and in part
by the European Union Seventh Framework Programme under Grant 257906,
Grant 287804, and Grant 318521.

A. A. M. Bsoul and S. J. E. Wilton are with the Department of Electrical
and Computer Engineering, University of British Columbia, Vancouver,
BC V6T 1Z4, Canada (e-mail: absoul@ece.ubc.ca; stevew@ece.ubc.ca).

K. H. Tsoi and W. Luk are with the Department of Computing, Imperial
College London, London SW7 2AZ, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2015.2393914

Fig. 1. Basic idea of power gating. (a) Basic power gating. (b) Configurable
power gating.

have originally been applied to ASICs, including guarded
evaluation, clock gating, power gating, dual supply voltages,
and power-aware CAD optimization [2]–[5]. Even after
applying all these techniques, the power consumption of
FPGAs remains prohibitive for some applications.

Previous techniques to reduce the power dissipation of
FPGAs have focused on reducing both the dynamic and the
static (leakage) power of these devices. Dynamic power is
dissipated due to charging and discharging of the circuit’s
capacitance, while leakage power is dissipated when the circuit
is idle. Static power dissipation is a major component of
the total power consumption in reconfigurable devices based
on the sub-90-nm CMOS technology nodes. Recent reports
from FPGA vendors indicate that FPGAs built on a 28-nm
technology have roughly equal amounts of dynamic and static
power [6], [7]. In handheld devices, it is conceivable that
the leakage power will be even more significant, since these
devices are often used in an always ON state, remaining
idle except for short bursts of activity. Thus, low-leakage
FPGAs are essential if they are to be used for these kinds
of applications.

An effective way to reduce leakage power is to employ
power gating [8]. As shown in Fig. 1(a), by connecting the
supply voltage or the ground of a circuit component through
a power gating transistor, also called a sleep transistor or a
power switch, the circuit component can be turned ON or OFF

by turning the corresponding power switch ON or OFF. When
the power switch is turned OFF, the leakage current is limited
by that of the power switch. A performance loss may result
because of the extra resistance in the current path. By sizing
the power switch appropriately, an acceptable tradeoff between
the performance, power savings, and area can be found.

Previous proposals for power gating in FPGAs
use configuration bits to control the power switches
[as in Fig. 1(b)] [4], [9]–[11]. We refer to them as statically

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

BSOUL et al.: FPGA ARCHITECTURE AND CAD FLOW SUPPORTING DCPG 179

controlled power gating, since once configured, the state of
each part of the chip (ON or OFF) does not change. Statically
controlled power gating is effective for FPGAs, since if
the design does not fill an entire FPGA, the remainder of
the FPGA can be safely turned OFF, saving leakage power.
However, if only a small number of resources in an FPGA
are not used, the savings from this technique may be
limited.

In this paper, we propose dynamically controlled power
gating (DCPG) in an FPGA. In our architecture, the power
switches can be turned ON and OFF at run-time under the
control of other circuitry either running on the FPGA itself,
or external to the FPGA. The signals to control the power
switches are connected to the general-purpose routing fabric
of the FPGA.

This paper is based on [12] and [13]. The work in [12]
focuses on power gating for logic resources in FPGAs, and
the work in [13] focuses on power gating for coarse-grained
routing resources. Our main additional contributions in this
paper are as follows.

1) We propose fine-grained power gating for routing
resources. This allows powering down a larger number
of routing resources at configuration time, and enables
dynamic power state control for a larger number of
routing resources at run-time.

2) We present a CAD flow that can be used to map the
application circuits that contain power-gated modules to
the proposed architecture. In this flow, power control sig-
nals are connected to the different power-gated resources
to control their power state at run-time using the existing
general purpose routing fabric of an FPGA.

3) We propose enhancements to an FPGA routing
algorithm that try to minimize the number of routing
resources that cannot be powered down at run-time.

4) The presented CAD flow is used to evaluate the best
granularity of routing resources power gating.

5) We evaluate a robot control system used in medical
applications using the power gating architecture
proposed in this paper, and we study its power savings
for different operation activities.

We evaluate the proposed architecture in terms of its area
overhead and the amount of leakage power reduction that it
can achieve by varying the basic FPGA architecture parame-
ters, and by studying different architecture granularity levels.
We also use the proposed CAD flow to evaluate the poten-
tial power savings in a set of synthetic benchmark circuits,
in addition to the robot control system mentioned above.

This paper is organized as follows. Section II provides
overview of related works, and describes the FPGA archi-
tecture model adopted in this paper. Section III describes
the proposed DCPG FPGA architecture. Section IV describes
the proposed CAD flow and the enhancements to the routing
algorithm to maximize the number of resources that can be
turned OFF. In Section V, we describe the different benchmark
circuits used to evaluate the proposed architecture. Finally,
in Section VI, we experimentally evaluate the proposed
architecture.

II. BACKGROUND

A. Related Work

Lin et al. [9] studied fine-grained power gating for FPGAs
to turn OFF unused resources at configuration time; their study
showed that the area overhead could be >100%, which is
undesirable because of the associated degradation in power
and timing, and the increase in cost.

Gayasen et al. [10] proposed coarse-grained power gating
using a power switch for a region of logic blocks. The use of
dynamic reconfiguration was suggested to change the power
state for the different regions in an FPGA based on their
activity. However, this incurs power overhead and can only
be applied at a very coarse granularity.

Tuan et al. [4] proposed power gating for an architecture
similar to the Xilinx Spartan-3. Their architecture supports
sleep mode using a sleep signal from an off-chip controller that
is connected to all power switches in the FPGA; this scheme
allows creating one controllable power domain only.

Bharadwaj et al. [11] proposed synthesizing a power state
controller from the data flow graph of an application; this
controller could exploit the idleness periods of the application
to reduce the dissipated leakage energy in an FPGA. They
used the same architecture in [10].

Li et al. [14] proposed using a power control hard macro
that is associated with each tile in an FPGA to control its
power state (clock and power gating). They assume a power
gating architecture similar to that in [12].

Hoo et al. [15] proposed fine-grained power gating for
switch blocks (SBs) and a routing algorithm to optimize
the power savings. The proposed architecture, however, only
supports powering down unused switches at configuration
time.

Dynamic partial reconfiguration is also reported to reduce
the static power at run-time by enabling time sharing of FPGA
resources [6]. However, swapping reconfigurable modules
happens at the scale of milliseconds, which may result high
power overhead. In contrast, the proposed architecture enables
changing the power state at the scale of nanoseconds.

B. Architecture Framework

In this paper, we assume a tile-based FPGA architec-
ture [16]. An FPGA is composed of an array of tiles; each
tile is composed of a logic cluster (LC) and the associated
routing resources [two routing channels (RCs) and a SB],
as shown in Fig. 2. An LC is composed of a number of
basic logic elements (BLEs); each BLE is composed of a
lookup table (LUT), a flip-flop (FF), and a multiplexer to
select between the combinational or the registered output.
A local switch matrix in the LC is typically included to support
routing intracluster connections. Fig. 2 shows an LC composed
of N BLEs.

Each LC is surrounded by RCs from its four sides. The
intersection of two RCs forms a SB that can be configured
to route the signals to the different directions. Fig. 3 shows
examples of the connections for switches in an SB.
A connection from a RC that borders an LC to one of
its input pins can be made through configurable switches,

180 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

Fig. 2. Tile-based FPGA architecture.

Fig. 3. Example incoming wire tracks and switches in an SB.

Fig. 4. Example application mapped to an FPGA supporting DCPG.

called connection boxes (CBs). Buffers are typically inserted
to isolate the load capacitance of the wires in the RC from
the inputs of the CBs for performance issues, and they are
shared among all CBs bounded by that specific RC. Finally,
the outputs of an LC are connected directly to multiplexers
in the SBs through isolation buffers. This is similar to the
architectural assumptions made in the VPR 5.0 tool [17].

III. PROPOSED DCPG FPGA ARCHITECTURE

Fig. 4 shows an example system of three modules that
are mapped to an FPGA that supports DCPG. Each module
occupies a number of power gating regions (PGRs) in the
target FPGA architecture. Each PGR is composed of a number
of FPGA tiles; the number of tiles in a region dictates the
architecture granularity. The power state of each PGR can
be configured as always-ON, always-OFF, or dynamically-
controlled (DC). As will be explained later in this section,
the power state for some of the internal components of
a PGR can be configured to a different power state than that
for the encapsulating PGR.

In this example, two of the functional modules, M1 and M2,
experience long idle periods, thus it is desired to power

Fig. 5. Basic fine-grained DCPG for two neighboring tiles. Shared bordering
RCs have their own power gating circuit.

them down during these times to reduce the leakage power
consumption. The power state of the PGRs of M1 and M2
is configured to DC, which allows controlling their power
state at run-time. Power control signals are routed from a
power controller module to control the power states of modules
M1 and M2. The third module, M3, does not experience idle
periods, thus its power state is configured to be always-ON.
Similarly, the power state for the power controller is config-
ured to be always-ON. The power state for routing resources
that are used to route the power control signals is configured
to always-ON.

Power gating a module is beneficial if the energy consumed
during its idle periods is larger than the overhead of applying
power gating. This overhead results from the energy consumed
by the power controller and during power state transitions.

The proposed architecture enables realizing power domains
with different temporal (idle/active periods) and spatial char-
acteristics (sizes and locations), thus it is suitable for a wide
range of applications. There is no need to have fixed tracks
in the FPGA fabric to work as power control signals; rather,
power control signals can be routed on the preexisting FPGA
routing fabric similar to any other user signal. The following
sections describe the details of this architecture.

A. Basic Power Gating Architecture

In this section, we describe a fine-grained version of the
proposed power gating architecture. Fig. 5 shows two tiles of
an FPGA; some details are not shown for the sake of clarity.
The basic power gating architecture supports power gating at
the granularity of one tile, thus a PGR is one tile. The power
state can be set by configuring the SRAM cells that control
the select lines of the 3:1 multiplexers that drive the power
switches. The novelty of the proposed architecture lies in its
support for controlling the power state of individual LCs and
the routing resources (input pin CBs, track isolation buffers,
and SBs) dynamically at run-time. This makes the proposed
power gating scheme suitable for various tile-based
FPGA architectures.

The supported power modes are always-ON, always-OFF,
and DC. The always-ON mode sets the resources in a powered
state. This is useful for resources that need to be available all

BSOUL et al.: FPGA ARCHITECTURE AND CAD FLOW SUPPORTING DCPG 181

the time, such as power control signals or application modules
that do not experience idle times. The always-OFF power state
puts the resources in sleep and in low-leakage mode. This is
useful for resources that are not utilized by the application that
is mapped to the device. DC means that the power state of a
resource can be controlled at run-time, and can be changed by
changing the value on the power control signal.

As shown in Fig. 5, one of the bordering input pins of
each LC can be used to route the power control signal
to the power switch (control signals are labeled
PG_CNTL1 and PG_CNTL2). If an LC’s power state
is configured as DC, its power gating multiplexer (the 4:1
multiplexer in the figure) is used to route the power control
signal by configuring the SRAM cells that control the select
lines of the 4:1 multiplexer. If an LC’s input pin is used to
route the power control signal, then it cannot be used by the
logic implemented in the LC. Variations to this organization
where a subset of the input pins are used as inputs to the
power gating multiplexer can be realized. However, this makes
it harder to route the power control signals, since a smaller
set of routing tracks can be used to route the control signals.

For correct operation of the DC mode, the power state of
the RC that is used to route the power control signal must
be configured as always-ON. To support this, separate power
gating circuitry is used for the bordering RCs of an LC. The
lower part of Fig. 5 shows the details. When configured to
the DC mode, the AND gate ensures that the shared RC is
turned OFF only when both neighboring LCs are turned OFF

(when PG_CNTL1 = 1 and PG_CNTL2 = 1). This ensures
that any of the bordering RCs of an LC can be used as the entry
point for the power control signal. Therefore, such a signal
could be routed from an on-chip power controller to the target
LCs in the same way that any other user circuit signal is
routed.

The same power control signal can be routed to any number
of LCs that belong to the same power-gated module, which
forms one power domain. The SBs’ power state can be
configured in the same manner discussed above. More details
about SBs power gating will be discussed later in this section.

In the proposed architecture, the configuration memory cells
and the FFs in an LC are not power gated. The configuration
SRAM cells are typically implemented using a low leakage,
high-Vth process, such as the medium oxide thickness tran-
sistors used in configuration SRAM cells in some commercial
FPGAs [18]. The area of FFs within an LC is relatively small,
and thus they consume only a small amount of leakage power.
Therefore, these components are kept ON all the time instead
of using other state-saving mechanisms that would increase
the architecture complexity and power consumption.

Fig. 6 shows the details of an LC. Pull-down nMOS
transistors are used to isolate the outputs of the LC when the
LC is in sleep mode. This prevents large short-circuit current
in SB buffers that are driven by the LC outputs. Similarly, the
inputs of the FFs inside an LC are also isolated to prevent large
short-circuit current in the FFs. Notice that we assume that
clock gating is used in association with DCPG mode during
the idle times; this guarantees that the values stored in the
FFs do not get corrupted during sleep mode. The pull-down

Fig. 6. Internals of an LC with DCPG showing pull-down nMOS devices
at FF input and LC outputs. A status signal to indicate completion of power
transition can be routed through one of the LC’s outputs (the top).

nMOS transistors are controlled using the output of the
3:1 multiplexers that drive the power switch.

The architecture also provides a feedback signal to indicate
that a power domain has completed a power transition.
Fig. 6 shows that an inverted version of PLDN_CNTL, which
is the output of the related 3:1 multiplexer shown in Fig. 5, can
be routed through one of the LC’s outputs. This is done using
a 2:1 multiplexer at the output of BLE #1 inside the LC. The
SRAM cell that controls the select line of the 2:1 multiplexer
is configured to choose the feedback signal (PLDN_CNTL) or
the normal output of BLE #1. If the feedback signal is selected
to be routed to the output of the LC, the output of BLE #1 can
only be used internally in the LC. Note that since only one
feedback signal might be needed for a power-gated module,
at most one BLE in a power-gated module might be unusable.
Timing analysis can be used to determine that LC is the last
one to be turned ON/OFF in a module, and it can be used to
send the feedback signal.

B. Coarse-Grained Power Gating

The area and power overheads associated with the
architecture in Section III-A are due to the sleep transistors
of the LC and the RCs, the power gating multiplexer of the LC,
the 3:1 multiplexers that drive the gate of the sleep transistors,
the AND gates required to implement a proper power gating
for the RCs, and the additional SRAM configuration memory
cells.

Typically, when an application is mapped to an FPGA,
blocks that are part of the same functional module are placed
close to each other in order to minimize delay and wiring
costs [19]. Thus, it is likely that a group of LCs and RCs that
are spatially close to each other share the same power state.
It is, therefore, feasible to support power gating at a coarser
granularity level than what is described in Section III-A in
order to reduce the area and power overheads of the power
gating circuitry.

The concept of coarse-grained PGRs is presented here.
Unlike the fine-grained architecture in Section III-A where
each PGR is composed of only one tile, we propose
a coarse-grained architecture, in which a PGR is composed
of a number of tiles. Similar to the tile-level architecture in
Section III-A, the SRAM configuration memory cells and FFs
are powered on all the time.

Fig. 7 shows an example DCPG (PGR) of size 2 × 2 tiles.
Some details are omitted for clarity. The region’s LCs and

182 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

Fig. 7. Example PGR of 2×2 tiles. Internal region’s LCs and CBs share the
power switch. PGR’s SBs and bordering RCs have individual power switches.

internal RCs, within the large, dark box in the figure, share the
same power switch; thus, their power state can be configured
as one unit. The region’s SBs and bordering RCs have their
own power switches and their power states can be configured
separately; however, their power switches can still be
controlled using the region’s control signal (labeled PG_CNTL
in the figure) when they are configured as DC. The bordering
RCs in the coarse-grained PGRs have the same structure and
functionality described for the RCs in Fig. 5; they can be used
to route the power control signal to a PGR.

Different PGR sizes can be realized in the same manner. For
example, a 3 × 3 PGR consists of 3 × 3 tiles (this PGR has
12 bordering RCs). Larger PGRs make it more challenging
for the CAD tools to group related blocks in the same PGR,
resulting in smaller power savings. On the other hand, the area
and power overheads in smaller PGRs are larger. In terms
of application mapping, a small PGR size means that an
application occupies a larger number of PGRs; more routing
resources would be needed to route the power control signals,
which may negatively impact routability and requires more
always-ON routing resources.

C. Coarse-Grained Power-Gated Switch Blocks

In the previous sections, we described the proposed power
gating architecture for LCs and RCs (track isolation buffers
and CBs). This section focuses on describing the power gating
circuitry for SBs in a PGR.

The example PGR in Fig. 7 has a size of 2 × 2 tiles. The
power control signal that is used to control the power state of
the LCs region (PG_CNTL) is also used to selectively control
the power state of the individual SBs that belong to the same
region. For each LC, the SB that belongs to the same region
as the LC lies in the right-bottom corner of that LC.

Fig. 8 shows the power gating circuitry for an SB. This
circuitry is similar to that for the other components, as
described in the previous sections. Minimum-sized pull-down
nMOS transistors are placed at the outputs of the SB to pull

Fig. 8. Power gating circuit for a SB. SB outputs are pulled down to GND
when the SB’s power is OFF (in sleep mode).

TABLE I

CONFIGURABLE POWER MODES SUPPORTED BY THE

DIFFERENT COMPONENTS IN A PGR

them to ground during the sleep mode to ensure proper output
isolation. The gate input of the pull-down transistors is the
same as the gate input to the power switch.

This scheme enables different power modes for different
components in a PGR. Table I shows the supported
power modes. For example, if the internal part of a PGR
(LCs and internal RCs) is configured as DC, there is flexibility
in configuring the power state for the individual SBs and bor-
dering RCs. This flexibility allows some SBs to be always-ON

to route important signals, such as power control signals or
signals that connect between different modules.

D. Fine-Grained Power-Gated Switch Blocks

The power-gated SB architecture in Section III-C enables
configuring an SB’s power state as one unit. However, our
experiments for many application circuits showed that >50%
of the SBs’ switches are not utilized. Supporting finer granu-
larity power gating for SBs, therefore, may result in a larger
number of switches that can be turned OFF either statically
or dynamically at run-time compared with the coarse-grained
SB power gating. This would result significant reduction of
the total leakage power consumption, since an SB consumes
∼70% of a tile’s leakage power.

Fig. 9 shows how all switches in a specific SB side are
grouped into one power gating partition to implement a finer
granularity power gating. Partitions per side (PPS) is used
as an architecture parameter to describe the power gating
granularity of an SB. For example, PPS = 1 for the SB
in Fig. 9. Increasing PPS results in finer granularity power
gating. PPS = 0 represents an architecture where the power
state for an SB is configured as one unit (coarse-grained
power gating), while PPS = Nswitch indicates the finest power
gating granularity where the power state for each switch can

BSOUL et al.: FPGA ARCHITECTURE AND CAD FLOW SUPPORTING DCPG 183

Fig. 9. One power gating partition per SB side (details for two sides
are shown). The power state for each partition can be configured separately.

be controlled individually. Nswitch is the number of switches
that exist in an SB’s side. The cost of increasing PPS is the
additional area and leakage power due to the additional power
gating circuit components and the increase in the total effective
sleep transistor size. In order to ensure correct operation for
SBs when PPS > 0, the incoming tracks buffers (Fig. 3) must
be always-ON, i.e., not power gated.

E. Inrush Current During Wakeup Phase

When a power-gated module is turned ON, a large current
is drawn from the power grid lines in the chip to recharge the
internal nodes of the FPGA circuitry. This current is known as
inrush or wakeup current. If not handled appropriately, a large
inrush current may cause malfunction of the design [20].

The work in [21], [22] describes a configurable
architecture to solve the inrush current problem in FPGAs that
support DCPG by staggering the turn ON phase of the PGRs
in a power-gated module. The architecture in [21] and [22] can
be used to solve the inrush current problem in the proposed
architecture in this paper with small area and power overheads.
The architecture provides short turn ON times. For example,
turning ON a 1000 tiles module takes ∼10 clock cycles on a
300-MHz clock frequency, assuming 25 PGRs can be
turned ON simultaneously and each PGR has a size of 4 × 4
tiles [22].

The inrush current handling architecture in [21] and [22]
enables delaying the wakeup signal for each PGR using con-
figurable and fixed delay elements. The timing for activating
the isolation mechanism in our architecture (pull-down
nMOS transistors) must be handled appropriately. When a
PGR is turned OFF, isolation must be done before the rest of
the PGR is powered down. On the other hand, when a PGR is
turned ON, isolation must be deactivated after the PGR is
powered up. To enable this, a 2:1 multiplexer can be used to
drive the isolation activation signal (PLDN_CNTL). This mul-
tiplexer selects between the delayed or nondelayed power con-
trol signal. The select line can also be the power control signal.

IV. CAD FLOW FOR DCPG FPGA ARCHITECTURE

In this section, we present the CAD flow that is used to
map applications to the proposed DCPG FPGA architecture.
Our CAD flow is based on the VPR FPGA tool
(version 5.0 [17]). The proposed flow focuses on low-level

Fig. 10. CAD flow for the DCPG FPGA architecture.

CAD steps, i.e., placement and routing. We assume that higher
level tools will pass information in the netlist about the
blocks that belong to a power-gated module and the power
controller. We leave the discussion of higher level tools and
their optimization to enable power gating for future work.

A. Placement and Routing

Fig. 10 shows the proposed CAD flow. The inputs to
VPR include the circuit netlist, the names of the power-gated
modules in the circuit, the power controller netlist, and the
architecture parameters (PGR’s width and height, and PPS).

The input netlists to the flow are generated using a CAD
flow that is typically used with VPR. This includes Odin II
for Verilog synthesis [23], ABC for technology mapping [24],
and T-VPACK [25] for packing LUTs and FFs into LCs.

In Step 1, the power controller is placed and its internal
connections are routed. The FPGA resources that are used
by the power controller are locked, and their power state is
set to always-ON. In Step 2, placement is performed for the
application circuit. In Step 3, the power state for each PGR is
determined based on the blocks that occupy the different LCs
in the PGR. The power state for a PGR is set as follows.

1) DC: If only one power-gated module is mapped to the
PGR’s LCs.

2) Always-OFF: If all of the PGR’s LCs are empty.
3) Always-ON: All other cases.
1) Routing Power Control Signals: The net for each power

control signal is built in this step. The net’s source is one of the
outputs of the power controller that has already been placed.
The sinks are found as follows. For each PGR that belongs
to the power-gated module under consideration and is set to
DC, a free input pin from its bordering RCs is selected (if one
is available) to act as a sink for the control signal. Note that
we cannot use predetermined sinks since the placement phase
determines the number and locations of the PGRs in a power-
gated module. In Step 4, the nets of the power control signals
are routed. The SB partitions that are used to route these
signals are set as always-ON to ensure that the power control
signals are available all the time. Note that when selecting
the sinks of the power control signals, we try to build a trunk-
branch routing topology that minimizes the number of always-
ON SB partitions as in [12].

2) Routing Circuit’s Signals: In Step 5, the connections in
the circuit netlist are routed on the available FPGA resources.

184 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

Fig. 11. Three power-gated modules placed on three PGRs with two ways
shown to route the same net. The SBs used to route the net in M2 and M3
must be always-on (ON), other resources can be DC.

Although the power control signals are routed before the
circuit’s nets, this has negligible effect on routability and
performance of the circuit because only a small fraction of
the routing resources are used to route the control signals.
In order to verify this, we mapped the circuits described
in Section V-A to the proposed architecture with a PGR size
of 4 × 4 tiles and PPS = 0. We found that the minimum
channel width has increased by 2.3% on average, with a
maximum increase of 16% for one circuit.

Finally, in Step 6, we determine the power state for each of
the SB partitions as follows.

1) DC: If PGR is DC and only one power-gated module is
routed through the SB partition.

2) Always-ON: SB partition is not used to route signals.
3) Always-ON: All other cases.

B. PG-Aware Routing

Due to the complexity of the routing topology of
multiple-module power-gated circuits, some SB partitions are
required to be always-ON. Fig. 11 shows an example of three
power-gated modules mapped to three PGRs. Two possible
ways to route the net from M1 to its sinks in M1 and M3
are shown (Route 1 and Route 2—R1 and R2). In both ways,
SBs in M2 and M3 are required to be always-ON to ensure
proper operation. For example, when M2 is powered down,
the SBs in M2’s PGR that route the net need to be
powered.

In Fig. 11, R2 has a smaller number of always-ON SBs
(larger number of always-OFF and DC SBs) compared with R1,
which improves the power savings during the idle periods.
In this section, we present the enhancements made to the
router in order to increase the number of SBs that can be
powered down. We modified the timing-driven router in VPR
to implement these enhancements.

VPR uses the pathfinder negotiated congestion-delay
router [16]. The routing resources are represented by a routing-
resource graph. In this graph, nodes represent wire segments
and logic block pins, and edges represent switches. In the inner
loop of the algorithm, when searching for a route from a source
node to a sink node, nodes of the graph are visited and added
with a cost value (path cost) to a priority queue. These nodes
are used later to iteratively investigate other nodes connected
to them until the sink is reached. The path cost to reach a node
from the source of the net is the sum of the costs of nodes in
that path. The function that is used to measure the cost of
using a node has timing and congestion terms as in (1),

where Criti j is the timing criticality of the connection (i, j),
T (n) is the timing cost of the route to reach node n from the
source, and Congs(n) is the congestion cost of using node n

Cost(n) = Criti j × T (n) + (1 − Criti j) × Congs(n). (1)

For the PG-aware router, we modified the congestion term
of the cost function as

Congs(n) = Congs(n)old × (1 + CostPartition) (2)

where Congs(n)old is the original congestion cost, and
Costpartition is used to modify the cost of using a specific
power-gated SB partition. The following function is used to
calculate Costpartition:

Costpartition =
{

K , if δPGR,net = 0

−L, if δPGR,net = 1
(3)

where K and L are weighting parameters determined
empirically, and δPGR,net is a binary function that has the
value of 1 if the connection being routed belongs to the same
module as that of the node’s PGR, and 0 otherwise. Each
wire segment (node) in FPGA architecture is driven by an
SB switch; we consider a node to belong to a PGR if the
switch driving it belongs to an SB in that PGR.

CostPartition is used to change the weight given to the
congestion cost of the node being investigated. If the module
of the node’s PGR is the same as that of the net being routed,
then the congestion cost is decreased (by a factor of L) to
encourage routing through the node. Routing nets that belong
to the same module as that of the PGR through an SB partition
in the PGR enables configuring the partition as DC. On the
other hand, if the net does not belong to the same module as
that of the node’s PGR, then the cost is increased (by a factor
of K) to discourage routing the net through that node; if the
net is routed through that node, then the SB must be set as
always-ON.

We found that L = 0.2 and K = 3 give good results with
<1% increase in the critical path delay on average (up to 4%
for a circuit). Larger L may result in circuits that cannot
be routed because the router will not be able to resolve
congestion. Larger K may result in a large congestion cost,
which may negatively impact the critical path delay.

V. BENCHMARK CIRCUITS

In this section, we describe the benchmark circuits used to
evaluate the proposed architecture.

A. Synthetic Benchmarks Generation

We used the largest 20 Microelectronics Center of
North Carolina benchmark circuits available with the VPR
download [17] as subcircuits (or modules) in the generated
synthetic circuits. Each of the generated circuits is composed
of two or more modules (up to nine), connected to each other
using the primary I/Os of the subcircuits. Table II shows the
details of the generated circuits.

The modules in each circuit are connected together
after performing the packing phase using T-VPack [25],
i.e., after each circuit’s LUTs and FFs are grouped in LCs.

BSOUL et al.: FPGA ARCHITECTURE AND CAD FLOW SUPPORTING DCPG 185

TABLE II

GENERATED SYNTHETIC CIRCUITS

This guarantees that the subcircuits used in stitching closely
represent independent functional modules in an application.

We assume that the power state for each module in the
circuits of Table II can be DC. Thus, a power controller
that has an output power control signal for each module is
generated for each circuit. Timers are used to generate the
power control signals in a power controller. A timer is sized
assuming the sleep signal of a module is asserted after 50 ms.
This amount has been chosen arbitrarily. Longer timer periods
may increase the number of resources required to implement
the controller circuit on an FPGA. Notice that more sophis-
ticated power controllers can be implemented. However, the
goal of this paper is to use the power controller circuits to
evaluate the number of resources (especially routing resources)
that are occupied by power control signals. This provides an
estimate of the FPGA resources that will be in the different
power states, and hence the potential power savings using the
DCPG FPGA architecture.

B. Robot Control System

The application presented in this section is used to evaluate
the proposed architecture. This application represents a control
system for a snake-shaped robot, called iSnake, that is used
in endoscopy [26]. The left side of Fig. 12 shows the robot
inside an organ, in two different states.

The robot’s control system provides haptic feedback to
the surgeon to prevent harming the patient’s organs during
an operation. A proximity query (PQ) algorithm is used to
approximate the distance between the iSnake and the surface
of the patient’s organ [26], which is computationally intensive
and requires a high-performance implementation.

We developed an FPGA-based implementation of the
control system. The right side of Fig. 12 shows the main
modules in the system. The datapath performs stream process-
ing for input data. The Delta module is only activated when the
robot touches the organ’s surface. This module can be put in
sleep mode when its output is not required. The select output

Fig. 12. Snake robot example application.

TABLE III

INFORMATION ABOUT FPGA-BASED iSnake ROBOT CONTROL SYSTEM

from the Condition module can be used as a power control
signal for the Delta module.

The FPlibrary [27] was used to implement the required
floating point operators in the PQ algorithm. Quartus II
was used to generate a technology-mapped netlist of the
circuit [28]. The netlist was then annotated with information
about the modules of each circuit component. A modified
version of T-VPack was then used to pack the circuit; this
version ensures that each module’s LUTs and FFs are clustered
in the same LCs, thus generating a netlist that contains three
interconnected modules.

Table III shows information about the robot control system.
The size of the Delta module is ∼25% of the system, indicat-
ing that properly managing its power state may result in large
energy reduction. This is investigated in Section VI.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

Unless otherwise indicated, the following FPGA
architecture parameters are used: 1) LUT size K = 4;
2) LC size N = 6; 3) inputs per cluster I = 16; 4) RC width
W = 90; 5) routing segment length L = 4; 6) switch box
flexibility Fs = 3; 7) input pins CB flexibility Fc,in = 0.2;
and 8) output pins CB flexibility Fc,out = 0.1.

We used HSPICE simulations to obtain the leakage power of
the PGRs. We used the number of minimum-width transistors
as in [16] to estimate the area. We used the 45-nm HP tech-
nology from the predictive technology models website [29],
with supply voltage VDD = 1 V and temperature T = 85 °C
to measure the worst case power and timing.

For the power-gated architectures, the threshold voltage of
sleep transistors has been increased by 100 mV by changing
the Vth0 parameter in the technology files. Sleep transistors
have been iteratively sized to constrain the performance
degradation to 10% compared with an architecture that
does not support power gating. We assume 20% activity in
doing this.

186 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

Fig. 13. Results for sweeping LC’s cluster size (N). Switch blocks are not included in the results. (a) Area overhead. (b) Leakage power. (c) Leakage power
reduction.

Fig. 14. Results for sweeping RC width (W). Switch blocks are not included in the results. (a) Area overhead. (b) Leakage power. (c) Leakage power
reduction.

We assume that SRAM cells are built using six
minimum-sized transistors. All multiplexers used in our archi-
tecture are based on pass transistors; each multiplexer is
followed by a level restorer [30] and a buffer.

The SPICE netlists for LCs have been generated as follows.
The size of the last inverter in a buffer is found by dividing
the number of equivalent min-sized load inverters by four, and
internal stages are sized by a stage ratio of four. Roughly, this
sizing results in minimum delay [31]. LUTs are built using
transmission gates as in [32], with inverters inserted after the
second and last stages to reduce the delay of series-connected
transmission gates.

The SPICE netlists for SBs have been generated as follows.
Unless otherwise indicated, we assume a RC width (W) that is
20% larger than the minimum channel width required to route
a circuit [16]. We used unidirectional, single driver routing
architecture [33]. The output buffers of SBs are built using
multiple stages of inverters. The stages are sized using a
stage ratio of four. The capacitance of wire segments was
obtained using the model in [34]. The outputs of the LCs
connect directly to the SBs through isolation buffers without
the need for output pins connection blocks; this is similar to
the architecture assumptions made in VPR 5.0 [17].

B. Architecture Parameters Sweep

In this section, we study the area and power of the proposed
architecture for different architecture parameters. Note that this
is done without mapping applications to the architecture. The
following list defines three architectures that are evaluated in
our experiments.

1) Ungated: This is the baseline FPGA architecture that
does not support power gating.

2) Static Gating: This is an architecture that supports
Statically controlled power gating, such as the one
presented in [4]. The power state for this architecture
can only be set at configuration time.

3) Dynamic Gating: This is the DCPG architecture that we
proposed in Section III.

1) Power-Gated Tiles: We first study a basic architecture
that has only one tile (without the SB); we vary two para-
meters, the cluster size (N) and the width of the RCs (W).
When varying N , we also vary the number of input pins (I)
of the LC. When varying N , we set W = 90, and when
varying W we set N = 6 and I = 16.

Figs. 13 and 14 show the effect of the cluster size (N)
and RC width (W) on power gating. The results shown in the
figures are for a tile that supports power gating, not including
the SB, compared with a tile that does not support power
gating (ungated).

The area overhead decreases as the cluster size and the
channel width increase [Figs. 13(a) and 14(a)]; this is because
a larger number of circuit components are powered through a
single sleep transistor. However, there is no high correlation
between the area overhead and the channel width. The area
overhead for the static-gated architecture is lower than that for
the proposed dynamic-gated architecture. This is because of
the additional circuit components that are required to support
dynamic power state control.

The leakage power reduction increases as the cluster size
and the channel width increase [Figs. 13(c) and 14(c)]. This
is similar to the area overhead trend. Smaller area overhead
results in lower leakage power overhead due to the power
gating circuitry. The results show that the leakage power reduc-
tion in the OFF-state (compared with an ungated architecture)

BSOUL et al.: FPGA ARCHITECTURE AND CAD FLOW SUPPORTING DCPG 187

Fig. 15. Results for sweeping granularity of PGRs. Switch blocks are not included in the results. (a) Area overhead. (b) Leakage power. (c) Leakage power
reduction.

Fig. 16. Results for SBs power gating granularity by sweeping RC width (W). Segment length (L) = 2. (a) Area overhead. (b) ON-leakage power.
(c) OFF-leakage power. (d) Leakage power reduction.

can be up to ∼91% for a cluster size of 10 (channel width
of 160). Figs. 13(b) and 14(b) show that the proposed archi-
tecture has slightly larger leakage power in the OFF-state than
the static-gated architecture. This is because the dynamic-
gated architecture requires more circuit components to support
controlling its power state dynamically.

2) Power-Gated Regions: The results of sweeping the
granularity of the proposed architecture are shown in Fig. 15.
As the region size increases, the area overhead decreases.
The area overhead includes that of the sleep transistors and
the circuit components required to support configuring the
different power states of a PGR. The area overhead decreases
as the region size increases because more circuit components
are powered through a single sleep transistor, and the circuit
components required to support the different power states of a
region are shared among larger number of circuit components.
The area overhead is as small as 1% for a PGR of 4 × 4 tiles.

The leakage power reduction increases as the region size
increases [Fig. 15(c)]. This is because larger regions have
smaller area overhead, which results smaller leakage power
overhead due to the power gating circuitry. The OFF-state
leakage power of the power-gated architectures is much lower
than that for the ungated architecture, leading to a leakage
power reduction of >90% (∼95% for a PGR of 4 × 4 tiles).
Increasing the region size by more than 4 × 4 tiles does
not significantly increase the leakage power savings. As can
be observed in Fig. 15(c), the leakage power reduction in
a static-gated architecture is slightly larger than that in the
proposed dynamic-gated architecture. This is because of the
additional circuit components that are required in the proposed
architecture to support changing its power state at runtime.

3) Power-Gated Switch Blocks: In this section, we vary
the architecture parameters that describe the SBs. Results are
shown for SB architectures that have different segment lengths,
L = 2 in Fig. 16 and L = 4 in Fig. 17, compared with an

architecture that does not support power gating. In addition
to varying the RC width (W), we also vary the power gating
granularity of SBs by varying the number of PPS (larger PPS
means finer granularity). In a fine-grained SB power gating,
each output buffer in an SB has a power gating circuit, whereas
in a coarse-grained power gating a single power gating circuit
is used for all circuit components in an SB.

Figs. 16 and 17 show that the area overhead and leakage
power when L = 4 is lower than that for L = 2.
This is because an FPGA routing architecture that has
shorter segments contains more circuit components in
SBs [33].

The area overhead [Figs. 16(a) and 17(a)] of the power
gating circuitry decreases as the channel width increases. This
is because as we increase W the sleep transistor size increases
at a lower rate than the increase in the number of circuit
components that are powered through it.

The power gating granularity (PPS) also affects the area
overhead. Fine-grained power gating results in large area
overhead (>60% for L = 4 and ∼100% for L = 2). For
large values of W , the area overhead for granularities down to
PPS = 4 ranges between 10% and 16%. This area overhead,
however, is only for SBs. The overall area overhead for the
power gating architecture is lower. Recall from Section VI-A
that the area overhead (without SBs) for a PGR of size
4×4 tiles is ∼1%. The overall area overhead for the same PGR
with SBs ranges between 4.7% and 10.3% for PPS from 0 to 4
and W = 90.

Figs. 16(b) and 17(b) show the ON-leakage power for
the gated architecture (for different PPS) and the ungated
architecture. The ON-leakage increases as PPS increases; this
is because finer granularity power gating requires more circuit
components and larger sleep transistors. The ON-leakage over-
head for W = 100 and PPS between 0 and 4, for example,
is ∼6%–10% for L = 2 and 3.5%–7.7% for L = 4. As we

188 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

Fig. 17. Results for SBs power gating granularity by sweeping RC width (W). Segment length (L) = 4. (a) Area overhead. (b) ON-leakage power.
(c) OFF-leakage power. (d) Leakage power reduction.

Fig. 18. SBs switches power state averaged over all synthetic benchmarks using the unmodified and power gating-aware routing. (a) Always-ON.
(b) Always-OFF. (c) DC. (d) Always-OFF + DC.

will see later, finer granularity SBs power gating increases the
number of always-OFF resources, resulting in lower total
ON-leakage power for an application circuit.

Figs. 16(c) and 17(c) show the leakage power for the
power-gated SBs in the OFF-state, i.e., static power when SBs
are powered down, and Figs. 16(d) and 17(d) show the leakage
power reduction compared with SBs with no power gating.
The OFF-leakage power for SBs with PPS = 0 is the smallest
because all of the SB circuit components are included in
the power-gated circuit. SBs with larger PPS, incur larger leak-
age power overhead in the OFF-state because of the additional
power gating circuit components, and because all the buffers
for incoming wire tracks are designed to be powered during
the OFF-state (Section III-D). The leakage power reduction
for the proposed architecture is >95% for the coarse-grained
power-gated SBs, and could reach >90% for PPS between
1 and 4. For fine-grained power gating, the leakage power
reduction is ∼70%.

4) Total Area Overhead: Table IV shows the total area
overhead for different architecture granularities of the power
gating architecture. The area overhead ranges between
3.9% and 34.8%. The area overhead results in longer routing
wire segments. This leads to larger interconnect capacitance,
and potentially larger dynamic power. For example, using
PPS = 3 would result in area overhead between 9.2%
and 10.7%. This translates to 4.5%–5.2% increase in each
dimension of a tile, assuming square tiles [35]. This represents
a loose upper bound on the increase in interconnect capaci-
tance [35]. In this paper, we do not evaluate the effect of the
area overhead on the dynamic power and how this could affect
the savings achieved by the proposed architecture; we leave
this for future work.

TABLE IV

TOTAL AREA OVERHEAD FOR THE POWER GATING ARCHITECTURE FOR

DIFFERENT ARCHITECTURE GRANULARITIES (W = 80 AND L = 4)

C. Benchmark Circuits Results

In this section, we use the CAD flow in Section IV to
place and route the synthetic benchmark circuits presented
in Section V. This is done to study the granularity of
SBs power gating in the proposed architecture. For each
circuit, a power controller has been generated as described in
Section V-A to provide a power control signal for each module
in the circuit. Each circuit has been placed and routed on an
architecture with a PGR’s size of 4 × 4 tiles, segment length
of 4, and RC width that is 20% larger than the minimum chan-
nel width required to route the circuit. Multiple architectures
with different SB power gating granularities (different PPS)
have been used. The results are shown for the original VPR’s
routing algorithm, and the enhanced power gating-aware
(PG-aware) algorithm that is described in Section IV-B.

1) Breakdown of SBs’ Switches Power States: In this
section, we report the percentages of SB switches that can
be configured in the different power states.

Fig. 18(a) shows the percentage of always-ON switches
for different SB power gating granularities. For finer
granularity power gating, the number of always-ON SB

BSOUL et al.: FPGA ARCHITECTURE AND CAD FLOW SUPPORTING DCPG 189

Fig. 19. Leakage power results for (a) SBs only and (b) and (c) SBs and PGRs averaged over all synthetic benchmark circuits.

switches decreases. This is expected since more SB switches
can statically be turned OFF because the SB partitions they
belong to are not used to route signals. Furthermore, with
finer granularity, there is a better chance that an SB partition
is only used to route signals that belong to a single module,
which increases the number of DC SB switches.

Using the PG-aware routing algorithm results in slightly
fewer always-ON switches, but this improvement diminishes
as PPS increases; finer granularity power gating (larger PPS)
results in larger number of components that can be statically
turned OFF. Therefore, the improvement space available for
the PG-aware router becomes tighter. The results show that the
PG-aware router reduces the number of always-ON switches
by 3% for coarse-grained SB power gating (PPS = 0), and
∼1% for PPS = 4 of the total number of switches. This
corresponds to reduction of 8% and 14% of the always-ON

switches for PPS = 0 and PPS = 4, respectively.
Fig. 18(b) shows the percentage of always-OFF switches

for different SB power gating granularities. As expected, finer
granularity power gating increases the always-OFF switches.
The PG-aware routing has a negligible effect on the number
of always-OFF switches.

Fig. 18(c) shows the percentage of DC switches for differ-
ent SB power gating granularities. These are switches that
can be powered OFF at run time when the module they
belong to becomes idle. The largest number of DC switches
is when PPS = 1. Finer SB power gating granularity
reduces the number of DC SB switches; this is because more
switches can be set as always-OFF at configuration time,
which reduces the total number of remaining switches. The
PG-aware routing helps in slightly improving the percentage
of DC switches. This improvement is roughly the same as
the amount of reduction in the always-ON switches shown
in Fig. 18(a).

Finally, Fig. 18(d) shows the sum of the always-OFF and
DC switches. As expected, SBs with finer granularity power
gating result in larger number of switches that can be powered
down. The PG-aware routing shows slight improvements
compared with the original VPR router; these improvements
diminish as the granularity of power gating decreases as
explained above.

2) Leakage Power: In this section, we report the leakage
power averaged over all benchmark circuits. We report the
ON-leakage power, which is the leakage power assuming all
modules in a circuit are idle but not powered OFF, the

OFF-leakage power, which is the leakage power for the circuits
assuming that all modules in a circuit are idle and their
DC components are turned OFF. In both cases, the always-OFF

components are assumed to be turned OFF at configuration
time.

Fig. 19(a) shows the leakage power for the SBs for different
SB power gating granularities, and the leakage power for the
SBs when an ungated architecture is used. As can be seen, the
ON-leakage power for both the PG-aware routing and the orig-
inal routing are roughly equal because the algorithm enhance-
ments do not significantly improve the number of always-OFF

switches as explained earlier. For finer granularity SBs
power gating, both the ON and OFF-leakage powers decrease.
The ON-leakage power decreases since finer granularity
results in more unused SB partitions that can be turned OFF

at configuration time, thus the overall leakage power in
the ON-state for an application circuit goes down. The
OFF-leakage power also decreases with finer granularity
power gating because more SB switches can be placed in
the DC state. The minimum OFF-leakage power is when
PPS = 3. Larger PPS values result in more leakage power
consumption in the OFF state because of the large overhead
of the power gating circuitry.

Fig. 19(a) also shows that the PG-aware routing slightly
improves the OFF-leakage power compared with the unmod-
ified routing algorithm. This is because PG-aware routing
results in more DC switches that can be turned OFF when
an application circuit is idle, as shown in Fig. 18(c).

Fig. 19(a) shows that ON-leakage power with the gated
architecture is larger than that with the ungated architecture
for the coarse-grained SBs power gating. However, for finer
granularity power gating, the ON-leakage power for the gated
architecture is lower than that for the ungated architecture.
Although a single SB with finer granularity power gating has
larger ON-leakage power than an ungated SB, finer granularity
power gating enables turning OFF unused SB switches, which
results in lower overall ON-leakage power.

The total leakage power is shown in Fig. 19(b). This
includes the leakage power for both SBs and PGRs. The
same trends discussed above apply here because a significant
portion of the leakage power comes from SBs. Comparing
Fig. 19(a) and (b) shows that SBs contribute to roughly 72%
of leakage power in the ungated architecture. However, in the
gated architecture, SBs contribute to roughly 67%–72% of the
total leakage power.

190 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 1, JANUARY 2016

Fig. 20. Total leakage power reduction for individual synthetic circuits.

Fig. 19(c) shows the upper limit of reduction in the
OFF-leakage power compared with the ungated architecture.
As expected, the leakage power reduction increases with finer
granularity SBs power gating, and the largest reduction is
achieved when PPS = 3. For coarse-grained SB power gating,
the OFF-leakage power reduction is ∼68%. For PPS = 3, the
reduction is ∼77%.

Fig. 20 shows the individual circuits’ potential power reduc-
tion when all modules are turned OFF (PPS = 3). The power
reduction ranges between 67% and 81% using the original
routing algorithm, and ranges between 68% and 83% using
the PG-aware routing.

D. Example Application Results

In this section, we show the energy saving results of using
the proposed power gating architecture for the iSnake robot
control system described in Section V-B.

Fig. 21 shows the energy savings for the circuit for different
active times of the Delta module. We compared mapping the
application on the proposed power gating architecture with
two baseline implementations. The first is a system that has
no power optimizations at all. Normally, one would implement
clock gating for modules that experience inactivity periods.
We assume that the first baseline does not include this. The
second baseline is an implementation that supports clock
gating for the Delta module.

At 5% activity level, the results show that compared with the
first baseline (no clock gating), the proposed architecture cou-
pled with clock gating could achieve ∼19% energy savings.
Compared with the second baseline (includes clock gating), the
proposed architecture could achieve ∼8% additional energy
saving. Given that only a small portion of the application
benefited from the power gating architecture (25% of the
circuit), the results are promising.

VII. CONCLUSION

We present an FPGA architecture that supports dynamic
power gating. This architecture enables powering down mod-
ules in an FPGA when they are idle to reduce their static power
dissipation. The architecture’s flexibility enables the user to
implement an arbitrary number and structure of power-gated
modules, and enables routing power control signals on the
general-purpose routing fabric of an FPGA. We also present a

Fig. 21. Energy reduction for iSnake’s control system in DCPG FPGA.

CAD flow that can be used to map applications to the proposed
architecture, and enhancements to a routing algorithm in order
to optimize the power savings of the architecture.

The area overhead of the architecture is ∼10.3% when the
power gating region size is 4×4 tiles and the number of power-
gated SB PPS is four (W = 90). The potential leakage power
savings for the studied benchmark circuits are up to 83%.
We also studied the energy savings in a control system for
a robot that is used in medical applications. Assuming only
25% of the system can be powered down when idle, and it is
idle for 95% of the time, we found that ∼8% energy saving
can be achieved by the proposed architecture when compared
with an implementation with only clock gating.

This research provides the basis for a new generation of
FPGAs, which are capable of self-optimization. Future work
includes automating the process of identifying application
modules that can benefit from the proposed architecture. This
is suitable for designs that use accelerators with components
that operate for only a small fraction of time. Furthermore,
enhancements to the CAD tools are required in order to better
guide the different stages in the flow to increase idle times and
increase the number of resources that can be powered down,
while reducing the impact on performance and area.

REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in
Proc. 14th ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2006,
pp. 21–30.

[2] M. Münch, B. Wurth, R. Mehra, J. Sproch, and N. Wehn, “Automating
RT-level operand isolation to minimize power consumption in data-
paths,” in Proc. Conf. Design, Autom. Test Eur., 2000, pp. 624–633.

[3] Q. Wang, S. Gupta, and J. H. Anderson, “Clock power reduction for
virtex-5 FPGAs,” in Proc. 17th ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays, 2009, pp. 13–22.

[4] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90 nm
low-power FPGA for battery-powered applications,” in Proc. 14th Int.
Symp. Field-Program. Gate Arrays, 2006, pp. 3–11.

[5] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-defined
dual-Vdd/dual-Vt fabrics,” in Proc. 12th ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays, 2004, pp. 42–50.

[6] J. Hussein, M. Klein, and M. Hart, “Lowering power at 28 nm with
Xilinx 7 series FPGAs,” Xilinx, Inc., San Jose, CA, USA, Tech. Rep.
WP389, Jun. 2011.

[7] Meeting the Low Power Imperative at 28 nm, Altera Corp., San Jose,
CA, USA, Nov. 2011.

[8] S. Henzler, Power Management of Digital Circuits in Deep Sub-Micron
CMOS Technologies (Advanced Microelectronics). Secaucus, NJ, USA:
Springer-Verlag, 2007.

[9] Y. Lin, F. Li, and L. He, “Routing track duplication with fine-grained
power-gating for FPGA interconnect power reduction,” in Proc. Asia
South Pacific Design Autom. Conf., Jan. 2005, pp. 645–650.

BSOUL et al.: FPGA ARCHITECTURE AND CAD FLOW SUPPORTING DCPG 191

[10] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and
T. Tuan, “Reducing leakage energy in FPGAs using region-constrained
placement,” in Proc. 12th Int. Symp. Field-Program. Gate Arrays, 2004,
pp. 51–58.

[11] R. P. Bharadwaj, R. Konar, P. T. Balsara, and D. Bhatia, “Exploiting tem-
poral idleness to reduce leakage power in programmable architectures,”
in Proc. Asia South Pacific Design Autom. Conf., 2005, pp. 651–656.

[12] A. A. M. Bsoul and S. J. E. Wilton, “An FPGA architecture supporting
dynamically controlled power gating,” in Proc. IEEE Int. Conf. Field-
Program. Technol. (FPT), Dec. 2010, pp. 1–8.

[13] A. A. M. Bsoul and S. J. E. Wilton, “An FPGA with power-gated
switch blocks,” in Proc. IEEE Int. Conf. Field-Program. Technol. (FPT),
Dec. 2012, pp. 87–94.

[14] C. Li, Y. Dong, and T. Watanabe, “New power-aware placement for
region-based FPGA architecture combined with dynamic power gating
by PCHM,” in Proc. 17th IEEE/ACM Int. Symp. Low-Power Electron.
Design (ISLPED), Aug. 2011, pp. 223–228.

[15] C. H. Hoo, Y. Ha, and A. Kumar, “A directional coarse-grained power
gated FPGA switch box and power gating aware routing algorithm,”
in Proc. 23rd Int. Conf. Field Program. Logic Appl. (FPL), Sep. 2013,
pp. 1–4.

[16] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for
Deep-Submicron FPGAs. Norwell, MA, USA: Kluwer, 1999.

[17] J. Luu et al., “VPR 5.0: FPGA CAD and architecture exploration
tools with single-driver routing, heterogeneity and process scaling,” in
Proc. 17th ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2009,
pp. 133–142.

[18] M. Klein, “Power consumption at 40 and 45 nm,” Xilinx, Inc., San Jose,
CA, USA, Tech. Rep. WP298, Apr. 2009.

[19] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
FPGAs,” in Proc. 8th ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, 2000, pp. 203–213.

[20] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power
Methodology Manual: For System-on-Chip Design. New York, NY,
USA: Springer-Verlag, 2007.

[21] A. A. M. Bsoul and S. J. E. Wilton, “A configurable architecture to limit
wakeup current in dynamically-controlled power-gated FPGAs,” in Proc.
Int. Symp. Field-Program. Gate Arrays (FPGA), 2012, pp. 245–254.

[22] A. A. M. Bsoul and S. J. E. Wilton, “A configurable architecture to limit
inrush current in power-gated reconfigurable devices,” J. Low Power
Electron., vol. 10, no. 1, pp. 1–15, 2014.

[23] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II—An
open-source Verilog HDL synthesis tool for CAD research,” in Proc.
18th IEEE FCCM, May 2010, pp. 149–156.

[24] ABC: A System for Sequential Synthesis and Verification, Univ. Califor-
nia, Berkeley, CA, USA, 2012.

[25] A. R. Marquardt, “Cluster-based architecture, timing-driven packing and
timing-driven placement for FPGAs,” M.S. thesis, Dept. Elect. Comput.
Eng., Univ. Toronto, Toronto, ON, Canada, 1999.

[26] K.-W. Kwok et al., “Dimensionality reduction in controlling articulated
snake robot for endoscopy under dynamic active constraints,” IEEE
Trans. Robot., vol. 29, no. 1, pp. 15–31, Feb. 2013.

[27] J. Detrey and F. de Dinechin. (2004). FPLibrary, a VHDL Library of
Parametrisable Floating-Point and LNS Operators for FPGA. [Online].
Available: http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/

[28] Quartus II University Interface Program. [Online]. Available: http://
www.altera.com/education/univ/research/quip/unv-quip.html, accessed
Jan. 28, 2015.

[29] Predictive Technology Model (PTM). [Online]. Available:
http://ptm.asu.edu/, accessed Jan. 28, 2015.

[30] E. Hung, S. J. E. Wilton, H. Yu, T. C. P. Chau, and P. H. W. Leong,
“A detailed delay path model for FPGAs,” in Proc. Int. Conf. Field-
Program. Technol. (FPT), 2009, pp. 96–103.

[31] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 4th ed. Reading, MA, USA: Addison-Wesley, 2011.

[32] T. Pi and P. J. Crotty, “FPGA lookup table with transmission gate
structure for reliable low-voltage operation,” U.S. Patent 6 667 635,
Dec. 23, 2003.

[33] G. Lemieux, E. Lee, M. Tom, and A. Yu, “Directional and single-driver
wires in FPGA interconnect,” in Proc. IEEE Int. Conf. Field-Program.
Technol., Dec. 2004, pp. 41–48.

[34] S.-C. Wong, G.-Y. Lee, and D.-J. Ma, “Modeling of interconnect
capacitance, delay, and crosstalk in VLSI,” IEEE Trans. Semicond.
Manuf., vol. 13, no. 1, pp. 108–111, Feb. 2000.

[35] S. Huda, J. Anderson, and H. Tamura, “Charge recycling for power
reduction in FPGA interconnect,” in Proc. 23rd Int. Conf. Field Program.
Logic Appl. (FPL), Sep. 2013, pp. 1–8.

Assem A. M. Bsoul (S’07) received the B.Sc. degree
in computer engineering from the Jordan University
of Science and Technology, Irbid, Jordan, in 2006,
the M.Sc. degree in electrical engineering from
Queen’s University, Kingston, ON, Canada, in 2009,
and the Ph.D. degree in electrical and computer
engineering from the University of British Columbia,
Vancouver, BC, Canada, in 2014.

He is currently a Post-Doctoral Fellow with the
University of British Columbia. His current research
interests include low-power reconfigurable architec-

tures and computer-aided design algorithms.

Steven J. E. Wilton (S’86–M’97–SM’03) received
the M.A.Sc. and Ph.D. degrees in electrical and com-
puter engineering from the University of Toronto,
Toronto, ON, Canada, in 1992 and 1997, respec-
tively.

He was a co-founder of Veridae Systems, Inc.,
Vancouver, BC, Canada, acquired by Tektronix,
Beaverton, OR, USA, in 2011, which developed
debug solutions for application-specific integrated
circuits, field-programmable gate arrays (FPGAs),
and FPGA-based systems. He joined the Department

of Electrical and Computer Engineering, University of British Columbia,
Vancouver, in 1997, where he is currently a Professor and an Associate Head.
His current research interests include the architectures of next-generation
FPGAs and their associated computer-aided design tools.

Dr. Wilton served as the Program and General Chair of the ACM Inter-
national Symposium on FPGAs, from 2005 to 2006, respectively, and the
Program Co-Chair of the 2005 International Conference on Field Program-
mable Logic and Applications and the 2008 IEEE International Conference
on Application-Specific Systems, Architectures and Processors. He was a
recipient of best paper awards at the International Conference on Field-
Programmable Technology in 2003, 2005, 2007, and 2013, respectively, and
the International Conference on Field-Programmable Logic and Applications
in 2001, 2004, 2007, and 2008, respectively. He is currently the Editor-in-
Chief of the ACM Transactions on Reconfigurable Technology and Systems.

Kuen Hung Tsoi received the Ph.D. degree from the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong, in
2007.

He has been a Post-Doctoral Research Associate
with the Custom Computing Group, Department
of Computing, Imperial College London, London,
U.K., since 2008. He is currently with Imagination
Technologies Ltd., Kings Langley, U.K.

Wayne Luk (F’09) received the M.A., M.Sc., and
D.Phil. degrees in engineering and computing sci-
ence from the University of Oxford, Oxford, U.K.

He was a Visiting Professor with Stanford Univer-
sity, Stanford, CA, USA. He is currently a Profes-
sor of Computer Engineering with Imperial College
London, London, U.K. His current research interests
include reconfigurable computing, field program-
mable technology, and design automation.

Prof. Luk is a fellow of the Royal Academy of
Engineering. He received the Research Excellence

Award from Imperial College London for reconfigurable supercomputing,
and over 15 awards for his work from international conferences, such as
the Applied Reconfigurable Computing Conference, the Application-Specific
Systems, Architectures and Processors Conference, the Field-Programmable
Custom Computing Machines Conference, the Field Programmable Logic
and Applications Conference, and the Field-Programmable Technology Con-
ference. He was the Founding Editor-in-Chief of the ACM Transactions on
Reconfigurable Technology and Systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

