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NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf

high performance computing systems using customizable hardware processors such

as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and

application-specific integrated circuits, the processor architecture of NeuroFlow can

be redesigned and reconfigured to suit a particular simulation to deliver optimized

performance, such as the degree of parallelism to employ. The compilation process

supports using PyNN, a simulator-independent neural network description language, to

configure the processor. NeuroFlow supports a number of commonly used current or

conductance based neuronal models such as integrate-and-fire and Izhikevich models,

and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can

simulate a network of up to ∼600,000 neurons and can achieve a real-time performance

of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times

the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With

high flexibility and throughput, NeuroFlow provides a viable environment for large-scale

neural network simulation.

Keywords: FPGA, spiking neural network, neuromorphic, hardware accelerator, large-scale neural simulation,

PyNN, STDP

INTRODUCTION

Reverse engineering the brain is one of the grand engineering challenges of this century. Various
projects have been working on a number of aspects of this problem, including characterizing
neuronal types and their genetic transcription (Hawrylycz et al., 2012), developing genetic tools for
targeting individual cell types for probing or perturbation (Madisen et al., 2010; Kohara et al., 2013),
recovering neural connectivity (“the connectome”; Livet et al., 2007; Oh et al., 2014), developing
tools and computational infrastructure for large-scale neural simulations (Markram, 2006; Plana
et al., 2007; Ananthanarayanan et al., 2009; Markram et al., 2011). With the development of neural
simulators, neural modeling contributes to the advance in computer science research including
the fields of artificial intelligence, computer vision, robotics, and data mining. The computational
capability of brain-style computing is actively being investigated by several projects (Eliasmith et al.,
2012; Furber et al., 2014) and new algorithms inspired by the principle of neural computation are
being developed (Gütig and Sompolinsky, 2006; Sussillo and Abbott, 2009; Schmidhuber, 2014).
Recently there is growing interest in building large-scale models using spiking neural networks
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(SNNs), which can achieve higher biological accuracy and
more comprehensive functionality than smaller scale models
(Izhikevich and Edelman, 2008; Eliasmith et al., 2012; Reimann
et al., 2013). As a result, a number of computing platforms
targeting SNNs such as SpiNNaker (Furber et al., 2013; Sharp
et al., 2014), FACETS (Schemmel et al., 2010), Neurogrid
(Silver et al., 2007), and TrueNorth (Merolla et al., 2014) have
been developed to make large-scale network simulation faster,
more energy efficient and more accessible. Neural simulation
platforms generally make use of processors such as multi-
core processors, Application-Specific Integrated Circuit (ASIC)
chips, or Graphics Processing Units (GPUs), and offer various
degrees of programmability, from programmable parameters
to complete instruction level control. While ASICs have high
performance and low power consumption, their architecture is
fixed during fabrication and thus they lack the flexibility to adopt
new designs or modifications according to user needs, such as
precision of parameters, type of arithmetic representations, and
the neuronal or synaptic models to be used. On the other end,
GPUs provide some speedup over multi-core processors, and
have good programmability and flexibility, but they tend to have
large power consumption.

FPGAs have previously been used as an accelerator for
neural simulation, both for conductance-based models (Graas
et al., 2004; Blair et al., 2013; Smaragdos et al., 2014) and
for point-neurons (Cassidy et al., 2007; Cheung et al., 2009;
Rice et al., 2009; Thomas and Luk, 2009; Moore et al., 2012;
Cong et al., 2013; Wang et al., 2013). High customizability,
high scalability and fine-grained parallelism make FPGAs a
good candidate for the development of a neural simulation
platform. However, so far FPGA-based accelerators lack design
automation tools, and support only a limited range of models,
thus the resulting platforms often have relatively low flexibility.
To provide neuroscientists a flexible neuromorphic hardware
platform to simulate large-scale biological models using spiking
neurons, we develop NeuroFlow, a reconfigurable FPGA-
based spiking neural network simulator with a high-level API
(Application Programming Interface) suitable for users with no
prior knowledge of hardware or FPGA technology. It provides
high speed-up in comparison to traditional multi-core or GPU
simulators, while allowing developers and neuroscientists to
implement models in a conventional software environment.

Compared to several other neural simulators which are
implemented with customized hardware, NeuroFlow targets
easy-to-maintain off-the-shelf systems and makes the neural
platform more accessible and portable. It allows the developer
to focus on optimizing the implementation of models and
computations instead of building and maintaining the
underlying hardware and system. Moreover, it is portable
to other platforms. Thus, as newer and faster platforms become
available, the performance of the platform can be increased
without additional development effort by upgrading the
hardware.

Unlike hardwired processors, using an FPGA provides the
flexibility to change the models and computations in the neural
simulation, allowing the platform to suit the needs of a large
group of researchers. NeuroFlow stores neuronal and synaptic
parameters in large off-chip DRAM (Dynamic Random Access

Memory) modules to enable simulation of networks in the order
of 100,000 neurons on a single FPGA. The size of network that
can be simulated on a single processor is larger than a number
of previous FPGA neural simulators such as those described by
Graas et al. (2004) and Thomas and Luk (2009) which store all
parameters using fast but small on-chip BRAM (Block Random
Access Memory) modules. This system also has greater flexibility
than approaches optimizing a specific class of neurons such as
Cassidy et al. (2011) and Merolla et al. (2014).

Our platform has a number of novel aspects in comparison to
existing simulators:

• We use PyNN to develop a high-level API which provides
users with a model description and simulation environment.
It is the first FPGA-based simulator to support the use of
PyNN to configure the hardware processor and to automate
the hardware mapping of neural models. This means that
users do not need special hardware knowledge to use the
accelerator, allowing them to benefit from flexibility and
performance of specialized hardware with only software effort
without the need to understand the details of the low-level
implementation.

• NeuroFlow can automatically determine hardware design
parameters based on the neural model used in the simulation
to optimize the hardware resources, such as the degree of
parallelism and the number of FPGAs to be used. It increases
the performance and reduces the effort and time to use the
hardware processor for researchers with little or no prior
knowledge in hardware systems.

• We implement spike-time dependent plasticity (STDP) using
the host processor as a co-processor. It demonstrates the
possibility of workload allocation based on the computation
to achieve optimal performance for neural simulation.

MATERIALS AND METHODS

Overview of Neuroflow
The aim of NeuroFlow is to simulate large-scale SNNs with
flexible model options. We develop the simulation platform
based on FPGA systems from Maxeler Technology. It has
a number of advantages over existing hardware accelerators,
including high portability, flexibility, and scalability owing to the
design of the hardware system. We develop a compilation flow to
translate a neural network description in PyNN to that used by
NeuroFlow as an abstraction layer for the underlying hardware.
The high level description also aids in automatically determining
hardware parameters such as the degree of parallelism, the
number of FPGAs to use, and the optimizations that require
additional hardware resources. As in previous work, we use
software synapses written in memory as look up tables instead
of physical wiring between modules (Cheung et al., 2012; Moore
et al., 2012; Wang et al., 2013), which allows large-scale networks
to be simulated at high speed. We also employ a number
of hardware design strategies to speed up and parallelize the
computations in NeuroFlow as described in Cheung et al.
(2012), such as time-multiplexing, pipelining, event-based spike
processing, and low-level memory optimizations, in the design
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of NeuroFlow. Currently users are required to use systems from
Maxeler Technologies, but the design principles of the system can
be applied to other FPGA-based systems with sufficient memory
storage.

Hardware System
FPGAs for Reconfigurable Computing
FPGAs are reconfigurable hardware processors consisting of
arrays of configurable and fixed logic resources such as
multipliers and on-chip memory modules. The logic resource
blocks are connected via connection wires and switch boxes.
The architecture of a typical FPGA is shown in Figure 1. FPGAs
allow user-defined logic and computational operations to be
implemented by configuring the logic resources and the circuit
paths linking the input and output of the logic blocks, thus
making the FPGA a customizable electronic chip with the ability
to be reconfigured as desired. This flexible structure also makes
it easier to parallelize the computations with lower performance
overhead than general purpose processors. Although FPGAs
typically operate at a much lower clock frequency than general
purpose processors, customized computations implemented by
the reconfigurable logic blocks mean that it may take only a few
cycles to finish what may take a multi-core processor tens to
hundreds of cycles to process.

FPGA offers a number of benefits for neural simulation
compared to other processor types. The architecture of FPGA
supports hardware reconfiguration which is capable of flexible
functional descriptions. FPGAs have a large number of low-
latency interconnects ideal for connecting processor nodes in a
high performance computing system. They also enable greater
control for memory access and fine-grained parallelization.
Researchers have used FPGAs to develop neurocomputers for
spiking and non-spiking artificial neural networks (Maguire
et al., 2007). However, the difficulty of programming FPGAs can

Logic 
block

Switch block

Interconnect

FIGURE 1 | Simplified architecture of a typical FPGA. An FPGA is made

up of a number of reconfigurable logic blocks, which implements arbitrary logic

functions, and they are connected by switch blocks and interconnect wirings,

which routes the input and output of logic blocks to desired destinations. The

configuration of logic blocks and switch blocks is compiled by backend

software using the functional descriptions written in hardware description

language.

hinder their adoption for demanding applications such as neural
simulation. Recently, high-level synthesis (HLS) tools capable
of translating high-level languages into lower level descriptions
have enabled faster development time, less effort for design
modifications, and cross-system portability. For instance, in our
system we use Java to describe the high level computation to be
implemented on the chip.

High-Performance FPGA-Based Computing Platform
We choose systems provided by Maxeler Technologies as the
targeted platform to develop NeuroFlow. The vendor offers a
number of FPGA-based high-performance computing platforms.
The FPGAs are configured as streaming processors, delivering
high computing power with large external memory capacity.
Different form factors are available including standalone
desktops, multi-node server-scale systems, and on-demand
cloud-based service. Figure 2 shows the system board and
two of the available platforms. Similar to software platforms,
the simulator can run on any of these form factors without
modification if the underlying FPGA system board is of the
same model. The various form factors have their own pros and
cons and suit researchers with different needs: a standalone
desktop provides affordable and exclusive access for researchers
to simulate their own models; a server-scale system has a number
of FPGAs in the same node and can be used for simulation
of larger networks; cloud-based service on the other hand is
more convenient and potentially cost less than the other options
since it does not require ownership of physical systems, and is
thus suitable for short-term deployment. In this work, we use
a standalone desktop with 1 FPGA (Virtex 6, 40 nm process)
and a rack server with 6 FPGAs (Altera Stratix V, 28 nm process)
in our experiments. Since the compiler tools and the system
architecture are customized for dataflow computing, NeuroFlow
cannot be run directly on other standalone FPGA boards without
modification.

FIGURE 2 | Sample Maxeler systems the NeuroFlow neural simulator

run on. Upper left: A single system board containing one FPGA; upper

right: workstation with a single FPGA card; bottom: a 1U server unit.
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Simulator Architecture and Computation
Computation Phases and Core Structure
The architecture of the computation core is shown in the bottom
part of Figure 3. The FPGA has two major hardware kernels
which are synthesized from the high level descriptions, namely

the Neuron State Kernel and the Synaptic Integration Kernel.
Each of them is responsible for a phase in the two-phase
computation. We use time-driven model for updating the state
of neurons and each of the two-phase computation represents
a time step of 1ms. They communicate with the host processor

FIGURE 3 | Compilation pipeline and runtime file loading of NeuroFlow. The pipeline receives neural model code written in Python which is then compiled into

hardware configuration, host side configuration and memory data file. The resulting data files and configurations are loaded into the host processor (CPU) and FPGA

of the system during runtime.
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node during the initial setup at the beginning of the simulation
and during the read-out of the simulation results (spiking
output) at the end of the simulation. During the initial setup,
the architectural parameters and neuron model description are
passed on to the hardware synthesis compiler, which initiates
the compilation pipeline (Section Compilation Pipeline). The
neuronal and synaptic parameters are then compiled and loaded
onto the external DRAM on the FPGA card. During the
simulation, the parameters to be retrieved for subsequent analysis
designated by the user, such as spiking data and neuronal states
of specified neurons, are stored on the external DRAM, and are
transferred to the host after the simulation.

Figure 4 shows the detailed computation flow of NeuroFlow
in the simulation phase. The main computation phases for
SNNs are (i) neuronal state update and (ii) synaptic weight
accumulation.

In the first phase of the process (i), FPGAs update the
neuronal parameters and spiking record stored in large off-
chip DRAM memory storage. They are retrieved and updated

FIGURE 4 | Simplified computation flow and architecture of

NeuroFlow. The system consists of two major kernels corresponding to the

two main computation phases: Neuron State Kernel, which corresponds to

Neuron Update Phase and calculates the updated neuronal states using the

synaptic and neuronal models at each time step; and Synaptic Integration

Kernel, which propagates the neuronal spikes to own and other FPGAs in

Synaptic Accumulation Phase. Neuronal and synaptic parameters are stored

in high-capacity off-chip memory while the others are stored in high-speed

on-chip memory to optimize the overall memory latency.

by the FPGA during the simulation. The neuron state update
modules update the dynamics of neuronal states in parallel using
ordinary differential equations-based neuronal models, which are
computed in floating-point arithmetic. The number of parallel
neuronal modules, typically ranging from 2 to 32, is determined
by the number of neuronal parameters and memory bandwidth
available. These customizable modules are implemented in a
time-multiplexed, parallelized and pipelined manner to optimize
the throughput with a range of model options to choose from.

In the second phase (ii), the FPGAs retrieve and store the
incoming synaptic data into the fast on-chip BRAM memory
storage. The Synaptic Integration Kernel retrieving synaptic data
from off-chip memory and subsequently computes the synaptic
input for the neurons. The computation is carried out by up to 48
parallel synapse modules, constrained by the available bandwidth
and timing delay of hardware logic resources. Accessing synaptic
data from memory and subsequent synaptic processing is
triggered by spikes hence the overall processing time is roughly
proportional to the activity level of the network. The synaptic
data are preprocessed and packed in a specific format in fixed
precision before being stored in the off-chip memory to speed up
the simulation.

Nearest-Neighbor STDP
Our simulator also supports nearest-neighbor STDP using both
the FPGA and multi-core processors in a coordinated fashion.
It demonstrates that conventional multi-core processors can be
used along with the FPGA during a neural simulation in this
system. Nearest-neighbor STDP is a common plasticity algorithm
for learning in SNNs (Benuskova and Abraham, 2007; Babadi and
Abbott, 2010; Humble et al., 2012). It is an efficient and good
approximation of the STDP with all-to-all spike interaction as
shown in Figure 5. It computes the change in synaptic weights
using only the closest spike-pairs, instead of all spike-pairs, in
order to reduce the computation complexity while remaining
biologically accurate (Izhikevich and Desai, 2003). In accordance
with Izhikevich and Desai (2003), we only take into account
presynaptic-centric interactions such that only the first post-
synaptic spike before or after a presynaptic spike can cause
depression or potentiation, but nonetheless the system is capable
of implementing other forms of interactions. We implement an
additive model of STDP in NeuroFlow, and other types of more
complicated models, such as a multiplicative synaptic model,
can be incorporated, at the expense of requiring additional
hardware resources. The hardware resource required would be
proportional to the degree of parallelism of the synapse modules.

To compute STDP, the FPGA sends the spiking data to the
multi-core processor which updates a table of relative spike
timing stored on the host side with size proportional to the
maximum axonal delay. The memory cache at the host side is
more efficient for fetching and updating data in randommemory
locations, complementing the weakness of FPGAs in this respect.
The relative timing information is used to access change in
synaptic weights in a lookup table, which are accumulated and
sent back to the FPGA. The communication for the update
of synaptic weight table occurs at a fixed interval of time
steps specified by the user (e.g., 100ms and 1000ms in the

Frontiers in Neuroscience | www.frontiersin.org 5 January 2016 | Volume 9 | Article 516

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Cheung et al. NeuroFlow Customizable Neural Simulator

FIGURE 5 | (A) All-to-all spike interactions between pre- and post-synaptic

neurons for STDP learning. Since the number of interactions is proportional to

the square of firing rate, this paradigm is computationally expensive.

(B) Presynaptic-centric spike interactions between pre- and post-synaptic

neurons for STDP learning adopted in NeuroFlow. This method is

computationally efficient and can approximate the all-to-all paradigm with high

biological plausibility.

examples from the Section Results) to reduce the communication
overhead.

To efficiently implement the STDP rule, we use a scheme
similar to the deferred event model (Rast et al., 2009), which
minimizes the number of memory accesses by batch processing
the weight changes. The scheme stores spikes in previous time
steps and calculates the corresponding weight change only after
a certain time window, typically a few tens of milliseconds. The
time window is set to ensure that no further spikes can cause
changes to the synapses for a neuron spiking at the beginning of
the window.

Automated Customization using PyNN Description
Since the FPGA platform is reconfigurable and has limited
hardware resources, ideally one would simulate SNNs with a
customized design for each specific neural model in order to
optimize resource utilization. The high-level description of a
network in PyNN facilitates automated customization to return
a set of parameters for hardware design. We have identified
a number of design parameters that can be determined by
the simulation requirements and hardware constraints. Such
customization provides further speedup at the expense of
additional hardware resources. When the customization options
are on, the compilation will attempt to compile the design
with the highest hardware resource utilization, then proceeds
to designs with lower resource requirements when there are
insufficient hardware resources or the timing constraint is not
met. The variables are divided into two types:

• Static parameters are compile-time parameters for the
computation engine code, and recompilation of the hardware
is needed whenever these parameters are changed. Since a
typical recompilation of an FPGA hardware design requires
10–20 h, these parameters are not changed frequently for a
given model and configuration. The static parameters are
determined by analysis of the PyNN description and available
hardware resources on the system. The parameters include:

1. The number of parallel neuronal state update modules.
In general the parallelism is calculated as the memory
stream bit width divided by the precision (single or double
precision) and the number of neuronal parameters per
neuron.

2. Additional weight caching mechanism for synaptic
memory access. It makes use of extra on-chip BRAM
buffers to store the data. Currently the additional resources

required is estimated from previous builds. Together with
the FPGA used and the network size to be simulated, the
information can determine whether this mechanism can be
accommodated in the design.

3. Synaptic organization method to use based on density of
neuronal connectivity. A densely-connected network can
be packed in a more compact format which can lead to
reduction in hardware resources.

• Dynamic parameters are runtime simulation parameters
read by the host processor which do not need hardware
recompilation. The parameters cannot be modified during a
simulation but can be changed between different simulations
in the same program. The parameters include the number of
FPGAs to use, the allocation of simulated neurons and the
number of neurons handled by each FPGA.

Model Specification
PyNN for Neural Model Specification
PyNN is an open-source, Python-based neural simulation
package for building neuronal network models developed by
Davison et al. (2008). It offers an easy and standardized
language for neural simulation and allows the results to be
cross-checked between various simulation environments without
the need to rewrite the code. Furthermore, users can also use
visualization and analysis tools compatible with PyNN. Currently
PyNN has API interfaces with a number of popular standard
neural simulation software such as NEURON, NEST, and Brian
(Davison et al., 2008), which can be installed along with the
software packages. Hence the results from NeuroFlow can be
crossed-checked with software simulators. A number of large-
scale simulators have also implemented high-level bindings with
PyNN to facilitate the use of the simulators such as SpiNNaker
(Galluppi et al., 2010) and FACETS (Brüderle et al., 2011).

Taking advantage of its popularity, we adopt PyNN to provide
a standardized interface for building neuronal models. Code 1
shows an example that can be used for declaring neuronal
populations, creating neuron connections and setting hardware
parameters in NeuroFlow. The user can define populations
of neurons which share the same neuronal parameter(s) and
connect them using various projection methods to add synapses.
The user can also set hardware configuration parameters such
as clock speed and degree of parallelism by using the setup
command. If not explicitly specified, default values are used.

Compilation Pipeline
To automate the process of running neural models and determine
hardware parameters, we develop a pipeline of compilation
processes to translate a high-level specification to hardware
configuration for the FPGA system.

The general compilation flow is depicted in Figure 3. In
the first step of the pipeline, the PyNN interface, extracts,
and converts the neuronal and synaptic parameters into a
specific format as described in Cheung et al. (2012) to facilitate
parallelization of neuronal state update and synaptic input
accumulation, which is then written into memory data files. On
the other hand, the compilation tool also determines a number of
design parameters based on simulation conditions and hardware
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Code 1 | Sample NeuroFlow PyNN interface code. The usage is the same as the standard PyNN format. The code creates a number of integrate-and-fire neurons

and connects them using an all-to-all connector method provided by PyNN. The user can supply external stimulation to the neurons and record the activity of

neurons. The user can change the hardware configurations such as parallelism, maximum axonal delay, and FPGA clock frequency using the setup function.

constraints to allow for customization and optimization of
hardware resource (Section Automated Customization using
PyNN Description).

In the next step, we make use of tools provided from Maxeler
to compile code written in Java describing the computation
and architecture into hardware descriptions readable by the
FPGA. The compiler reads in the static parameters and chooses
which models to implement in the synthesis phase according
to user specifications. Instead of soft processors which are
used by a number of other FPGA approaches (Maguire et al.,
2007), the differential equations are compiled into dataflow
path representations for building pipelined computations on the
circuitry level. Although this approach is area-efficient, a fresh
hardware compilation is required when a different neuronal
model is used. The compilation tool then calls vendor-specific
software which carries out conversion of lower-level hardware
language descriptions in VHDL format, hardware resource
mapping and place and route (PAR) which determines the
actual hardware implementation. At the end of this process, an
FPGA bitstream file is generated which describes the hardware
configuration for the simulator. The host processor then reads
in the host code generated from the compilation process and
initiates the communication with the FPGAs and starts the
simulation process.

Levels of Description
To build a generic neural simulation system that enables
the neural modeling community to use this accelerator as a

simulation back-end, the actual hardware implementation should
be abstracted from the user. We use PyNN and Maxeler tools
to implement a number of abstraction levels for running neural
simulations.

Using multiple levels of abstraction, NeuroFlow allows users
to write in a domain-specific language they are familiar with
to obtain hardware speedup without extensive knowledge of
hardware. As shown in Figure 6, each description level of
NeuroFlow describes a separate aspect for simulating neural
network on FPGAs. Each level can be modified independent of
other levels and enable easier maintenance and development for
the platform.

The top application level describes the neuronal types,
network connectivity, and experimental setup. The description
will be portable to various back-ends for checking and
verification. It corresponds to the user code in Python in
NeuroFlow, where user specifies the neuronal model and
the customization parameters, and the translation work for
extracting the description in Python to the subsequent stages
in the pipeline. Next, the electronic system level describes the
behavior of computation flow (differential equations, synaptic
integration and STDP) and the system configuration, such as
off-chip memory and inter-processor communication. When a
different system is used, only the system configuration needs
to be changed, rather than the entire computation engine
code, thus facilitating portability across various systems. The
hardware is also automatically customized based on the high-
level description, meaning that performance gain is obtained
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FIGURE 6 | Levels of description for neural simulation in NeuroFlow.

The description of the system of NeuroFlow consists of a number of levels:

Application level, electronic system level and register-transfer level. Users of

the system only codes in the application level and use functions provided from

the levels below, without the need to know the hardware details. Changes to

the actual implementation of neural models are made at electronic system

level which is hardware independent. The register-transfer level is the

implementation at the hardware level and is handled by software provided by

the vendor, thus reducing the maintenance effort for the system.

without compromising the usability of the system. At the
lowest FPGA-specific hardware description level, the program is
translated to a hardware description language such as VHDL,
which is then compiled to the actual FPGA bit stream using
back-end vendor specific synthesis tools.

Supported Simulator Functions
NeuroFlow offers a number of common models and
functionalities used in neural simulation which is summarized in
Table 1. Currently a number of neuronal models are supported
by NeuroFlow, and the process of adding new models to the
simulator is relatively simple, by adding the needed neuronal
options in the PyNN backend and writing the corresponding
differential equations in the Java functional description. The
models currently supported include the leaky integrate-and-fire
model (Gerstner and Kistler, 2002), the adaptive exponential
integrate-and-fire (Brette and Gerstner, 2005), the Izhikevich
model (Izhikevich, 2003), and the Hodgkin-Huxley model
(Hodgkin and Huxley, 1952). Furthermore, the simulator
can use various ordinary differential equation (ODE) solvers;
currently, Euler and Runge-Kutta methods are implemented
in NeuroFlow to demonstrate this capability. The neurons can
be divided into neuronal populations and neuronal parameters
that are common in a population can be declared through the
PyNN interface, and thus reduce memory usage by removing
duplicated parameters.

The current scheme assumes synaptic weights are linear and
additive for both excitatory and inhibitory synapses, which are
accumulated in the on-chip memory, and can be changed if
required. The user can define various synaptic current input
functions, such as exponential decay function, alpha-function, or
delta-function.

TABLE 1 | Summary of functionalities supported by NeuroFlow.

Module type* Implemented models

Neuron models • Leaky integrate-and-fire

• Adaptive exponential

integrate-and-fire

• Izhikevich model

• Hodgkin-Huxley model

ODE integration methods • Euler method

• Runge-Kutta method (4th order)

Synaptic input current filters Exponential decay function

• Alpha function

• Custom filter

Plasticity • Pair-based nearest-neighbor

STDP

Simulator functions • Neuronal population declaration

• Neuron monitor (spikes and

membrane potential)

• Synaptic coupling strength

retrieval (per presynaptic neuron)

• External current injection

• Random number generator

(Gaussian/uniform)

*Planned support for non-linear synapse dynamics and ball-and-stick neuron model.

The user can specify arbitrary external current injection to
the neurons, and the parameters such as amplitude, time, and
target neuron index are stored in on-chip memory. A number
of random number generators are available to generate noise
input to the neurons, including uniform and normally distributed
random number generators. The user can also monitor the
spiking and membrane potential of specified neurons, which are
stored on FPGA during the simulation, and are sent back to the
host processor after the simulation is completed.

The current implementation of the system maps the neurons
into hardware by sequentially assigning the neurons to the
FPGAs according to their indices. While this approach is simple
and efficient, the communications between the FPGAs may not
be optimized and could lead to longer simulation time when
using more than one FPGA. In theory the connectivity between
the FPGAs and the mapping can be done in a similar manner as
Furber et al. (2013) which introduced a virtual mapping layer for
efficient spike transmission.

RESULTS

To evaluate the performance of the platform, we simulate a
number of models to test the accuracy, speed, and power
consumption of our platform. The models vary in size and
complexity to test the full range of capability offered by
NeuroFlow.

Two Neurons with Paired Stimulation
In the first set of experiments, we test the precision and accuracy
of the computations by simulating two adaptive exponential
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integrate and fire neurons (aEIF) with external stimulation
and STDP (Figure 7A). The membrane potential dynamics is
described by the following equations:

C
dV

dt
= −gL(V−EL)+ gL△Texp

(

V−VT

△T

)

− w+ I (1)

τw
dw

dt
= a(V−EL)− w (2)

The model is a system with two differential equations, which
solves for membrane potential V and adaptation variable w. The
model receives input current I, and has parameters membrane
capacitance C, leak conductance gL, reversal potential EL, spiking
threshold VT, slope factor △T, adaptation coupling parameter a,
and adaptation time constant τw. Brette andGerstner (2005) have

shown that the model is able to replicate the precise temporal
dynamics of biological neurons.

We test the effect of STDP on the synaptic strength
by simulating two neurons firing alternately for duration
of 250ms, using an external input current of 10mA with
spiking time difference of 10ms. A common STDP profile with
temporal causality is applied (Figure 7B). The weight is modified
according to the following rules:

△w+ = A+exp

(

−
△t

τ+

)

for△t > 0 (3)

△w− = A−exp

(

−
△t

τ−

)

for△t < 0 (4)

with parameters A+ = 0.1, A− = 0.12, and τ+ = τ− = 20ms,
where only the closest spikes for each firing from presynaptic
neurons are considered.

FIGURE 7 | Simulation using NeuroFlow with STDP enabled under the paired stimulation protocol. (A) The simulation consists of two aEIF neurons which

are mutually connected. Each of them receives an alternate stimulation of 10mA for 250ms. (B) The STDP profile used for the simulation, with A+ = 0.1, A− = 0.12

and τ+ = τ− = 20ms (C) Traces of membrane voltage of the two neurons with spike time difference of 10ms. The neurons spike upon receiving the external

stimulation, where blue (red) arrows correspond to the time when neuron a (neuron b) receives external stimulation in the diagram. (D) Evolution of the strength of

synaptic coupling between the two neurons across time in the trial described in (C).
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Figures 7C,D show the results of the simulation. The neurons
are stimulated externally to force the neurons to fire at the times
denoted by the red and blue arrows. The two neurons produce
excitatory post-synaptic potentials (EPSPs) in the other neuron
when they spike, with an initial synaptic strength of 0.1. Due to
the effect of STDP learning, neuron B receives stronger synaptic
input from neuron A, and conversely neuron A receives weaker
synaptic input from neuron B. The synaptic strength is bounded
to user-defined values, in this case 0 <w < 0.25, thus wba is
settled at 0 after learning. The update of synaptic strength is
delayed for the routine to take into account the timing of future
spikes, in order to update synapses in batch.

Large-Scale Spiking Network
To test the performance of NeuroFlow for simulation of large
networks, we simulate large-scale networks of size up to 589,824
neurons with excitatory and inhibitory neurons as shown in
Figure 8. The network is similar to the one used by Fidjeland and
Shanahan (2010), with neuron parameters taken from Izhikevich
(2003), for evaluation of their neural simulator. The following
table shows the hardware and simulation details. The setup time
and readout time stated increases with the size of the network,
while the readout time increases with the simulation time.

FPGA Model Stratix V (5SGSD8)

DRAM Memory DDR3 48 GB

FPGA Clock Frequency 145MHz

DRAM Clock Frequency 533MHz

Power (per FPGA card) 30–40W

Hardware Compilation Time 17–20 h

Setup time (for network in Figure 8) <2min

Readout time (for network in Figure 8) <1min

The network has a toroidal structure and the connection
probability is spatially constrained. Each neuron connects to
varying number of post-synaptic neurons nsyn with either static
or plastic synapses, to test the effect of synapse numbers on
the platform performance (in this case without STDP, i.e., for
static synapses), where nsyn ranges from 1000 to 10,000 in the
simulations. The synaptic strength values are set to random
values between 0 and 0.5, and are adjusted by a scaling factor
nsyn in order to produce a similar level of network activity
across scenarios of different nsyn. The connection probability
follows a Gaussian probability of the synaptic distance, with
standard deviation (S.D.) of varying σ for connections from
excitatory neurons, and S.D. of 16 for inhibitory neurons. We
test σ ranging from 32 to 512 to evaluate the effect of connection
sparsity on the performance of the system. Conductance delays of
the synapses are proportional to the distance between neurons,
with a maximum of 16ms delay for excitatory synapses and
1ms delay for inhibitory neurons to ensure fast inhibition
from the inhibitory neurons and rhythmic activity of the
network.

When mapping the network onto FPGAs, each FPGA handles
the computation of 98,304 neurons with close spatial proximity,
and a maximum of six FPGAs are used for the simulations. Due

to the locality of synaptic connections, the neurons connect to
targets on the same or neighboring FPGAs, thus the hardware
mapping of neurons facilitates the retrieval of synaptic data.
Neurons that are closer to the border, such as neuron i in
Figure 8, require slightly more time to gather synaptic data than
neuron j.

Figure 9 shows the performance of the system for simulations
using two metrics: speedup with respect to real-time and spike
delivery rate. Speedup with respect to real time is affected by the
number of FPGAs required and the number of synapses. The
spike delivery rate, suggested by Fidjeland and Shanahan (2010)
as a measure of performance which measures the throughput
of the system irrespective of the firing rate, is obtained from
calculating the number of spikes delivered per second by the
system.

For simulations involving STDP, we simulate a network with
55,000 neurons with STDP applied to excitatory synapses using
the STDP profile in Section Computation Phases and Core
Structure. The inhibitory synapses are set as non-plastic as
described in previous literature (Phoka et al., 2012). We test two
cases with different synaptic strength update frequency, 1 and
10Hz, and measure the performance. The frequency determines
the interval between the batch update of synaptic weights, and
hence a lower update frequency incurs less overhead. The weight
changes are batched and then updated to the FPGA DRAM
in every fixed interval (1 s and 100ms, respectively). Figure 10
shows the performance of NeuroFlow in comparison with multi-
core and GPU simulators. Since the total number of synaptic
updates is proportional to the update frequency of STDP and the
synapse numbers, the computation time is heavily influenced by
these two parameters. Updating the synaptic weights in FPGA
also require a large bandwidth for the data transfer between
the host processor and the FPGA, which limits the update
frequency of the weights. We compare the performance of
NeuroFlow to those of software simulator NEST (Gewaltig and
Diesmann, 2007) on an 8-core i7 920 processor and GPU-based
simulator (Richert et al., 2011) on a Tesla C1060 GPU. Using an
update frequency of 1Hz, NeuroFlow is on average 2.83 times
faster than a GPU and 33.6 times faster than a conventional
processor.

FIGURE 8 | A toroidal neuronal network. Each dot represents the position

of a neuron. Synaptic connection probability depends on the distance

between the neurons which has a Gaussian distribution. Dotted circles denote

connection probability within 1 and 2S.D. One FPGA handles the computation

of 98,304 neurons.
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FIGURE 9 | (A) Speedup of NeuroFlow with respect to real-time and

(B) performance of NeuroFlow in terms of spike delivery rate. The speedup of

NeuroFlow is inversely proportional to the size of the network, and networks

with smaller number of synapses per neuron run a number of times faster. Due

to overhead of distributing the computations to different processors, the

speedup of network is not linear to the size of the network.

FIGURE 10 | Comparison of performance of various simulators. The

performance of NeuroFlow is compared against that of a CPU-based software

simulator NEST and a GPU-based simulator CarlSim. NeuroFlow is faster than

GPU and CPU platforms by 2.83 and 33.6 times respectively, when simulating

networks of 55,000 neurons using 100, 300 and 500 synapses, with STDP

enabled using an update frequency of 1Hz.

Polychronous Spiking Neural Network
We simulate a network that exhibits polychronization as
demonstrated in Izhikevich (2006) as a form of functional
verification. Making use of the interplay between conductance
delay and STDP, the model displays a large number of self-
organized neuronal groups which exhibit reproducible and
precise firing sequences depending on a specific activation
pattern (Figure 12A). The number of patterns can be larger

than the number of neurons in the network, showing the
potential computational capacity spiking neurons have over
the traditional rate-based neuron models. The network also
exhibits a range of rhythmic activity and a balance of excitation
and inhibition similar to biological networks. Due to the long
simulation required to demonstrate the effect of STDP on the
firing patterns, it is a good example to demonstrate the need for
neural simulation platforms such as NeuroFlow and other FPGA-
based implementations such as that byWang et al. (2013) for such
experiments.

In the experiment, we simulate a network of 1000 Izhikevich
neurons each with 100 plastic synapses. The simulation runs
for 24 h in model time with 1ms temporal resolution. At each
millisecond, one neuron is randomly chosen in the network and
receives a random input of amplitude 20mV. The connection
probability is 0.1 between neurons and STDP is enabled
for excitatory synapses. Each synapse has a random 1–20ms
conductance delay. The simulation takes 1435 s to complete in
NeuroFlow, which is 15 times faster than the 6 h reported in
the original study using a PC with a 1 GHz processor. Various
combinations of presynaptic anchor neurons in the absence of the
random input are tested after the simulation to find out possible
neuronal groups.

Figure 11 shows the raster plot of the simulation to
demonstrate the effect of STDP on the neuron dynamics. A 2
to 4Hz rhythm is seen in the network when the simulation first
started, which disappears during the simulation and is replaced
by a gamma rhythm of 30–100Hz after a simulation time of 1 h in
model time. Figure 12B shows a sample neuronal group after the
simulation. The neurons spontaneously self-organize into groups
and generate time-locked patterns. Post-simulation analysis finds
520 neuronal groups which is consistent throughout the whole
simulation after the first modeling hour. The simulated data are
in agreement with results from the original study, giving rise to a
similar distribution of group sizes.

DISCUSSION

In light of the increasing interest of simulating large-scale neural
networks, there is a need for platforms with such capability which
are powerful but easy to use and flexible. Targeting customizable
FPGAs, we develop NeuroFlow which offers a flexible, portable
and scalable simulation environment for SNNs that is available in
various form factors, ranging from multi-node supercomputers
to standalone desktop systems. NeuroFlow seeks to fill a gap
in terms of flexibility and scalability across the spectrum of
customized SNN accelerators. At one end of the spectrum,
ASIC-based systems have the highest speedup and lowest power
consumption amongst all forms of neural computing systems
(Silver et al., 2007; Schemmel et al., 2010; Merolla et al., 2014),
but they lack flexibility and are not widely available due to
high manufacturing cost. At the other end of the spectrum,
accelerators based on multi-core processor and GPU systems
support a wide variety of synaptic, neuronal and plasticity models
(Fidjeland and Shanahan, 2010; Richert et al., 2011; Hoang et al.,
2013), but the power consumption is high for a large GPU
cluster. FPGA-based systems offer a middle ground which may
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FIGURE 11 | (A) Raster plot of the network activity with 1000 neurons at the

beginning of the simulation. (B) Raster plot of the same set of neurons after a

3600 s simulation with STDP enabled. It shows oscillations of 2–4Hz before

the simulation and 30–100Hz after the simulation which is of close

resemblance of the original implementation.

be of great utility for large scale brain simulation programmes.
Following on from the first initial FPGA implementations of
spiking neural systems (Cheung et al., 2012; Moore et al., 2012;
Wang et al., 2013, 2015), here we report in detail the first
FPGA based, flexible, general-purpose implementation of a large-
scale spiking neural network that includes “full” Izhikevich style
neurons and STDP.

In the design of customized neurocomputers, flexibility is
sometimes sacrificed to achieve higher speedup, but it makes
the platform less useful for neuroscientists who usually carry
out specific and rapid model modifications. ASIC designs have
the lowest programmability and flexibility. The spiking neuron
models are fixed during fabrication and synaptic connections
are often non-plastic, low precision and have constraints in
the number and patterns of connections. In comparison the
SpiNNaker system, based on ARM processors, offers a high
degree of flexibility, but due to the small number of neurons
handled by each processor (at the order of 104 neurons)
and the requirement of long communication paths for large
networks, the platform does not handle well cases with a large
number of events, such as dense connectivity, STDP, or a
highly active network (Furber et al., 2014). These situations
are commonplace in neural simulations but are often not
considered when building neuromorphic systems. Furthermore,
customized hardware platforms have to be redesigned and
fabricated when there is a need to replace or incorporate
additional models, such as plasticity, neuronal compartments,
ion channels, gap junctions, or higher precisions. As an example,

SpiNNaker uses fixed-point number representation instead of
floating point arithmetic as the default representation, which
leads to programming difficulties and constraints such as the lack
of native division operation and precision issues (Furber et al.,
2013).

Integrating of PyNN into the design of NeuroFlow simulator
offers a number of advantages in terms of model development
and performance gain. PyNN shortens the time in model
development, allowing model builders to port the simulation
to a new simulation environment with less time and cross-
check the correctness of their models in other simulators.
It also allows automated customization of hardware which
can optimize the utilization of hardware resources. Currently
development with the PyNN framework faces a number
of challenges, such as backward incompatibility, minor
defects, and the lack of technical support; but the idea of
integrating a high-level neural description language with a
hardware platform for accelerating simulation is attractive and
useful.

Neural networks for different purposes require various
levels of abstractions and precisions. To date there is no
consensus on what is the optimal level of abstraction to
describe a biological neural network. Generally models with
higher complexity have a richer dynamics which contributes
to their higher computational capacity. For example, non-
linear dendrites can solve linearly non-separable classification
problems (Cazé et al., 2013), and extending point neurons to
include one or more dendritic compartments can dramatically
change the firing dynamics of the neuron, which can account
for observations from experiments (Rospars and Lánský,
1993; Vaidya and Johnston, 2013). So changes to the model
descriptions will affect the need for computational capability of
a neurocomputer. While these properties are generally ignored
when designing a neurocomputer, they are sometimes crucial in
neural simulations. Given the large variety of neuronal, synaptic,
and plasticity models used in neuroscience, inflexible neural
simulation platforms would have limited value for computational
neuroscientists.

In this regard, one possible use of NeuroFlow is for
prototyping of neurocomputers. Engineers can test various
configurations using FPGA-based neurocomputers and find the
optimal precision for a given application and use the minimal
complexity and precision as system configurations. Similar to
ASIC prototyping using FPGAs, prototyping using NeuroFlow
can reduce the cost of chip modification and can benefit future
neural-based computation systems.

As illustrated in the experiments, NeuroFlow demonstrates
good performance and flexibility, but it has a number of issues
to address in order to broaden its appeal. While changes
in neuronal, synaptic and simulation parameters only require
generating new data files, FPGA requires considerable synthesis
time to recompile the hardware configurations. However, there
have been a number of attempts to reduce the synthesis time
by using precompiled modules, such as hard macro stitching
(Lavin et al., 2011) and modular reconfiguration (Sedcole et al.,
2006). While the current system is efficient in handling a large
network size of 105–106 neurons using simple interconnect,
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FIGURE 12 | (A) The working principle of polychronization. Izhikevich (2006) proposed this mechanism, which shows that the various spike conductance delay can

produce time-locked spiking patterns which are triggered by certain initial activation pattern. The pattern occurs spontaneously during long simulations of network

with STDP. The dotted line represents the propagation of spikes in the network. (B) Polychronous network simulated produces a number of time-locked patterns upon

activation of certain neurons.

more work has to be done on the neural mapping scheme
and intercommunication between nodes, such as similar work
on SpiNNaker (Khan et al., 2008) to extend the scalability of
the current system to support simulation of larger networks.
Another issue is power consumption of the system. NeuroFlow
make use of external DRAM and hence is not as power
efficient as standalone FPGA platforms, but replacing them
with faster and more power efficient SRAM can solve the
problem.

Currently there is a major gap in our understanding between
small neuronal networks and the neural system as a whole.
Models such as the work by Izhikevich and Edelman (2008)
incorporate the dynamics of individual neurons in a large-
scale human brain model, which can be used to compare
against whole-brain imaging data and can potentially lead
to development of personalized diagnosis and treatments.
Development of neural simulators such as NeuroFlow enables
neuroscientists to study neural dynamics in high speed and
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explore the parameter space and fitting of parameters to
neurophysiological measurements, which bridge the gap between
the small and large-scale studies. NeuroFlow shows promising
capability in neural simulation in performance, ease of use
for neuroscientists and flexibility as demonstrated in the
polychronous network and somatosensory cortex simulations.
With the customizability offered by NeuroFlow, it facilitates
exploration of various hardware configurations that may lead
to better and more efficient neural implementations. There
are also plans to extend functions of NeuroFlow, such as the
inclusion of ball-and-stick models and AMPA, NMDA, and
GABA synapses with non-linear temporal dynamics, in order to
support simulation of more complex neural dynamics and make
the platform useful for a broader group of neuroscientists.
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