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Abstract Programmable hardware, in particular Field Programmable Gate Arrays (FPGAs), promises a sig-
nificant increase in computational performance for simulations in geophysical fluid dynamics compared
with CPUs of similar power consumption. FPGAs allow adjusting the representation of floating-point num-
bers to specific application needs. We analyze the performance-precision trade-off on FPGA hardware for
the two-scale Lorenz ’95 model. We scale the size of this toy model to that of a high-performance comput-
ing application in order to make meaningful performance tests. We identify the minimal level of precision
at which changes in model results are not significant compared with a maximal precision version of the
model and find that this level is very similar for cases where the model is integrated for very short or long
intervals. It is therefore a useful approach to investigate model errors due to rounding errors for very short
simulations (e.g., 50 time steps) to obtain a range for the level of precision that can be used in expensive
long-term simulations. We also show that an approach to reduce precision with increasing forecast time,
when model errors are already accumulated, is very promising. We show that a speed-up of 1.9 times is pos-
sible in comparison to FPGA simulations in single precision if precision is reduced with no strong change in
model error. The single-precision FPGA setup shows a speed-up of 2.8 times in comparison to our model
implementation on two 6-core CPUs for large model setups.

1. Introduction

Numerical models in Computational Fluid Dynamics (CFD) that do not resolve the whole range of the turbu-
lent energy cascade can only be approximations of reality since the dynamics of a continuous fluid is
reduced to a finite representation on a numerical grid in space and time. Many models in CFD work with
double-precision floating-point arithmetic since double precision will almost guarantee that rounding errors
do not influence the quality of model simulations for many applications. There is no doubt that a strong
reduction in numerical precision will reduce the quality of results. However, papers that study the use of so-
called inexact or approximate hardware in geophysical modeling suggest that it would be possible to
reduce energy consumption and to increase performance significantly if high numerical precision is sacri-
ficed, with only a small impact on model quality [D€uben et al., 2014a, 2014b; D€uben and Palmer, 2014].
Higher performance and reduced energy consumption with inexact hardware will potentially enable simula-
tions with higher resolution for the same computational budget, therefore, improving results for many
applications.

The basic idea to trade precision against computational cost in hardware development has been discussed
for several years [Palem, 2003, 2005] and several different approaches to inexact hardware have been inves-
tigated. The first approach studied so-called ‘‘stochastic processors.’’ Here power consumption is reduced
significantly by reducing the applied voltage to the floating-point unit. However, hardware errors can occur
within numerical simulations if voltage is decreased [Narayanan et al., 2010; Kahng et al., 2010]. A second
approach is ‘‘pruning’’ in which the physical size of the floating-point unit is reduced, by removing parts
that are either hardly used or do not have a strong influence on significant bits in the results of floating-
point operations [Lingamneni et al., 2011; D€uben et al., 2014a, 2014b]. Pruning of the floating-point unit can
also be combined with the use of inexact memory and cache [D€uben et al., 2015]. A third approach is to use
hardware that allows flexible precision floating-point arithmetic, such as Field Programmable Gate Arrays
(FPGAs). FPGAs are integrated circuit designs that can be customized by the user (‘‘programmable’’ hard-
ware). While stochastic processors, pruning, and inexact memory and cache are still in an early stage of
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research and not yet realized in general purpose computing systems, FPGAs could already prove their use-
fulness in multiple applications. For designs targeting FPGAs, designers use hardware languages such as
Verilog and VHDL to capture the customized operations in hardware. The hardware descriptions go through
vendor tool chains to be synthesized into configuration bit streams, which are downloaded into the config-
uration memory of FPGAs to define the implemented hardware. In practice, the ability to construct custom-
ized hardware designs on postfabrication chips is often the principal drive behind the adoption of FPGA
technology. One of the key factors exploitable by FPGA designs is the ability to trade the accuracy of com-
putational results with silicon area, power, and operating frequency. The number of bits used to represent
fixed or floating-point numbers can be reduced to a minimum (the hardware can be used in an ‘‘informa-
tion efficient’’ way, see Palem [2014]). Development tools that can automatically optimize design accuracy
have been proposed [Lee et al., 2006; Boland and Constantinides, 2012, 2010]. However, the target accuracy
is set based on user experience.

The high computational efficiency of FPGAs makes their use interesting for CFD applications. Recent studies
reveal that the use of FPGAs shows huge potential for atmospheric modeling. Oriato et al. show a speed-up
of a meteorological limited area model of up to a factor of 74 on a dataflow node (which is based on FPGAs)
compared to a X86 CPU computing node [Oriato et al., 2012]. Gan et al. run a global shallow water model
on four FPGAs with a 330 times speed-up over a 6-core CPU [Gan et al., 2013]. We note that it is extremely
difficult to make fair comparisons between hardware which is as different as CPUs and FPGAs. Performance
measures will change if different generations of hardware are considered and performance results are
highly problem specific.

In this paper, we investigate the performance of a nonlinear application with relevance for atmospheric
modeling on FPGA hardware. The main focus is on testing how performance can be increased if precision is
reduced below single precision. The use of FPGAs enables us to study the trade-off between precision and
performance on real hardware. A comparable study is not possible with CPU or GPU devices for high-
performance computing, since they would only support standard single and double-precision floating-point
arithmetic.

For efficient use of inexact hardware, it is of vital importance to estimate the minimal level of precision that
allows model simulations with no significant increase in model error. However, the chaotic nature of geo-
physical models makes it a difficult challenge to find this level of precision. If the model configuration is
changed only slightly, results of simulations will diverge from results of the control simulation over time.
Every change in precision—even an increase—will cause a significant change in the prognostic variables if
integrated over a long-enough time period.

To identify the minimal level of precision for models that are computationally cheap, it is always possible to
perform a trial-and-error approach in which precision is reduced until the model error is increased signifi-
cantly. One can do this by running several simulations at different precision levels and plotting the mean
error for a prognostic quantity against the number of bits used to represent, for example, floating-point
numbers. Ideally, this error is evaluated against the true system (e.g., atmospheric observations), but it can
also be calculated against a reference system (e.g., a double precision simulation). However, such an
approach will be very expensive for large model configurations, especially if different parts of the model
will accept different levels of precision. For complex models that consist of hundreds of thousands of lines
of code and run on hundreds or thousands of processors in parallel, such as weather and climate models,
this would be prohibitively expensive. In this paper, we identify the level of minimal numerical precision
that can be used with no strong increase in model error for different simulation intervals (between 1 and
100,000 time steps). We discuss the need for trial-and-error tests with expensive, long-term simulations.

In the Ensemble Prediction System of the European Centre for Medium-Range Weather Forecasts (ECMWF),
the first 10 days of a forecast are calculated with the highest affordable resolution on the local supercom-
puter (T639/32 km). After 10 days, the forecast is continued with lower resolution (T319/64 km) to save com-
puting resources [Directorate, 2012]. However, the change of resolution and the truncation of the numerical
fields induce perturbations and imbalances. If numerical precision is reduced with time and with increasing
model error, this might allow a reduction of computational costs for forecast simulations at the end of the
forecast period with no introduction of imbalances due to a change in resolution. In this paper, we will test
if such an approach is beneficial for a model that represents a chaotic system.
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This paper focuses on three scientific problems:

1. We attempt to construct a strategy to estimate the minimal level of precision that can be used in com-
plex numerical models of chaotic systems that avoids expensive trial-and-error simulations.

2. We investigate if a reduction of numerical precision with increasing forecast time is a useful method to
reduce computing time and power consumption in weather predictions.

3. We test if a reduction in precision is an efficient method to save computing time for simulations of cha-
otic systems on FPGA hardware in the context of geophysical fluid dynamics.

To approach these problems, we investigate the two-scale, chaotic Lorenz ’95 model on FPGA hardware.
The Lorenz model has been used in previous work [Ott et al., 2004; Wilks, 2005; Kwasniok, 2012; Sapsis and
Majda, 2013; Arnold et al., 2013] to test conceptual ideas, for example, for data assimilation or parametriza-
tion schemes and to investigate the chaotic and multiscale behavior of atmospheric dynamics. Our main
motivation for investigating such a model is that it shows chaotic, multiscale behavior in a high-
dimensional, complex model configuration while effectively being one dimensional. The model resembles
many properties of a numerical model in CFD since it is based on grid points that interact in a similar way
to finite difference discretization schemes. The main disadvantage of using the Lorenz model is that it is a
toy model with no real-world system to compare results with. A fair comparison that would increase numer-
ical resolution when numerical precision is reduced and compare the model error that is verified against a
truth for precise and imprecise simulations at the same computational cost is not possible. Therefore, we
need to define an artificial range for an acceptable ‘‘model error.’’ This can be realized by taking simulations
with slight perturbations of parameters as a truth. Differences between the perturbed parameter simula-
tions and the standard configuration will serve as an estimate for model error. To this end, we assume that
the main parameters of the system are only known down to a precision of 1%. We argue that a parameter
uncertainty of 1% is realistic for most numerical simulations in CFD. For comparison, we also perform simu-
lations for which the small-scale variables of the two-scale model are parametrized. The difference between
the parametrized and the original Lorenz system serves as an approximation of errors of model simulations
at strongly reduced resolution.

Sections 2 and 3 provide information on the Lorenz model and the experimental setup. Sections 4–6
approach the three scientific problems described above. Section 7 summarizes results and concludes the
paper.

2. A Chaotic Toy Model

The Lorenz ’95 model was proposed in Lorenz [2006] and consists of two sets of prognostic variables that
form one-dimensional periodic spaces and interact with each other via coupling terms. The X and Y varia-
bles of the model represent dynamics on large and small scales, respectively. Figure 1 provides a sketch of
the model configuration. We use Nx large-scale variables Xk (Xk2Nx 5Xk5Xk1Nx ), and Ny small-scale variables
Yj;k (Yj;k2Nx 5Yj;k5Yj;k1Nx ; Yj1Ny ;k5Yj;k11 and Yj2Ny ;k5Yj;k21) for each Xk.

The standard configuration of the Lorenz model uses only 36 large-scale X quantities that are each coupled
to 10 small-scale Y quantities. Such a configuration is certainly too small for a meaningful performance anal-
ysis on an FPGA. However, since there is no restriction for the number of degrees of freedom, we increase
the size of the used model heavily.

The model system is described by the following set of equations:

dXk

dt
52Xk21 Xk222Xk11ð Þ2Xk2

hc
b

XNy

j51

Yj;k1F; (1)

dYj;k

dt
52cbYj11;k Yj12;k2Yj21;k

� �
2cYj;k1

hc
b

Xk ; (2)

where F, h, b, and c are constants. Time will be measured in Model Time Units (MTUs).

We use two different configurations for simulations. The first configuration with Nx520; 000, NY 5 128,
F 5 30, h 5 1, b 5 10, and c 5 4 is denoted C4. The second configuration with Nx520; 000, NY 5 64, F 5 40,
h 5 1, b 5 10, and c 5 10 is denoted C10. The use of either c 5 4 or c 5 10 will cause a smaller or larger time
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scale separation. We use an explicit Runge-Kutta time stepping scheme of fourth order and a time step of
Dt50:0005 MTUs.

A chaotic model can be evaluated in two different time frames that represent predictability of the first and
the second kind: if the specific state of the system is of interest (for example, in weather forecasts), simula-
tions need to be initialized a short time before the actual event since predictability will decrease quickly
with increasing time due to model errors and uncertainties in initial conditions. If a mean state of the sys-
tem is important (for example, in climate simulations), initial conditions do not matter after a long spin-up
and model results will need to be averaged over a long time period. We investigate both types of simula-
tions for the Lorenz model and study short-term simulations that are integrated for up to 4 MTUs (8000
time steps) and long-term simulations of 100 MTUs (100,000 time steps for the model run 1 100,000 time
steps for the spin-up). We evaluate the mean forecast error for the large or small-scale quantities compared
to the control simulation for short-term simulations and the probability density functions of the large-scale
quantities for long-term simulations. All short-term simulations are initialized from initial conditions that are
provided by a long-term control simulation in single precision.

To obtain an estimate for a realistic error range, we compare simulations of the standard configuration with
reduced precision with simulations with perturbed parameters that have c and F changed by 1%. The differ-
ence between the perturbed and unperturbed simulations is compared against the change due to reduced
precision. For comparison, we also show results with parametrized model configurations that remove the
small-scale quantities from the model and replace the missing scale interactions in the equation for the
large-scale quantities with a parametrization term (see Appendix A for a detailed derivation). The model

Figure 1. Schematic of the model configuration with Nx 5 7 and Ny 5 6.
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configuration with parametrized small scales is obviously much cheaper compared to the full model config-
uration due to the strong reduction in the number of degrees of freedom.

3. Experimental Setup and Details

The achieved performance of an FPGA design is dependent on a number of factors including the clock rate
at which a design can be compiled and the extent to which design parallelism can be increased before run-
ning out of resources (digital signal processing elements (DSPs), memory, or on-chip logic) or becoming
impossible to route. Floating-point calculations can be implemented either by digital signal processing ele-
ments on-chip or via chip logic. Furthermore, high utilization of DSPs in the design does not necessarily
indicate higher computational throughput, as this can also occur due to space/latency trade-offs in the
design. Peak performance is therefore difficult to establish. For the FPGA hardware used in this work, 2016
DSPs exist on chip each of which is capable of performing one FLOP per clock cycle ideally. Typical clock
rates range from 150 to 300 Mhz. If arithmetic intensity or on-chip resources are not a limiting factor, it is
possible for an FPGA design to process data at the rate of the underlying memory system.

In this paper, the FPGA hardware designs were captured using Maxeler’s MaxJ language and compiled with
MaxCompiler version 2013.2.2. They were compiled to run on a MAX3A Vectis Dataflow Engine containing a
Xilinx Virtex 6 SXT475 FPGA. The MAX3A was hosted in a Maxeler MPC-C500 computing node and con-
nected via PCI express. All designs were compiled to run at 150 MHz. The design permits global and local-
scale quantities to have independent bit widths for significand and exponents, subject to some restrictions
imposed by the Maxeler tools.

Software simulations are run on the machine containing MAX3A cards and two 6-core Intel Xeon X5650 pro-
cessors running at 2.67 GHz, giving 12 cores in total. Each socket has a 12 Mbit level-three cache. The
machine has 48 Gbit of memory and is running Centos Linux 6.3. While the results of the performance eval-
uation in section 6 will be specific to the used Maxeler hardware, the results of the other sections will be
the same (or at least very similar) for other reconfigurable systems which support flexible floating-point
precision.

The floating-point representations on the FPGA resemble those defined by the IEEE 754 standard used by
most modern processors with the primary difference being no support for denormalized numbers. IEEE 754
values possess a sign bit and a fixed number of bits assigned to represent significand and exponent values.
For example, a double-precision value has 52 bits assigned to the significand, 11 to the exponent, and 1 to
the sign bit. Due to floating-point normalization, the significand bits are considered to have a leading ‘‘1’’
bit that is not stored. Hence, we consider double precision to have a 53 bit significand.

D€uben et al. showed that precision can be reduced more in the calculation of the small-scale quantities
compared to the precision of the large-scale quantities to obtain the same quality of results in atmospheric
modeling [D€uben et al., 2014a, 2014b; D€uben and Palmer, 2014]. Therefore, we will reduce precision for the
large (equation (1)) and the small-scale dynamics (equation (2)) independently. We denote the number of
bits in the exponent of floating-point numbers that are used to calculate all floating-point operations in
equations (1) and (2) for the large and small-scale quantities with EX and EY, respectively. The number of
bits used to represent the floating-point significand for the equations of the large and small-scale quantities
are denoted PX and PY. Although precision can be customized to application needs on the FPGA, not all
combinations of EX and PX are possible on the used hardware. For EX 5 4, PX needs to be �5, for EX 5 5,
PX needs to be �13 (the same constraints hold for EY and PY). All control simulations are calculated in sin-
gle precision. Differences between single and double precision simulations are negligible for all diagnostics
considered.

4. Simulations With Reduced Precision

In this section, we perform model simulations with reduced numbers of bits in the significand and expo-
nent. Precision will be reduced for the representation of large or small-scale dynamics (PX, EX or PY, EY,
respectively), or both. Section 4.1 provides results for long-term simulations with reduced numerical preci-
sion. Section 4.2 presents similar tests for short-term simulations. In section 4.3, we try to find the minimal
level of precision that can be used for combinations of EX, EY, PX, and PY with no strong increase in model
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error. Section 4.4 will calculate the model error for single precision and reduced precision model simulations
if a simulation with perturbed parameters is taken as ‘‘truth.’’

4.1. Long-Term Simulations With Reduced Precision
Figure 2 shows the Hellinger distance between the control simulation in single precision and simulations
with reduced precision. The Hellinger distance is a measure of the difference between two probability den-
sity functions (PDFs). PDFs describe the mean state of the system. If the Hellinger distance is calculated
between two single precision simulations that use different initial conditions, the result can be used as a
measure for the measurement error at the given level of statistics.

A reduction of PX to only 12 bits (11 bits for C4) will lead to a smaller change in the probability density func-
tion of the large-scale quantities than parametrizing the small-scales quantities. A reduction of PX to only
13 bits will cause a smaller change in the probability density function compared to perturbed parameters. If
PY is reduced, the change of the probability density function for the large-scale quantities is smaller com-
pared to the impact of a reduction in PX. A reduction of PY to 10 bits (less than 8 bits for C10) will cause a
smaller change than parametrizing small-scale quantities. A reduction of PY to 11 bits (9 bits for C10) cre-
ates an error that is smaller compared to the influence of a parameter perturbation. A simultaneous reduc-
tion of PX and PY causes an error that is almost identical to the error with only PX reduced.

A simulation with an exponent reduced to 5 bits (EX and EY) shows a smaller error compared to a simula-
tion with perturbed parameters. A further reduction of the number of bits in the exponent is not feasible
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Figure 2. Hellinger distance of large-scale quantities between a control simulation in single precision and simulations with reduced precision plotted against (top) the number of bits in
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since this would not allow a representation of the significand with more than 5 bits on the given hardware.
For EX 5 EY 5 7, the Hellinger distance is exactly zero for two simulations with the same initial conditions.
This indicates that simulations are bit reproducible and that the additional range of exponents is not used.

4.2. Short-Term Simulations With Reduced Precision
Figure 3 shows the mean forecast error for large-scale quantities plotted against the precision used for PX
and/or PY. After only one time step (0.0005 MTUs), results appear to be more sensitive to PX compared to
the long-term simulations in the previous section. However, after 50 time steps (0.025 MTUs), results are
already comparable to results from long-term simulations and show that simulations with PX reduced to 12
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Figure 3. Mean forecast error for large-scale quantities plotted against the used precision level for PX and/or PY at different times (after 0.0005, 0.025, and 0.5 MTUs from top to bottom)
with (left) the C4 and (right) the C10 configuration.
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bits (11 bits for C4) still obtain a lower forecast error than parametrized simulations. Simulations with PX
reduced to 14 bits show smaller errors than parameter perturbations. A change of PY has no immediate
influence on the forecast error of the large-scale quantities. After one time step, the error is almost zero.
After 0.025 MTUs (50 time steps), the error of the simulation with PY 5 9 is smaller than the error due to
parameter perturbations. However, the error exceeds the error for parameter perturbations for PY smaller
than 11 after 0.5 MTUs (1000 time steps).

Figure 4 shows plots similar to those in Figure 3 for the forecast error of the small-scale quantities. Results
are fairly different since the forecast error is initially much larger for a reduction of PY compared to a reduc-
tion of PX due to the slow response via interaction terms. The forecast error is comparable to the change
due to parameter perturbations if precision for PY is reduced to 12 bits (11 bits for C10). We found a strong
sensitivity to reduced precision after one time step and that the influence of a reduced PX becomes more
important with increasing lead time (not shown here), analogous to the results in Figure 3.

We conclude that forecasts of only very short time periods provide valuable information on the precision
level that is acceptable in expensive long-term simulations. However, two features of short-term forecasts
need to be recognized: (1) simulations of only a couple of time steps are more sensitive to reduced preci-
sion than longer simulations, probably because perturbations of rounding errors will have a mean close to
zero if averaged over a large number of time steps; (2) interactions between small and large-scale quantities
need a certain amount of time to propagate the perturbations of the small-scale quantities to the dynamics
of the large-scale quantities (approximately 50 time steps 5 0.025 MTUs for the Lorenz model). However, if
the forecast error is evaluated for each quantity individually, results from simulations for only 50 time steps
could provide useful information on the minimal level of precision that can be used with no significant
increase in model error. Results after 50 time steps do not deviate by more than 2 bits compared to results
from longer forecasts (e.g., 2 MTUs) or long-term simulations (e.g., 50 MTUs). These very short simulations
could be performed in an automatized trial-and-error way in which precision is reduced until the minimal
acceptable level of accuracy is reached.

4.3. Benchmark Tests With Reduced Precision
In this section, we present results for simulations that try to reduce precision for combinations of EX, PX,
EY, and PY as far as possible with no significant impact on model results. Tests in section 4.1 revealed that
EX and EY can be as small as 5 with no strong change in forecast quality. PX and PY can be as small as 14
and 12 bits, respectively, to cause smaller errors than simulations with a parameter perturbation and as
small as 13 and 10 to cause a smaller error than simulations with parametrized small scales. Therefore, we
will perform simulations with EX 5 6, PX 5 14, EY 5 5, and PY 5 12 and EX 5 5, PX 5 13, EY 5 5, and
PY 5 10.

Figure 5 and Table 1 present results for short-term forecast errors and the Hellinger distance of large-scale
quantities for simulations with reduced precision and simulations with single precision that have either
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Figure 4. Mean forecast error for small-scale quantities plotted against the used precision level for PX and/or PY after 0.025 MTUs with (left) the C4 and the (right) C10 configuration.
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perturbed parameters or parametrized small-scale quantities compared to the control simulation in single
precision. The simulations with reduced precision to EX 5 5, PX 5 13, EY 5 5, and PY 5 10 show a Hellinger
distance and a forecast error which is a bit higher than the error with perturbed parameters. The forecast
error with EX 5 6, PX 5 14, EY 5 5, and PY 5 12 is smaller than the error with perturbed parameters and
the Hellinger distance is at the same level as the measurement error. In the performed simulations, all
results with reduced precision are much better compared to simulations with parametrized small scales.

4.4. Model Error With Inexact Hardware
In previous subsections (sections 4.1–4.3), all diagnostics evaluated the change of model dynamics due to
reduced precision in comparison to simulations in single precision. In this section, we will evaluate the influence
of reduced precision on model error in comparison to a ‘‘truth’’ to obtain a more realistic setup for model fore-
casts. There is no real-world reference system for the model under investigation. However, we can assume that
the perturbed parameter configuration represents the true system and present the Hellinger distance and the
forecast error for different precision levels calculated against this truth in Figure 6 and Table 2. While the forecast
error is clearly increased if we use a precision level that has been found to produce a larger error than the differ-
ence between the truth and the model configuration (see section 4.3 for EX 5 5, PX 5 13, EY 5 5, PY 5 10), the
increase in the forecast error is only very small if we use a precision level that has been found to produce a lower
error (see EX 5 6, PX 5 14, EY 5 5, PY 5 12). If we increase precision by 2 bits for each significand (see EX 5 6,
PX 5 16, EY 5 6, PY 5 14), the reduced precision hardly influences the forecast error for both configurations.
The Hellinger distances agree well for all simulations except for EX 5 5, PX 5 13, EY 5 5, PY 5 10, and C4.
Here the Hellinger distance is increased but still in a reasonable range (less than 50% increase) when compared
to the Hellinger distance of the simulation with perturbed parameters.

5. Precision Reduced With Time

In this section, we investigate if it is feasible to reduce numerical precision with time in forecast simulations.
We reproduce the situation of a weather forecast that compares an imperfect model against the true
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Figure 5. Mean forecast error for large-scale quantities between the control simulation in single precision and (1) simulations with reduced precision, (2) simulations in single precision
with perturbed parameters, and (3) simulations with parametrized small-scale quantities with (left) the C4 and (right) the C10 configuration and plotted against time.

Table 1. Hellinger Distance for Simulations With Reduced Precision, Perturbed Parameters, and Parametrized Small-Scale Quantities in
Comparison to Standard Single Precision Simulations for the C4 and the C10 Configurationa

Run Hellinger Distance C4 Hellinger Distance C10

Single precision, changed init. cond. 0.0028 0.0033
c and F times 1.01 0.0054 0.0047
EX 5 5, PX 5 13, EY 5 5, PY 5 10 0.0079 0.0033
EX 5 6, PX 5 14, EY 5 5, PY 5 12 0.0029 0.0030
Parametrized 0.1137 0.0134

aThe table also presents an estimate for the measurement uncertainty via the Hellinger distance for a single precision simulation
with changed initial conditions.
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system (the atmosphere) by taking the configurations with perturbed parameters in single precision as
‘‘truth.’’ The standard model represents an imperfect model for which model forecasts diverge from the
truth with time. We will perform several sets of simulations with the imperfect model that reduce precision
at different time steps to either EX 5 EY 5 6 and PX 5 PY 5 12 or EX 5 EY 5 5 and PX 5 PY 5 13. We know
from the results in section 4 that both configurations will increase forecast errors.

Figure 7 shows the results. If precision is reduced from the beginning of the simulations, the forecast error
is clearly increased compared to simulations in single precision. However, if the level of precision is reduced
only after 0.5 MTUs (1.0 MTUs for simulations with configuration C4 and EX 5 EY 5 6 and PX 5 PY 5 12),
the forecast error is much smaller and of a similar magnitude as in the single precision simulation. An
approach that reduces precision with increasing lead time in a weather forecast appears to be promising.

Figure 8 compares the forecast error between the imperfect model and the truth against the forecast error
due to reduced precision. While the error of the single precision simulation with the imperfect model is cal-
culated against the truth, the error of the imperfect model with reduced precision is compared against the
imperfect model simulation in single precision. The error due to reduced precision is larger than the model
formulation error if perturbations start from the beginning of the simulation (continuous red line). If, how-
ever, precision is only reduced after 0.5 or 1.0 MTUs, this is effectively a shift of the error contribution of
reduced precision to the right (dashed and dotted red line). If the error due to reduced precision (with or
without time shift) exceeds the model formulation error—see the plots that are not shifted in time and the
plot for C4 shifted by 0.5 MTUs—model forecasts will almost certainly be influenced if the imperfect model
is integrated with reduced precision since it is unlikely that interactions between the model formulation
error and rounding errors will improve model simulations. For all other plots, the model formulation error in
single precision exceeds the error due to reduced precision. To get no degradation of results, it appears to
be a necessary condition to make sure that the shifted plots of the reduced precision simulations are lower
compared to the plot of the model error in comparison to the truth in Figure 8. A comparison to Figure 7
reveals that this necessary condition, that will only need one model simulation with reduced precision, per-
forms well for the given setup.
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Figure 6. Mean forecast errors for large-scale quantities for simulations with reduced and single precision with the standard parameters for (left) configuration C4 and (right) configura-
tion C10 plotted against time. Simulations with parameter perturbation (c and F times 1.01) are taken as truth.

Table 2. Hellinger Distance Between Simulations With Reduced Precision or Single Precision and Simulations With Perturbed
Parameters for the C4 and the C10 Configuration

c and F Times 1.01 Hellinger Distance C4 Hellinger Distance C10

Single precision 0.0054 0.0047
EX 5 5, PX 5 13, EY 5 5, PY 5 10 0.0115 0.0045
EX 5 6, PX 5 14, EY 5 5, PY 5 12 0.0049 0.0041
EX 5 6, PX 5 16, EY 5 6, PY 5 14 0.0063 0.0043

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000494

D€UBEN ET AL. REDUCED PRECISION IN GEOSCIENCE 1402



6. Performance Evaluation

This section investigates possible speed-ups when precision is reduced. See Russell et al. [2015] for a more
detailed evaluation of the performance increase and energy savings of the used model configurations.
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If precision is reduced on the FPGA, the
simulation can be rearranged such that
more small-scale degrees of freedom
can be calculated in parallel on the given
size of the FPGA. While eight Y variables
can be read per clock cycle in single pre-
cision (denoted by 8Y in the following),
we can read 16 Y variables at the preci-
sion EX 5 6, PX 5 16, EY 5 6, PY 5 14
(16Y) and 24 at the precision EX 5 5,
PX 5 13, EY 5 5, PY 5 10 (24Y). Table 3
shows the speed-up results for two
different sizes of the model system with

Nx51600 and Nx5819; 200. A simulation with Nx5819; 200 has more than 100 million degrees of freedom
and provides realistic speed-up results for applications of the size of a full weather or climate model. Over-
heads due to I/O and PCI-express data transfer are subtracted and not considered in timings.

The FPGA configurations scale extremely well with the number of degrees of freedom. To give one example,
the single precision setup updates 1.14E109 degrees of freedom per second for both the Nx51600 and the
Nx5819; 200 setup. The performance is increased by a factor of 1.91 or 2.46 in comparison to the single pre-
cision simulation if precision is reduced. We know from benchmark tests in section 4.4 that the configura-
tion with EX 5 6, PX 5 16, EY 5 6, PY 5 14 shows hardly any increase in model error while the
configuration EX 5 5, PX 5 13, EY 5 5, PY 5 10 shows a small increase in model error.

The table also provides results for simulations of the model on CPU hardware. The CPU simulations were
executed on a dual-socket machine with each socket containing a 6-core Intel Xeon X5670 processor (12
cores in total) running at 2.67 GHz with Hyperthreading enabled. The implementation was written in C11

and compiled with version 12.1.4 of the Intel C11 compiler. OpenMP was used for intranode paralleliza-
tion and the hwloc library was used to pin threads to physical cores. A ‘‘first-touch’’ policy was used for
memory initialization such that memory was allocated in the appropriate NUMA domain for each thread.
Fundamental differences between CPU and FPGA architectures make it difficult to generalize results
beyond the specific problem being studied. Our CPU implementation adopts a standard domain-
decomposition strategy for parallelization in which each thread computes a subset of results with parti-
tioning occurring in the K dimension. Inter-thread communication is independent of problem size,
depending only on the stencil size of the derivative computation. Threads synchronize after each substep
of the Runge-Kutta update. Each Runge-Kutta increment is calculated in sequence and accumulated into
the output state.

We note that the classic Runge-Kutta update is problematic for performance of CPUs due to memory band-
width requirements. For a Runge-Kutta update, our working set size (the amount of storage used for an
update) is 3 times our system state size and consists of storage for the input state, the updated state and a
temporary used for storage of Runge-Kutta increments. The amount of memory read and written for an
update are 9 times and 7 times the size of the system state, respectively. We believe this to be consistent
with a typical implementation of classic Runge-Kutta time stepping.

Using the STREAM benchmark, we rate the maximum practical achievable bandwidth of our test system at
around 35,000 MiB/s. Our CPU implementation achieves 4.61E108 degree of freedom processes per sec-
ond, where each is represented by a single-precision value. Considering the 16 reads/writes of each degree
of freedom performed, our implementation achieves approximately 80% of this.

In contrast, in the FPGA implementation, reads and writes of the input, temporary, and output states
become links in a pipeline between kernels implementing each of the Runge-Kutta steps. Hence, the FPGA
only reads and writes the system state to and from memory once—the theoretical minimum.

Much work exists on Runge-Kutta schemes that attempt to reduce the amount of intermediate storage
required which is important on systems where memory is limited [Ketcheson, 2010]. However, on modern
memory hierarchies, reducing memory bandwidth utilization is of high importance for achieving maximum
performance. Fusion of the Runge-Kutta increment calculations into a single traversal of the system state

Table 3. Relative Speed-Up for Simulations on the FPGA and With CPUsa

Relative Speed-Up Nx51600 Nx 5819; 200

CPU
Double precision, 12 cores 0.45 0.18
Single precision, 1 core 0.04 0.03
Single precision, 6 cores 0.24 0.18
Single precision, 12 cores 0.47 0.36

FPGA
Single precision, 8Y 1.00 1.00
EX 5 6, PX 5 16, EY 5 6, PY 5 14, 16Y 1.90 1.91
EX 5 5, PX 5 13, EY 5 5, PY 5 10, 24Y 2.46 2.46

aSimulations are either performed with Nx51600 or with Nx5819; 200. We
use Ny 5 144 for both configurations.
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would theoretically enable a reduction of the amount of data written to and from main memory. Such a
transformation is called loop fusion by compiler developers [Bacon et al., 1994].

The Lorenz ’95 implementation resembles finite difference codes in the manner that derivative calculations
involve stencil-like operations. This makes fusion of the Runge-Kutta steps difficult to correctly achieve by
hand, requiring code duplication and complex iterations patterns in order to respect dependencies. Such
code could be implemented using a code generator or using C11 template metaprogramming. We there-
fore do not claim that our Lorenz ’96 implementation achieves the peak performance that is possible on
the architecture we have chosen, but that it is consistent with the performance of a reasonably optimized
implementation.

On the CPU implementation of the model, single precision simulations are approximately a factor of 2 faster
compared to double precision simulations for large model configurations. For simulations of large model
setups (Nx5819; 200), single precision simulations on the FPGA are a factor of 1:0=0:36 � 2:8 faster com-
pared to single precision simulations on two 6-core CPUs. Russell et al. showed that a single precision simu-
lation with the same Lorenz ’95 model setup on an FPGA was 10.4 times more power efficient compared to
a CPU simulation with 12 cores in parallel. If precision is reduced, such that 16 or 24 ‘‘Y’’ variables can be
read per clock cycle (as for the two reduced precision configurations considered), power efficiency is
increased to a factor of 18.9 and 23.9, respectively [Russell et al., 2015]. However, all comments about diffi-
culties in the comparison between CPU and FPGA hardware that apply for the performance comparisons
above also apply for the comparison of energy consumption.

7. Conclusions

We analyze a two-scale, chaotic model on FPGA hardware. On the used hardware, trade-offs between preci-
sion and performance are investigated. The used model exhibits important properties of large-scale simula-
tions of weather and climate since it shows nonlinear/chaotic behavior and scale interactions. We scale the
size of the model to the size of a high-performance application to provide meaningful performance results for
full global circulation models of atmosphere or ocean using up to 100 million degrees of freedom in our simu-
lations. We show that precision can be reduced substantially in our model simulations before rounding errors
cause a significant increase in model error. Results confirm conclusions from previous publications: a reduc-
tion in precision for large-scale dynamics has a stronger impact on model quality than a reduction of precision
when calculating small-scale dynamics. The following three paragraphs summarize the results on the three
scientific problems that are listed in section 1 and therefore the results of sections 4–6, respectively.

First, we investigate how a reduction in precision will influence the quality of short and long-term simula-
tions and how to relate errors due to reduced precision with model errors. We conclude that the minimal
level of precision that should be used is similar in short and long-term simulations and argue that simula-
tions of only a small number of time steps (e.g., 50, this is equivalent to a couple of hours for an atmosphere
model) can provide valuable information about the minimal level of accuracy that can be used in both
weather (e.g., 1000 time steps) and climate-type forecasts (e.g., 100,000 time steps). This result is consistent
with the approach of seamless predictions in atmospheric modeling for which short-term simulations over
days, weeks, or seasons (initial value problems) are used to understand and improve long-term climate sim-
ulations (boundary-value problems, see, for example, Palmer et al. [2008]). While trial-and-error tests can be
avoided for expensive integrations if only short-term simulations are evaluated in a first approach to
reduced precision, we find that it is important to evaluate each reduced-precision simulation parameter
against its own reference value, if the model simulation is evaluated after only a small number of time steps;
this is necessary since interactions between different quantities will need an appropriate amount of time to
propagate perturbations. Furthermore, simulations with very small numbers of time steps (e.g., 1) are very
sensitive to reduced precision, probably since rounding errors will have a mean close to zero if averaged
over an appropriate number of time steps. The difference between the double precision and the reduced
precision simulation can be represented as a forcing terms added to the equations of motion. To identify
the minimal level of precision that can be used with no strong reduction in forecast quality for earth-system
models, we believe that a comparison between the magnitude of this rounding error forcing and the mag-
nitude of the random forcing of stochastic parametrization schemes, that are typically motivated by
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subgrid-scale variability, will be very useful (see, for example, D€uben and Dolaptchiev [2015] for simulations
with the 1-D Burgers’ equation).

Second, we show results for simulations for which precision is reduced with increasing forecast lead time
that suggest that a reduction in precision shows a much smaller proportional effect on the forecast error if
precision is only reduced later during the forecast, when model simulations already show an accumulated
model error, compared to simulations for which precision is reduced already at the beginning of the fore-
cast. A comparison between the change of the model simulation due to reduced precision and the model
error compared to the true system can provide useful information on the minimal lead time at which preci-
sion can be reduced with only minor effects on the quality of model results. A reduction of precision with
lead time appears to be very interesting for weather forecasts, especially since forecast models are some-
times reduced to lower resolution after a couple of days to save computing resources (see section 1 for an
example for a reduction in the Ensemble Prediction System of the ECMWF after 10 days). Such a reduction
in precision could be a good alternative for a reduction in resolution to save computing power and avoid
imbalances and changes of boundary conditions (for example, in orography).

Third, we show that a speed-up of a factor of 1.9 times is possible in comparison to the standard single pre-
cision FPGA configuration if numerical precision is reduced with hardly any increase in model error for short
and long-term simulations. If a small increase in model error can be accepted, precision can be reduced to a
level that allows an increase in performance by a factor of 2.46. It is likely that an additional performance
increase would be possible if the granularity of precision levels were increased by using more than two lev-
els of precision in model simulations (such as PX and PY), to allow an even stronger reduction in precision
in parts of the model. Results suggest that a simulation with reduced precision would allow an increase in
resolution of atmosphere and ocean models. If large model configurations are considered (Nx5819; 200),
single precision simulations with the CPU implementation are approximately a factor of 2 faster compared
to double precision simulations and single precision simulations on the FPGA are a factor of 2.8 times faster
compared to single precision simulations on two 6-core CPUs. However, we do not claim that our CPU
implementation achieved peak performance.

It has yet to be shown if large models of the size and complexity of realistic weather and climate models,
with hundreds of thousands of lines of model code, can be ported to FPGA hardware. The success with the
Lorenz model does not imply that the same approach can be taken for actual weather and climate models.
Programming FPGAs is still much more complicated and consumes significantly more time than program-
ming CPUs or even GPUs. Additionally, programming habits would need to change since the structure of
code for FPGAs and CPUs is fairly different. However, the improvement in performance and the savings in
power consumption due to the use of FPGAs appear to be very promising and the possibility of reducing
precision to gain further performance is very attractive for geophysical modeling. Recent progress in the
use of domain-specific languages in the development of earth-system models [e.g., Torres et al., 2013; Fuhrer
et al., 2014] will make it easier to port large model setups to programmable hardware. We believe that
larger model setups and dynamical cores of full global circulation models for atmosphere and ocean should
be tested on FPGA hardware with reduced precision in the near future, following the work of Oriato et al.
[2012], Gan et al. [2013], Russell et al. [2015], and this paper.

Appendix A: Parametrization of Small-Scale Quantities

We introduce the two model configurations that have parametrized small-scale quantities. Here the model
is reduced to the large-scale quantities. Interactions with small-scale quantities are replaced by appropriate
forcing terms that are added to the governing equation. To this end, we follow the same steps as Wilks
[2005] and Arnold et al. [2013] and replace the interaction term with the small-scale quantities in equation
(1) by a polynomial:

dXk

dt
52Xk21 Xk222Xk11ð Þ2Xk1F2UðXkÞ;

UðXkÞ5a3X3
k 1a2X2

k 1a1Xk1a0;

where UðXkÞ tries to mimic the interactions to the missing Y variables if all information about the
small-scale quantities is lost. We find UðXkÞ by fitting the polynomial to data points of the interaction term
hc
b

PNy

j51 Yj;k at different values of X that were diagnosed from 5000 time steps of a control simulation. Figure

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000494

D€UBEN ET AL. REDUCED PRECISION IN GEOSCIENCE 1406



9 shows a subset of the diagnosed data points and the fitted polynomials. We use a3520:0017; a25

0:0013; a151:6740, and a051:6821 for the C4 configuration and a3520:0041; a250:0560; a151:4744,
and a050:8059 for the C10 configuration.
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