
Lower Precision for Higher Accuracy: Precision and
Resolution Exploration for Shallow Water Equations

James Stanley Targett∗, Xinyu Niu∗, Francis Russell∗, Wayne Luk∗, Stephen Jeffress†, Peter Düben†
∗ Department of Computing, Imperial College London, United Kingdom

† University of Oxford, AOPP, Department of Physics, Oxford, United Kingdom

Abstract—Accurate forecasts of future climate with numerical
models of atmosphere and ocean are of vital importance. However,
forecast quality is often limited by the available computational
power. This paper investigates the acceleration of a C-grid shallow
water model through the use of reduced precision targeting
FPGA technology. Using a double-gyre scenario, we show that
the mantissa length of variables can be reduced to 14 bits
without affecting the accuracy beyond the error inherent in
the model. Our reduced precision FPGA implementation runs
5.4 times faster than a double precision FPGA implementation,
and 12 times faster than a multi-threaded CPU implementation.
Moreover, our reduced precision FPGA implementation uses 39
times less energy than the CPU implementation and can compute
a 100x100 grid for the same energy that the CPU implementation
would take for a 29x29 grid.

I. INTRODUCTION

Accurate climate forecasts have many important applica-
tions. For example, governments institutions rely upon global
climate simulations to make critical policy decisions. However
climate model accuracy is limited by available computing
power. State of the art climate simulators run on the fastest
super computers in the world (e.g. [1]), yet we still lack the
computing power to represent important small scale physics that
contribute significantly to model uncertainty. Exascale CPU
based computing technologies are on the horizon and may
provide a solution, but it is expected that the energy demands
of these machines will be beyond that which government
institutions can sustainably afford [2]. Thus there is a clear
need for alternative computing architectures with improved
energy efficiency to allow more accurate climate simulations
at higher resolution.

An alternative computing technology showing promise as
a potential solution is the data flow engine (DFE) technology
based on field programmable gate arrays (FPGAs). FPGA
based DFEs operate in a manner that is drastically different
from a standard CPU. DFEs are customized deep pipelines of
concurrent arithmetic operations. They achieve accelerated and
energy efficient computation by creating parallelism both in
space and in time. Another reason for the energy efficiency
of DFEs is the minimization of data movements. This is
accomplished both by minimizing the number of bits used for
variable precision and also by shortening the total path-length
of the data flow. In general, reducing representation bitwidth
will reduce computational accuracy. Minimizing numerical
precision will save computing resources. If savings are re-
invested into larger/faster supercomputers climate simulations
can be performed at higher resolution and this will eventually
improve forecast accuracy.

While a complete reduced-precision FPGA data flow
implementation of a production quality climate model is a
massive undertaking, we have in recent years seen inspiring
results with simplified models of climate system components.
Most previous studies have focused primarily on the atmosphere
(see Section II). However in addition to the atmosphere, the
ocean is a dominant driver of global heat transport and a critical
part of a climate model.

In this paper we design, develop and test an FPGA data
flow implementation of the Shallow Water Equations with an
oceanic double gyre test case. The Shallow Water Equations
are a set of simplified fluid dynamics equations commonly used
for conceptual understanding and to test innovative numerical
methods (see section III).

The major emphasis of this paper is a detailed study of
the relationship between design performance, design precision,
and application resolution of the shallow water equations in an
oceanic double gyre configuration. The specific contributions
of the study are:

• An FPGA-based DFE based implementation of the
shallow water equations.

• A design approach to verify computational accuracy
based on data representations, computational resolution,
and available resources.

• A hardware design optimised with the proposed ap-
proach, showing large performance improvements with
acceptable accuracy.

II. BACKGROUND

In recent years we have seen the beginning of an exciting
collaboration between climate scientists and computer scientists
focusing on precision optimization and FPGA DFE implemen-
tations of climate models. There has been both a top-down
approach, where precision analysis is performed on full scale
climate models, and also a bottom-up approach where simplified
models are implemented on FPGA based DFEs.

The top-down approach has revealed that full scale, oper-
ational models of weather and climate are making inefficient
use of computational resources due to the prevalent use of
double precision floating point arithmetic. Double precision
floating point requires a mantissa width of 53 bits. Düben et
al. [3] find that 84% of the floating point operations in the
Intermediate Global Climate Model (IGCM) could be performed
using mantissa widths of only 6 bits without a significant change
in climate type simulations. In [4] a similar precision analysis
was performed for weather type forecasts, revealing that 98%
of calculations currently performed in double precision could978-1-4673-9091-0/15/$31.00 c©2015 IEEE

be performed using mantissa widths of only 8 bits without
significant loss of forecast accuracy.

The bottom-up approach shows that simplified and limited
area atmospheric models can be accelerated while achieving
greater energy efficiency using FPGA DFE technology. Oriato
et al. [5] accelerate the dynamical core of a limited area
meteorological model on a DFE platform and report a 74
times speed up compared to a 12-core multi-threaded CPU
implementation. Moreover, reduced precision is widely used
in various applications fields, such as seismic imaging [6] and
atmospheric modelling [7]. These FPGA designs with reduced
precision lead to significant improvements in throughput and
power efficiency, compared with supercomputers such as Blue
Gene, Cary XK6, and Tianhe-2. However, these designs lack
a formal approach to verify whether a design with reduced
precision can still meet application accuracy requirements.
Russell et al. [8] use the Hellinger distance to verify the
difference between the two probability density function that
describe the dynamics of the degrees-of-freedom of the Lorenz
’95 system. In this paper, we propose a new approach to verify
the design accuracy of more complex applications, such as the
shallow water setup, that are, in contrast to the idealised Lorenz
’95 model, not isotropic in space and need to be evaluated for
individual grid points.

III. APPROACH OVERVIEW

A. Shallow Water Model

The shallow water equations describe a shallow layer of
fluid which is bounded below by a rigid container and above
by a free surface. The equations can be derived from the
Navier–Stokes equations by assuming the height of the fluid is
negligible compared to its width, and integrating vertically [9].
We use the following form of the shallow water equations in
this study.

∂u

∂t
−
(
f + ζ

y
)
vxy +

∂B

∂x
= ν∇2u

∂v

∂t
+
(
f + ζ

x
)
uxy +

∂B

∂y
= ν∇2v + τ

∂h

∂t
+

∂

∂x

(
h
x
u
)
+

∂

∂y

(
h
y
v
)
= 0. (1)

u: velocity East-West
v: velocity North-South
h: height of the fluid column
f : Coriolis parameter
ν: viscosity
τ : wind forcing
ζ: relative vorticity = ∂v/∂x− ∂u/∂y
B: Bernouli potental = gh+ (ux2 + vy2)/2
g: gravitational acceleration

The domain size and parameter values of the model are
chosen following [10] to create the double gyre flow. The
horizontal length is 3,480 km in the North-South (y) and East-
West (x). The average fluid column depth is 500 metres. The
horizontal surface is discretized using 100×100 gridpoints of
the Arakawa C-grid. The grid is staggered such that u, v,and h

do not reside on the same gridpoint. The overbars (e.g. vxy) in
equation (1) indicate averages between adjacent grid points in
the x and y direction. We use a viscosity ν= 470.23 m2/s. The
Coriolis parameter f varies in the North-South direction and is
approximated using a betaplane, f = 4.46e-5+(2.e-11)y. The
wind forcing τ is non-zero only in the East-West direction and
ranges from 0.2 to -0.4 Pa in a sinusoidal structure as shown
in figure 2 of [10]. We use a third-order Adams-Bashforth time
stepping scheme with a timestep of 25 seconds.

B. Hardware Architecture

The discretized shallow water equations are mapped to
hardware as a 4-point start stencil. Each iteration uses the
current values for h, u, and v (collectively called d(t)), as well
as the change in those values at the previous time step (d(t−1))
and the time-step previous to that (d(t − 2)). The change in
the values for the current time-step is computed. All the values
are then combined using the Adams-Bashforth method. Stencil
operations in the calculation and Adams-Bashforth modules are
pipelined, and iterate through C-grid space one point per cycle.
The on-chip memory buffer stores three rows of input data
(corresponding to the three labelled rows in memory layout) to
maximise data reuse. At each clock cycle, the kernel streams in
one data, updates the on-chip buffer, and generates one result.

In order to optimize the hardware design, we duplicate the
application kernel through Kernel pipelining. Kernel pipelining
involves connecting the input and output of multiple kernels to
process multiple time steps per clock cycle. Instead of writing
data for the next time step d(t + 1) back into memory, the
following kernel uses d(t+1) as input, and calculates the results
for the time step after (i.e. d(t+ 2)). Therefore we eliminate
the necessity to write to and read from external memory for
the intermediate time steps. This significantly reduces memory
bandwidth requirements.

IV. ACCURACY ANALYSIS

Besides the number of pipeline stages, other design pa-
rameters affecting performance are precision and resolution.
Precision indicates the applied data representation, and resolu-
tion indicates the width of the grid measured in the number
of points. This section covers the impacts of precision and
resolution on resource usage, design throughput, and model
accuracy.

A. Accuracy Verification Approach

The shallow water equations show chaotic behaviour in
the form of eddies. Therefore, two simulations with slightly
different but correct model implementations will diverge from
each other when started from the same initial conditions. It is
therefore very difficult to compare the quality of different model
simulations. However, taking mean values of fields allows us
to characterise the dynamics of a model in a climate-type
way and enables us to compare the dynamics of different
implementations. Equation 2 shows how to calculate the mean
values for each grid cell.

mean-field(D)i,j =

∑number of time-steps
t=1 Di,j,t

number of time-steps
(2)

Algorithm 1 Accuracy verification Algorithm.
1: for D ∈ reference designs (D0, D1, . . . , Dn) do
2: for (i, j) ∈ (width, height) do
3: for k ∈ N time steps do
4: mean-field(D)i,j += state(D)i,j,k
5: sd-field(D)i,j += state(D)i,j,k
6: end for
7: mean-field(D)i,j = mean-field(D)i,j

N

8: sd-field(D)i,j = sd-field(D)i,j
N

9: end for
10: end for
11: for D ∈ reference designs (D0, D1, . . . , Dn) do
12: for (i, j) ∈ (width, height) do
13: mean-error(D) += (mean-field(D0)i,j − mean-field(D)i,j)

2

14: sd-error(D) += (sd-field(D0)i,j − sd-field(D)i,j)
2

15: end for
16: mean-error(D) =

√
mean-error

width·height

17: sd-error(D) =
√

sd-error
width·height

18: end for
19: acceptable-mean-accuracy = max(mean-error(reference-designs))
20: acceptable-sd-accuracy = max(sd-error(reference-designs))

To get more information about the dynamics of different
model setups beyond mean values, we also calculate the
standard deviations of the different fields.

sd-field(D)i,j =√(∑number of time-steps
t=1 (Di,j,t)

2
)
− (mean-field(D)i,j)

2

number of time-steps
(3)

If there are no eddies we expect a steady solution and the
standard deviation should be zero at all points. If the solution is
unsteady, eddies will be present that change their position with
time and the standard deviation of the fields will be non-zero.

To find how far precision can be reduced we must find
metrics to set limits on what is acceptable. If precision can
be reduced without breaching these limits then the reduction
of precision is acceptable. The metric we will use to compare
implementations is the L2 Norm of the absolute errors of
the mean per grid cell (Equation 4), or mean-error for short.
The metric to compare standard deviation-fields, sd-error, is
calculated accordingly.

mean-error(ref, test) =√∑width
i=1

∑height
j=1 (mean-field(ref)i,j −mean-field(test)i,j)

2

width · height
(4)

We build the reference accuracy level by calculating mean-
field and standard deviation-field of various reference designs
(lines 1−10 of Algorithm 1), finding the mean-error and sd-
error (lines 11−18), and taking the largest error (lines 19 and
20). Given a design to test, we compare the mean-field and
standard deviation-field with the reference design, and using
the L2 Norm of the differences as the metrics to verify whether
the accuracy of the tested design is less than the acceptable
error given by the algorithm.

All our data are taken from 100x100 grids with a time-
step of 25 seconds. We run the model for 25 million iterations

(approximately 20 years). The state of the model is output every
25 thousand iterations. The first half of this data is discarded
as a conservative measure to prevent the spin up of the model
affecting the data. The remaining 500 fields are then used
to construct mean-fields and standard deviation-fields of the
variables.

We have two forms of reference implementation to find the
error inherent in the model. The model normally starts with
a flat ocean that gets spun up to a normal state. If we add
zero-mean noise to the initial state the final mean should not
be affected. Therefore the error relative to the normal version
provides an estimate of the measurement error at the given
level of statistics. We also know that since floating point is
not associative or commutative the order of operations that
the compiler chooses will affect the result. Therefore using
implementations created with different compilers and different
optimisation settings will allow us to create more references.

B. Precision Modelling

Reducing the precision (i.e. the number of bits representing
a datum) in a design has two impacts on the design. On the
one hand, reduced precision decrease the resource usage and
bandwidth requirements of a design, since less bits need to be
transferred and processed. Given the same amount of available
resources, this increases the number of pipeline stages. On the
other hand, designs with reduced precision will have higher
computation errors compared with double-precision reference
designs.

We calculate the accuracy of a design with precision (e,m)
by taking the mean-error and sd-error of the design. We call
the error metrics mean-errore,m and sd-errore,m respectively.
Therefore, the accuracy constraints can be expressed as:

mean-errore,m 6 acceptable-mean-accuracy (5)
sd-errore,m 6 acceptable-sd-accuracy (6)

If performance is improved by reducing precision we can
then increase resolution while keeping the orginal runtime the
same. We always use a square grid doubling the resolution-
width causes the number of grid points to increase by a factor
of four. Another effect of doubling the resolution width is
that the length of each time-step must be halved to satisfy the
Courant–Friedrichs–Lewy (CFL) condition for stability. This
means that the overall time required to simulate a certain period
is increased by a factor of eight. We see that the computation
time increases as O

(
r3
)

where r is resolution width.

V. RESULTS

Our CPU tests are run on a computer with Dual Intel Xeon
E5-2640 processors with hyper-threading disabled and 64GB of
DDR3-1333 RAM. Our FPGA tests are run on a machine with
a quad-core i7 870, processor, 16GB of DDR3-1600 RAM, and
a Maxeler MAX3 card with a DFE based on Xilinx Virtex-6
FPGA technology.

A. Error Results

To find the acceptable error we run the CPU implementation
with noise added to the initial height field as a uniform
distribution between ±0.5, 10, 20, 40, and 80 ·10−3 metres. We
also run the model as compiled with ICC with optimisations

Implementation Clock rate Thousand iterations per second Speedup relative to Power Joules per thousand iterations Energy reduction relative to
12 thread CPU 53 bit FPGA 12 thread CPU 53 bit FPGA

1 thread CPU 1.273 0.16x 411W 323 0.176x
12 thread CPU 7.948 1x 453W 57.0 1x
53 bit FPGA 190 MHz 18.252 2.30x 1x 140W 4.96 11.5x 1x
24 bit FPGA 150 MHz 42.874 5.39x 2.34x 137W 3.20 17.8x 1.55x
14 bit FPGA 150 MHz 97.876 12.3x 5.35x 141W 1.44 39.6x 3.44x

TABLE I. PERFORMANCE RESULTS

00.0
00

5
0.0

01
0.0

01
5

0.0
02

0.0
02

5
0.0

03
0.0

03
5

0.0
04

10 15 20 25 30 35 40 45 50
0

0.0005

0.001

0.0015

0.002

0.0025

L
2

N
or

m
(m

et
re

s)

L
2

N
or

m
(m

et
re

s
pe

r
se

co
nd

)

Mantissa width

h (metres)
u (metres per second)
v (metres per second)

Fig. 1. L2 norm of absolute errors in standard deviation-fields with respect
to mantissa width.

on and off, with GCC, and the double precision FPGA
implementation. We use ICC with the highest optimisations
as our main reference, and use the error relative to the other
versions to characterise the error in the model.

For the initial noise results we see that the mean-error
for h ranges between 0.1× 10−4 m and 0.2× 10−4 m. Sim-
ilarly we see the mean-error for u and v ranges between
0.8× 10−5 m s−1 and 8× 10−5 m s−1. The sd-error for h
ranges between 2.5× 10−6 m and 4.5× 10−6 m and the sd-
error for u and v ranges between 0.5× 10−6 m s−1 and
2.0× 10−6 mm s−1.

We see that the mean-errors and sd-errors caused by the
differences between the implementations are of a similar scale
to those caused by adding noise to the initial state. This is the
case for all three variables.

The acceptable-mean-error allows for reduced precision
implementations with mantissas as short as 12 bits. The sd-
error for the reduced precision implementations can be seen
in Figure 1. The sd-error for h, u and v only remains in
the acceptable range for mantissas as short as 14 bits. We
can therefore use 14 bit mantissas in an acceptable reduced
precision implementation of the shallow water model.

B. Performance results

Due to the amount of logic resources the compilation tools
are able to increase the clock rate of the double precision
implementation to 190MHz. The timing results are taken from
processing a 100x100 grid for 25 million iterations.

The performance results are presented in Table I. We see
that the 14 bit FPGA runs 12.3 times faster than the 12 thread
CPU version and uses 39.6 times less energy. For the CPU
version to complete a simulation of the same length in the same

time the resolution would have to be reduced by 3
√
12.3 = 2.3

times to a 43x43 grid. For the simulation to be completed using
the same energy the resolution would need to be reduced by
3
√
39.6 = 3.4 times to a 29x29.

VI. CONCLUSION & DISCUSSION

This paper explores the FPGA acceleration of a C-grid
shallow water model through reduced precision techniques.
The novel aspects of this work include accuracy analysis based
on precision modelling, resolution modelling, and performance
modelling. Current and future research includes support for
further optimisations such as the adoption of non-uniform
word-lengths and run-time reconfiguration, and extension of
our approach for speeding up more complex climate models.

ACKNOWLEDGEMENT

Acknowledgement. The support of EPSRC grant EP/I012036/1
and the European Union Horizon 2020 Programme under Grant
Agreement Number 671653 is gratefully acknowledged. Peter
Düben and Stephen Jeffress receive funding from an ERC grant
(Towards the Prototype Probabilistic Earth-System Model for
Climate Prediction, project reference 291406).

REFERENCES

[1] T. Shimokawabe, T. Aoki, J. Ishida, K. Kawano, and C. Muroi, “145
TFLOPS performance on 3990 GPUs of tsubame 2.0 supercomputer for
an operational weather prediction,” Procedia Computer Science, vol. 4,
pp. 1535–1544, 2011.

[2] T. Palmer, “Climate forecasting: Build high-resolution global climate
models,” Nature, vol. 515, no. 7527, pp. 338–339, Nov 2014. [Online].
Available: http://dx.doi.org/10.1038/515338a

[3] P. D. Düben, H. McNamara, and T. Palmer, “The use of imprecise
processing to improve accuracy in weather & climate prediction,” Journal
of Computational Physics, vol. 271, pp. 2–18, 2014.

[4] P. D. Düben and T. Palmer, “Benchmark tests for numerical weather
forecasts on inexact hardware,” Monthly Weather Review, vol. 142,
no. 10, pp. 3809–3829, 2014.

[5] D. Oriato, S. Tilbury, M. Marrocu, and G. Pusceddu, “Acceleration
of a meteorological limited area model with dataflow engines,” in in
Symposium on Application Accelerators in High Performance Computing
(SAAHPC). IEEE, 2012, pp. 129–132.

[6] X. Niu, J. G. F. Coutinho, Y. Wang, and W. Luk, “Dynamic stencil:
Effective exploitation of run-time resources in reconfigurable clusters,” in
in International Conference on Field-Programmable Technology (FPT),
2013, pp. 214–221.

[7] L. Gan, H. Fu, C. Yang, W. Luk, W. Xue, O. Mencer, X. Huang, and
G. Yang, “A highly-efficient and green data flow engine for solving
euler atmospheric equations,” in 24th International Conference on Field
Programmable Logic and Applications (FPL), 2014.

[8] F. P. Russell, P. D. Düben, X. Niu, W. Luk, and T. N. Palmer,
“Architectures and precision analysis for modelling atmospheric variables
with chaotic behaviour,” in 23rd IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2015,
pp. 171–178.

[9] G. K. Vallis, Atmospheric and oceanic fluid dynamics: fundamentals
and large-scale circulation. Cambridge University Press, 2006.

[10] F. C. Cooper and L. Zanna, “Optimisation of an idealised ocean model,
stochastic parameterisation of sub-grid eddies,” Ocean Modelling, vol. 88,
pp. 38–53, 2015.

