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ABSTRACT
This paper proposes a novel reconfigurable architecture for
accelerating DNA sequence alignment. This architecture is
applied to bisulfite sequence alignment, a stage in recently
developed bioinformatics pipelines for cancer and non-invasive
prenatal diagnosis. Alignment is currently the bottleneck in
such pipelines, accounting for over 50% of the total analysis
time. Our design, Ramethy (Reconfigurable Acceleration of
METHYlation data analysis), performs alignment of short
reads with up to two mismatches. Ramethy is based on the
FM-index, which we optimise to reduce the number of search
steps and improve approximate matching performance. We
implement Ramethy on a 1U Maxeler MPC-X1000 dataflow
node consisting of 8 Altera Stratix-V FPGAs. Measured re-
sults show a 14.9 times speedup compared to soap2 running
with 16 threads on dual Intel Xeon E5-2650 CPUs, and 3.8
times speedup compared to soap3-dp running on an NVIDIA
GTX 580 GPU. Upper-bound performance estimates for the
MPC-X1000 indicate a maximum speedup of 88.4 times and
22.6 times compared to soap2 and soap3-dp respectively. In
addition to runtime, Ramethy consumes over an order of
magnitude lower energy while having accuracy identical to
soap2 and soap3-dp, making it a strong candidate for inte-
gration into bioinformatics pipelines.

Categories and Subject Descriptors
J.3 [LIFE AND MEDICAL SCIENCES]: Biology and
genetics

General Terms
Design, Performance, Experimentation

Keywords
bioinformatics, alignment, reconfigurable hardware, next-
generation-sequencing
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1. INTRODUCTION
DNA methylation is a biochemical process which involves

the addition of a methyl group to cytosine or adenine nu-
cleotides. It commonly occurs on cytosines belonging to
a CG pair (cytosine followed by guanine), which serves as
a mechanism for gene regulation by turning certain genes
off. Studies have shown that methylation is vital to healthy
growth and development, and aberrant methylation has been
associated with the development of cancer. With the advent
of next-generation sequencing (NGS), it is now possible to
conduct whole-genome methylation analysis at single base
resolution. This has recently been used in developing meth-
ods for cancer [6] and non-invasive prenatal diagnosis [16].
However, a major challenge impeding such methods is the
data analysis, which can take an inordinate amount of time,
and is performed by a multitude of dissociated programs.

Methy-Pipe [10] is a recently developed integrated pipeline
for whole-genome methylation analysis. It not only fulfils
the core data analysis requirements such as sequence align-
ment and differential methylation analysis, but also provides
useful tools for methylation data annotation and visualisa-
tion. When compared to previous related efforts, Methy-
Pipe has greater functionality and user-friendliness, making
it an invaluable tool for researchers and clinical scientists.
However, its usefulness is limited by the time it takes to
transform raw sequenced data into appropriate information
to enable diagnosis.

The bottleneck of Methy-Pipe is sequence alignment, in
which short sequences of DNA letters (called reads) are
mapped to locations in a known reference genome. Align-
ment of 300M short reads to the Human genome takes roughly
5 hours when running on a system with dual 12-core Intel
Xeon processors and 100GB of RAM. Consequently, Methy-
Pipe is still yet to meet the requirements for large-scale clin-
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Figure 1: Alignment of reads to a reference genome.



ical adoption, in which patient turnaround time is critical.
Accelerating alignment would shorten the diagnosis time,
thereby allowing faster responses and increasing the num-
ber of patient samples that can be analysed per day. This
achievement would facilitate bridging the gap between re-
search and practice, enabling the diagnosis techniques de-
veloped to become part of routine clinical procedures.

There currently exist multiple freely available software
tools for alignment, including Soap [14], BWA [13], and
Bowtie [12]. These tools utilise the latest pattern matching
algorithms and hardware technologies to perform the align-
ment process quickly. However, there is reliance on extensive
computing resources to deliver this performance. For exam-
ple, the 1000 genome project uses a 1192-processor cluster to
align reads, while the BGI Bio-cloud computing platform has
a current total of 14774 processors delivering 157T flops of
performance. Such approaches are short-sighted, as simply
scaling across more machines cannot keep up with the pro-
jected growth of sequenced data which far exceeds Moore’s
Law.

Reconfigurable hardware, such as the field programmable
gate array (FPGA), is a promising candidate for acceler-
ating alignment. The multiple levels of exploitable paral-
lelism can provide substantial speed-up, whilst the low op-
erational clock frequencies allow reduced energy consump-
tion and high rack unit densities. Several papers have been
published which report the use of FPGAs to accelerate the
alignment process [7, 19, 8]. Whilst these designs outper-
form most of the software tools, the speed comes at the cost
of accuracy, functionality, and platform independence. As a
result, few hardware-based alignment tools have been fully
integrated into a bioinformatics pipeline.

In this paper we present a novel reconfigurable architec-
ture for accelerating alignment, which is applied to bisul-
fite sequencing alignment – the specific type of alignment
used in methylation data analysis. Our aim is to show how
reconfigurable hardware can be used to deliver substantial
improvements in runtime, energy consumption and form fac-
tor, making it an ideal candidate for integration into bioin-
formatics pipelines. The contributions of this work include:

• A novel architecture for accelerating alignment consist-
ing of a multi-configuration alignment pipeline. This
architecture exploits the reconfigurability of FPGAs to
allow for highly efficient, yet flexible alignment designs.
• An application of this architecture to accelerate bisul-

fite sequence alignment, which is the bottleneck in
whole-genome methylation analysis. Our design, re-
ferred to as Ramethy, is based on accelerating the FM-
index, a pattern matching algorithm.
• A novel optimisation to the FM-index which improves

the pattern matching performance. We propose a new
index structure which reduces the number of search
steps and computational complexity compared to pre-
vious efforts.
• An implementation of Ramethy on a Maxeler MPC-

X1000 dataflow node. The runtime, energy consump-
tion and alignment accuracy is evaluated and com-
pared to the fastest CPU, GPU and FPGA-based align-
ment programs currently available.

The rest of this paper is organised as follows: Section 2
provides background information on the ideas and algorithms
used throughout the paper. Section 3 gives an overview of

related efforts in this field. Section 4 presents the recon-
figurable architecture for accelerating alignment. Section 5
covers the algorithm optimisation developed to improve the
pattern matching performance of the FM-index. Section 6
gives an overview of the design of Ramethy. Section 7 eval-
uates the performance of Ramethy and provides comparison
with the fastest CPU, GPU and FPGA-based alignment pro-
grams currently available. Finally, Section 8 concludes the
paper.

2. BACKGROUND
In this section, background information on the algorithms

used to perform alignment is presented. Particular atten-
tion is paid to the FM-index, the chosen algorithm for ac-
celeration in this work. This information will help clarify
the proposed architecture and algorithm optimisations pre-
sented later in this work.

2.1 Alignment Algorithms Overview
The algorithms used by currently available alignment soft-

ware tools can be categorised into two groups: 1) suffix-trie
algorithms, such as the FM-index [9], in which reads are
aligned using an index generated from the suffixes of the ref-
erence genome, and 2) seed-and-extend algorithms, such as
the Smith-Waterman algorithm [20], in which subsequences
(seeds) of the read are aligned to the reference genome, and
any candidate locations are extended using a scoring matrix.
The alignment parameters of an experiment typically dictate
which group is chosen. For reads with less than 150 bases
and small edit distances, suffix-trie algorithms provide the
best performance. Conversely, for reads with hundreds to
thousands of bases and large edit distances, seed-and-extend
algorithms provide the best performance. The objective of
this work is to speedup Methy-Pipe, a bisulfite sequencing
data analysis pipeline, in which reads of 75 bases are aligned
to the Human genome with up to two mismatches. As a re-
sult, suffix-trie algorithms, specifically the FM-index, are
chosen for hardware acceleration.

2.2 FM-index
Indexing a reference sequence is a well established method

for accelerating pattern matching. For the Human genome,
the time spent on creating an index can take several hours.
However, this time is amortised given that the Human genome
version changes infrequently, so the index only needs to be
created once for a large number of alignment jobs to be
performed. The FM-index is the most common indexing
method used by currently available alignment software tools
due to its small memory footprint and efficient substring
searching. The design of the FM-index is based on the
Burrows-Wheeler compression algorithm (BWT) [4] and the
suffix-array (SA) data structure [18].

The SA of a text R is the permutation of the lexicograph-
ically sorted suffixes of R, where each suffix is represented
by its starting position. To simplify the substring searching
operation, the symbol ‘$’, which is lexicographically smaller
than all other symbols in the alphabet Σ, is appended to the
text. The SA for a text R = ACGTTAAA$ is shown in
Table 1(a).

An interval in an SA represents a sequence of lexicograph-
ically consecutive suffixes of R. The interval (low, high)
corresponds to the smallest and largest indexes in SA which
have the same prefix. The result of searching for a pattern Q



in R can be represented as an SA interval. If low ≤ high, the
query can be located in the text. Conversely if low > high,
the query cannot be located in the text. For a query Q =
AA, the SA interval equals (2, 3). This solution interval can
be converted from SA to text coordinates using the relation-
ship R1 = SA[low], R2 = SA[low + 1], ... , Rn = SA[high].
For the interval (2, 3), the corresponding positions in R
which have Q as prefix are 6 and 5.

The FM-index is built upon the BWT, a data compres-
sion technique which generates a permutation of the sym-
bols in a text R. The BWT of a text (denoted by B) is
a self index, which refers to the property that it does not
require R and SA to perform a search operation. Each posi-
tion in B is computed from R and SA using the relationship
B[i] = R[(SA[i]−1)mod|R|]. For a text R = ACGTTAAA$,
the corresponding B = AAAT$ACTG. The FM-index sup-
ports searching operations through two counting functions
derived from B. C(c) is a function that returns the number
of symbols in B that are lexicographically smaller than c,
and Occ(c, i) is a function that returns the number of oc-
currences in B of character c, from positions 0 to i. These
functions are typically precomputed and stored as arrays to
improve performance. As a trade-off between memory space
and time, only the Occ() values for positions that are a mul-
tiple of some integer distance d are stored. This technique
(referred to as bucketing) allows compression of Occ(), but
requires counting some of the occurrence directly from B.
Table 1(b) displays the functions C() and Occ() for a text
R = ACGTTAAA$.

(a)
R = ACGTTAAA$

i sorted suffixes SA[i]
0 $ 8
1 A$ 7
2 AA$ 6
3 AAA$ 5
4 ACGTTAAA$ 0
5 CGTTAAA$ 1
6 GTTAAA$ 2
7 TAAA$ 4
8 TTAAA$ 3

(b)
Occ()

i B[i] A C G T
0 A 1 0 0 0
1 A 2 0 0 0
2 A 3 0 0 0
3 T 3 0 0 1
4 $ 3 0 0 1
5 A 4 0 0 1
6 C 4 1 0 1
7 T 4 1 0 2
8 G 4 1 1 2

C()
A C G T
1 5 6 7

Table 1: (a) SA for a text R =ACGTTAAA$, and (b)
the corresponding function tables Occ() and C().

Algorithm 1 shows the procedure for searching for a query
Q in a text R. Concisely written, the SA interval is first ini-
tialised to (1, |R|). Then moving from the last symbol of Q
to the first, the SA interval is iteratively updated using C()
and Occ() (a backward search). After the final iteration, the
SA interval gives all the consecutive indexes in the SA which
have Q as prefix, which are subsequently converted into text
coordinates. Currently available alignment software tools
typically augment this algorithm with backtracking to sup-
port approximate matching between the query and text. In
this approach edit operations (substitutions, insertions or
deletions) are performed to the query. A stack is used to
store the state at each edit position. If the modified query
cannot be located in the text, the state is restored from the
edit position and a new edit operation is performed. Heuris-

tics for improving the approximate matching performance
have been developed, such as the 2-way BWT algorithm [11].

Algorithm 1: Algorithm for substring searching using
the FM-index.

Input : Query Q, C(), Occ() and SA, corresponding
to the text R

Output: Locations in R where Q is a prefix

begin
(low, high)← (1, |R|)
for i← |Q| − 1 to 0 do

low ← C(Q[i]) + Occ(Q[i], low − 1)
high← C(Q[i]) + Occ(Q[i], high)− 1

end

for i← 0 to high− low do
Locations[i]← SA[low + i]

end
return Locations

end

3. RELATED WORK
Currently, there are multiple software tools available for

alignment. Some of the freely available programs include
Soap2, BWA, and Bowtie. In the case of whole-genome
alignment, extensive computational resources are required
to run these tools with a reasonable runtime. For example
a mid-size cluster with high-end multicore processors and a
large amount of RAM in each node would be adequate for
small-scale processing.

As a response to the rapidly increasing sequencing ma-
chine throughput, GPU-based tools have been developed to
improve the alignment performance. Notable GPU-based
tools include soap3-dp [17] and CUSHAW [15], which per-
form up to 10 times faster than CPU-based tools.

There are various efforts related to accelerating alignment
with FPGAs, among which accelerating the Smith-Waterman
algorithm is the most popular approach. These designs typi-
cally target a single hardware platform with a specific num-
ber of FPGA devices and memory architecture. Olson et
al. [19] propose an FPGA-based alignment design based on
the Smith-Waterman algorithm. In their work, both the
seed location and score table computation are performed
in hardware. The design is partitioned into 8 Pico M-503
boards, each with one Xilinx Virtex-6 FPGA. This 8-FPGA
system can align 50 million reads in 34 seconds. Fernandez
et al. [7, 8], propose FPGA-based alignment design based on
the FM-index. In the first work, the index of a small refer-
ence genome is stored in on-chip BRAM. The design is im-
plemented on a single Xilinx Virtex-6 FPGA and can exactly
align 1000 reads in 60.2us. In the second work, their previ-
ous design is extended to allow for approximate alignment.
For every n mismatches allowed, n + 1 exact string match-
ers statically populate an FPGA device in a pipeline. If a
mismatch is detected, multiple copies of the read are gener-
ated in which the mismatched symbol is replaced with other
symbols from the reference genome alphabet. The copies
are sent to the next exact string matcher in the pipeline for
further processing. The design is implemented on the Con-
vey HC-1 platform and can align 18M reads in 138 seconds.



Arram et al. [1, 2, 3] propose FPGA-based alignment design
based on the FM-index. In the first work, the FM-index is
extended with depth-first backtracking to support approx-
imate alignment. The design is implemented on a single
Xilinx Virtex-6 FPGA and can align reads up to 8 times
faster than soap2. In the second work, a two-stage archi-
tecture for accelerating alignment is proposed. The reads
are first aligned using exact string matchers based on the
FM-index and reads which are unable to be aligned are sub-
sequently processed by approximate string matchers based
on the Smith-Waterman algorithm. Performance estimates
of the interesting design regions indicate that a dynamically
reconfigurable design achieves the highest performance. In
the third work, an overview of a reconfigurable architecture
for accelerating suffix-trie alignment algorithms is presented.
An application of this architecture based on the FM-index
is implemented on a single Xilinx Virtex-6 FPGA and can
align reads 3 times faster than soap2. In contrast to that
work, Section 4 of this paper formalises a reconfigurable ar-
chitecture which is not confined to suffix-trie alignment algo-
rithms; Section 6 illustrates how this architecture is applied
to bisulfite sequence alignment.

4. RECONFIGURABLE ARCHITECTURE
In this section we present a reconfigurable architecture for

accelerating alignment. Our approach generalises the work
in [3] to all alignment algorithms, and provides analytical
methods for estimating design performance.

4.1 Rationale
In the various efforts related to accelerating alignment us-

ing FPGAs, the target device is statically configured with
a circuit functionally equivalent to an alignment algorithm.
These circuits consist of several interlinked modules corre-
sponding to the different stages of the alignment algorithm.
For example, in [19] the Smith-Waterman circuit consists of
modules for seed extraction, seed location and score com-
putation. Similarly in [8], the FM-index circuit consists of
modules for exact match, one mismatch and two mismatches
alignment. With a static configuration these modules are
able to process data concurrently, however there exist a num-
ber of limitations for this approach which can reduce both
the performance and usefulness of a design.
Data Hazards. Alignment algorithms feature numerous
data hazards in which execution of the next stage depends
on the result from the previous stage. For example, in an
FM-index circuit, a read will only be processed by the one
mismatch module if it cannot be aligned by the exact match
module. For a statically configured design all modules in
the circuit are mapped to the target device. Data hazards
result in some modules being left idle from time to time
which reduces the hardware efficiency.
Distinct Module Latencies. Each module in a circuit
takes a particular number of cycles to process an item of
data. To create a balanced pipeline, certain modules are
replicated more than others in an attempt to match their
latencies. For a statically configured design this approach
can be challenging given the limited resources available on
the target device fabric. For example, in a Smith-Waterman
circuit the score computation module must be replicated
a large number of times to match the throughput of the
seed location module. It is often impossible to replicate this

module a sufficient number of times given the large amount
of resources consumed by the other modules.
Extensive Resource Usage. For large static circuits com-
prising many modules, the resources required to map the
circuit may exceed that available on the target device fab-
ric. In this case, a subset of the modules are implemented in
software to reduce the resources required to map the circuit.
This solution comes at the cost of potential speedup, which
is reduced according to Amdahl’s Law. For example, in a
Smith-Waterman circuit the seed location module often re-
quires more off-chip memory than most hardware platforms
have available. As a result, this module is often implemented
in software which reduces the overall speedup.
Inflexible Alignment Parameters. Alignment parame-
ters, such as the maximum number of mismatches, gap size
and hit reporting method, will change depending on the se-
quenced data quality and experiment being performed. For
a statically configured design there is limited control over
these parameters as the circuit is fixed. Any substantial
changes will often require several modules to be redesigned,
and the circuit to be re-placed and re-routed. This process
can take days to complete, which reduces the usefulness of
a design.

4.2 Architecture Description
This section proposes a general architecture for acceler-

ating alignment which exploits the reconfigurability of FP-
GAs. In this architecture distinct FPGA configurations are
created for each stage of an alignment algorithm. The con-
figurations comprise a homogeneous array of modules which
are functionally equivalent to the corresponding algorithm
stage. Runtime reconfiguration is used to load each con-
figuration onto the target device consecutively, where the
data are processed concurrently by the modules. Figure 2
illustrates how the proposed architecture is applied to an
alignment algorithm with 3 stages. In step 1 modules are
designed which are functionally equivalent to a stage in the
alignment algorithm. In step 2 the modules are replicated
to form an FPGA configuration. The number of times a
given module can be replicated is given by Equation 1, in
which Pi is the module population, A is the total available
resources on the target device, and ri is the amount of re-
sources required for the module.

Pi =
A

ri
(1)

In Step 3, the computational workflow shown in Algorithm 2
is performed. For each stage in the alignment algorithm the
corresponding configuration is loaded onto the target device.
Data from the previous stage (or initial data) are streamed
to the target device, where they are processed concurrently
by the modules. The output data from the modules are
stored in off-chip memory attached to the target device, or
in host memory.

The performance of this architecture can be modelled us-
ing Equation 2, in which T is the alignment time, Ni is the
number of data items processed by a given alignment stage,
ti is the time for the corresponding module to process a sin-
gle item of data, and Pi is the population of modules in
the configuration. The overhead of this architecture is the
reconfiguration time tr, and the data communication over-
head to. For typical alignment workloads these overheads



Algorithm 2: Multi-configuration alignment pipeline
algorithm.

Data: Reads
Result: Alignment locations

for i← 1 to number of stages in algorithm do

load configuration i onto target device

if i = 1 then
stream initial data from host mem.

else if intermediate data in off-chip mem. then
stream data from off-chip mem.

else
stream data from host mem.

process data on target device

if i = last stage in algorithm then
stream alignment locations to host mem.

else if intermediate data fits in off-chip mem. then
stream output data to off-chip mem.

else
stream data to host mem.

end

are negligible compared to the total runtime.

T =
∑
i

(
tr + to +

Niti
Pi

)
(2)

The reconfigurable property of this architecture addresses
the limitations of a statically configured design. First, each
configuration consists of a homogeneous array of indepen-
dent modules, therefore there are no data hazards or un-
balanced pipeline stages. This feature comes at the cost of
concurrent processing of the algorithm stages. However, the
number of modules in each algorithm stage is maximised ac-
cording to the available resources on the target device fabric,
which increases the intra-stage parallelism. Second, distinct
configurations are created for each algorithm stage, therefore
it is easier to fully map large alignment algorithms to hard-
ware. Finally, runtime reconfiguration of the target device
allows the user greater control over the alignment parame-
ters. Configurations can be re-ordered, added, or removed
at runtime, making this architecture completely modular.
For example, the computational workflow can be dynami-
cally modified based on whether certain runtime conditions
are met. This feature allows highly flexible designs to be
created which can address a large number of experiments.

5. FM-INDEX OPTIMISATION
In this work, the architecture in Section 4 is applied to

bisulfite sequence alignment. Given the parameters for this
type of alignment, our choice of alignment algorithm is the
FM-index. In this section we present an algorithm optimi-
sation to improve the performance of the FM-index.

5.1 n-step FM-index
In Algorithm 1, each step of the for-loop matches a single

symbol in query Q. After |Q| steps, the final interval gives all
the consecutive indexes in the SA, which have Q as a prefix.
Chacón et al. [5] propose the n-step FM-index, an algorith-
mic variation of the FM-index which reduces the number
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Figure 2: Multi-configuration alignment pipeline.

of steps required, in order to improve execution time. In
essence this variation reduces the number of steps by a fac-
tor of n by allowing n symbols in Q to be matched per step.
This reduction of search steps comes at the cost of increased
computational complexity per step and a larger index size.
We extend this work to allow for improved execution time,
but with identical computational complexity to the standard
FM-index search operation. The novel feature of our modi-
fication is a compression and merging step when generating
the n-step FM-index, which reduces the complexity of search
operations compared to previous efforts.

To generate the index, first the reference genome is com-
pressed into a reduced bitmap. For a reference genome R
= AGT$ the corresponding reduced bitmap is Rr = [00,
01, 10, 11]. The number of bits required for each symbol
is log2|Σ|. Note that the appended $ symbol is included in
the alphabet size. To allow for n symbols to be matched per
step, n BWTs are generated from Rr and the SA of R, as
shown in Algorithm 3. These BWTs are merged together to
form a single BWT, denoted by B, in which each element is
n× log2|Σ| bits.
Next, B is divided into buckets of d elements, such that the
ith bucket contains the sequence of elements from B[i · d] to
B[((i+1)· d)−1] . For each bucket a set of |(Σ−1)n| counters
are computed using Equation 3, in which str is the reduced
bitmap for each n symbol permutation of Σ (excluding the $
symbol which does not appear in the query), i is the bucket
index, and Occ() and C() are the two counting functions
defined in Section 2. For the alphabet Σ = {A, G, T, $}
and n = 2, str = [0000 (AA), 0001 (AG), . . . , 1010 (TT)].

Counters(str) = C(str) + Occ(str, (i · d)− 1) (3)

Finally, the index denoted by F is formed by interleaving
the buckets of B with their corresponding counters. The
index structure is illustrated in Figure 3.

Algorithm 4 shows the new procedure for searching for
a query Q in a text R. It is worth noting that if |Q| is
not exactly divisible by n, the interval is first updated for



Algorithm 3: Algorithm to generate the merged BWT
B. Note: The concatBits function concatenates the bits
in the argument (left to right) from high to low order
bits.

Input : SA corresponding to the text R, and reduced
bitmap of text Rr

Output: B
begin

/* generate n BWTs: b1, b2, . . . , bn */

for i← 1 to n do
for j ← 0 to |Rr| do

bi[j] = Rr[(SA[j]− i)mod|Rr|]
end

end

/* merge BWTs to form B */

for i← 0 to |Rr| do
B[i] = concatBits(bn[i], bn−1[i], . . . , b1[i])

end
return B

end

 
F: 

F[0] F[1] F[2] 

 B: 

B[0] B[d] 

   B B B 
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Figure 3: n-step FM-index structure.

the excess symbols using precomputed values, after which
Algorithm 4 is applied.

Our modification reduces the number of steps in a search
operation by a factor of n, but contains the same computa-
tional complexity as the standard FM-index (in which the in-
dex is bucketed). Consequently, the performance for search
operations increases by a factor of n. This increase in per-
formance comes at the cost of increased index size, however
the cost can be alleviated by increasing the bucket size d.
The total memory required for F can be calculated using
Equation 4. For example, with n = 3 and d = 128, an index
of the Human genome can fit in 10GB of memory.

M =
4 · |R| · (|Σ| − 1)n

d
+
|R| · n · log2 |Σ|

8
Bytes (4)

6. RAMETHY: BISULFITE SEQUENCE
ALIGNMENT DESIGN

In this section we present Ramethy, our bisulfite sequence
alignment design. First, the alignment parameters specific
to this type of alignment are described. Second, an overview
of Ramethy, including the module designs and workflow is
provided.

6.1 Bisulfite Sequencing Alignment
Whole-genome bisulfite sequencing involves treating the

DNA with sodium bisulfite to convert all cytosines (Cs)

Algorithm 4: Algorithm for substring searching using
the n-step FM-index.

Input : reduced bitmap of Q (Qr), F , and SA
corresponding to the text R

Output: Locations in R where Q is a prefix

begin
(low, high)← (1, |R|)
for i← |Q| − 1 to n step −n do

str ← concatBits(Qr[i− (n− 1)], . . . , Qr[i− 1], Qr[i])

low ← F [low − 1/d].Counters(str) +
Count(str, F [low − 1/d].B, low − 1 modd)
high← F [high/d].Counters(str) +
Count(str, F [high/d].B, highmodd)

end

for i← 0 to high− low do
Locations[i]← SA[low + i]

end
return Locations

end

function Count(str, B, pos):
cnt← 0
for i← 0 to pos do

if str = B[i] then
cnt← cnt + 1

end
return cnt

end

into uracils (Us), whilst the methylated cytosines remain
unchanged. In the sequencing process, all Us are identi-
fied as thymines (Ts), therefore the methylation state of the
DNA can be inferred by counting the number of Cs and Ts
in the treated DNA at each genomic cytosine site in the orig-
inal DNA. Our work targets Methy-Pipe [10], a recently de-
veloped integrated bioinformatics pipeline for whole-genome
bisulfite sequencing data analysis. Methy-Pipe uses two con-
secutive software modules to perform methylation data anal-
ysis. The first module is the aligner, which performs the
bisulfite sequence alignment, and the second module is the
data analysis module which provides various functions to
facilitate downstream methylation data analysis.

Bisulfite sequencing alignment differs from the standard
alignment procedure as all the Cs in the reads and refer-
ence genome are converted to Ts, reducing their alphabet
to Σ = {A,G, T}. For seed-and-extend algorithms, this fea-
ture increases the computational workload as the average
number of candidate locations which must be extended in-
creases by a factor of 4n/3n, in which n is the seed length.
The alignment parameters used in Methy-Pipe are: 1) reads
must be aligned to the reference genome with a maximum
of two mismatches, and 2) only reads which are uniquely
aligned are reported.

6.2 Module Designs
To support the first alignment parameter, modules based

on the n-step FM-index are designed for exact match, one
mismatch and two mismatches alignment. For the proposed
reconfigurable architecture there are two techniques for im-
proving the design performance: 1) pipeline the module op-



erations to increase the throughput, and 2) replicate the
modules on the target device to increase the parallelism.

For the exact match module, Algorithm 4 is mapped to
hardware. The index is too large to fit in on-chip BRAM,
and is therefore stored in off-chip DRAM directly attached
to the FPGA device. Accessing the off-chip DRAM adds
latency to the module, which coupled with the step interde-
pendence results in a non-full pipeline. To address this issue
the processing of multiple reads are interleaved such that
in each pipeline stage a different read is being processed.
Consequently, the pipeline can be completely filled, which
allows a throughput of one SA interval update per clock cy-
cle. This feature is implemented using a circular buffer that
can store a batch of reads with a size equal to the total mod-
ule latency. The cost of this throughput improvement is the
additional resources required to store the batch of reads and
their corresponding alignment states. In order to reduce
the impact of this cost on the number of times the mod-
ule can be replicated, techniques are developed to minimise
the module latency. For example, the computation with the
largest latency is the Count() function. A binary adder tree
is developed to count the occurrences in parallel so that the
latency for this computation can be reduced by a factor of
(log2 d)/d in comparison to the sequential version.

Figure 4 illustrates the high level design for the exact
match module. In each cycle the index elements F [low−1/d]
and F [high/d] for a given read are accessed from off-chip
DRAM via an intermediate data buffer. The index data,
along with the corresponding read symbols and the current
interval are used to compute the new interval. The new val-
ues of low and high are stored in the circular buffer (over-
writing the previous values), and low − 1/d and high/d are
streamed as addresses to the off-chip memory command gen-
erator. If the required number of alignment steps have been
performed, the final interval is transferred to host memory.

The one and two mismatches modules are based on the
exact match module with additional logic incorporated to
control the backtracking. To support the second alignment
parameter, all possible mismatch positions in the read must
be tested to ensure it is uniquely aligned. This specification
is covered for by a breadth-first backtracking strategy. A
challenge with using backtracking for approximate match-
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ing is that the number of steps required to align a read
increases exponentially with the number of mismatches per-
mitted. To address this challenge we incorporate features
from the 2-way BWT algorithm into our design. The ba-
sis of this algorithm comes from the property that in each
step of the for-loop of Algorithm 4, the interval can only
decrease or remain the same size. By constraining the mis-
match position in the read, long segments of the read can be
initially exactly matched to the reference genome, reducing
the search space size. As a result, the number of steps spent
on aligning read permutations which do not occur in the
reference genome is substantially reduced. Each mismatch
module has a number of computational phases according to
where the mismatch position is constrained. These posi-
tions are chosen in order to maximise the segment of the
read which can be exactly matched. Figure 5 illustrates
the different computational phases for the one and two mis-
matches modules. To permit forward searching, the index
of the reversed reference genome is used.

6.3 Ramethy Workflow
In accordance with the reconfigurable architecture pre-

sented in Section 4, each module is replicated as many times
as possible to create distinct FPGA configurations. Prior to
alignment, the reads are loaded onto the host machine mem-
ory and are compressed into a reduced bitmap. For reads
whose length is not exactly divisible by the index parameter
n, the initial interval is updated for the excess symbols us-
ing precomputed values, otherwise it is set to (1, |R|). Once
this processing is complete, the FPGA device is configured
with the exact match configuration. The compressed reads
along with their initial interval are streamed to the FPGA
device where they are processed concurrently by the mod-
ules. The final interval for each read is streamed back to
the host, which determines if it is aligned (low ≤ high) or
unaligned (low > high). Next, the FPGA device is reconfig-
ured with the one mismatch configuration. The unaligned
reads are streamed to the FPGA device where they are pro-
cessed concurrently by the modules according to the com-
putational phases in Figure 5. If a read can be aligned,
a single interval is streamed back to the host, as well as
the total number of alignment hits detected (in order to de-
termine if the read is uniquely aligned). This step is then
repeated again for the two mismatches configuration. Af-
ter alignment, the host converts the intervals for the aligned
reads into reference genome coordinates using the SA. It is



worth noting that most of the software processing time can
be hidden by the hardware processing.

7. EVALUATION
In this section we evaluate the performance of Ramethy

on the Maxeler MPC-X1000 dataflow node. The runtime,
energy consumption and alignment accuracy are compared
to the fastest CPU, GPU and FPGA-based alignment pro-
grams currently available.

7.1 Maxeler Platform
The MPC-X1000 provides up to 8 dataflow engines (DFEs)

in a 1U form factor with power consumption comparable to a
single high-end server. Each DFE comprises a single Altera
Stratix V FPGA connected to 48GB of DRAM. The DRAM
consists of six 8GB memory modules, which are coupled to-
gether to give a word length of 384 Bytes. A single memory
controller is used to manage the read and write operations.
The DFEs are a shared resource on a network and are con-
nected to a CPU host machine via Infiniband. To implement
a design on the Maxeler Platform, first the software code is
expressed as a dataflow design using the MaxJ language,
based on the Java language. The MaxCompiler then maps
the design into an FPGA configuration and enables its use
from a host application.

The memory architecture of the MPC-X1000 coupled with
the random access pattern of the FM-index are the limiting
factors of performance. Our implementation of Ramethy is
restricted to just a single module per configuration running
with an off-chip memory bandwidth of approximately 4.2
GB/s (11% of the theoretical peak 38.5 GB/s). To improve
the performance, the memory modules can be decoupled to
allow up to six memory controllers per DFE. This modi-
fication permits multiple modules in each configuration by
allowing parallel read operations to the index. Although this
solution has not been implemented, we use it to provide an
upper bound performance estimate for the MPC-X1000.

7.2 Experimental Parameters
Ramethy is implemented on a MPC-X1000 with 8 DFEs.

The index is constructed with the parameter values n = 3,
d = 368 and |Σ| = 4. Consequently, an index of the Human
genome can fit in 3.3GB of memory. Our experimental re-
sults include two performance measurements for Ramethy.
The first (denoted by v1) is based on actual measurements
obtained from our system, in which Ramethy is mapped onto
8 DFEs with a population of one module per configuration.
The second (denoted by v2) is an upper bound estimate for
the MPC-X1000 in which the memory modules attached to
each DFE are decoupled, allowing for 3 modules per con-
figuration. Note that each module requires two memory
controllers to access the index elements F [low − 1/d] and
F [high/d] in parallel, and there are six memory controllers
per DFE.

The runtime, energy consumption and accuracy of Ram-
ethy is compared to those of soap2 running on a 1U rack
server with dual Intel Xeon E5-2650 CPUs and soap3-dp
running on an NVIDIA GTX-580 GPU. These programs are
used in our comparison as: a) they are widely regarded as
the fastest CPU and GPU-based alignment tools currently
available, and b) the bisulfite sequence alignment program
developed for Methy-Pipe is based on soap2, with future
releases utilising soap3-dp. It is worth noting that in all

runtime measurements reported, only the alignment time is
considered.

$ . / soap −a reads . f a s t q −D index −v 2
−p 16 −o output

$ . / soap3−dp s i n g l e index reads −s 2 −h 3
−o output

In the following experiments Chromosome 22 of the Hu-
man genome is used as the reference genome. Sherman,
a bisulfite sequencing read simulator, is used to generate
single-end reads. The following command is used to simu-
late reads with similar properties to experimental data:

$ . / Sherman −q 40 −I 75 −CG 20 −CH 98 −e 0

Given the relatively small workload used (3% of a full
alignment workload), the reconfiguration time (3-4 seconds
per configuration) for the MPC-X1000 is not included in
the runtime measurements of Ramethy, as it would intro-
duce a large negative bias to the results. With a full align-
ment workload of 300M reads the reconfiguration time would
amount to approximately 3.5% of the alignment time.

7.3 Experimental Results
In the first experiment, the alignment performance of Ram-

ethy is measured for exact match, one mismatch and two
mismatches. Three data sets are generated in which 10M
reads of 75 bases are directly sampled from the reference
genome. Mismatches are inserted at random positions in the
reads according to the number being tested. The graph in
Figure 6 indicates that the exact match, one mismatch and
two mismatches configurations are all faster at aligning reads
than both soap2 and soap3-dp. The largest performance im-
provement is with the exact match configuration, which is
45.1 times and 10.1 times faster than soap2 and soap3-dp
respectively. The mismatch configurations show less sub-
stantial improvements as additional time is spent process-
ing the reads with each alignment phase and the previous
configuration(s). The upper bound performance estimates
indicate that a high population of modules in each configura-
tion yield significant performance improvements over soap2
and soap3-dp. For example, Ramethy can be up to 270.6
times and 60.5 times faster at exactly aligning reads than
soap2 and soap3-dp respectively.

In the next experiment the resource usage of each mod-
ule is analysed. The final resource usage for look-up tables
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(LUTs), flip-flops (FFs), and BRAMs, as well as the achiev-
able clock frequency are recorded from the build report of
Ramethy. Table 2 indicates that all three modules utilise ap-
proximately 24–27% of the available resources on the device
fabric. If each module is replicated on the device fabric as
many times as possible given the available resources, there
could be up to 3 modules per configuration, which is identi-
cal to the populations for the upper bound estimate. Aside
from the number of memory controllers supported, the crit-
ical resource for each module is BRAMs. An explanation
for this result is that the circular buffer used to store the
batch of reads and the corresponding alignment states is
implemented using BRAMs. Future implementations could
benefit from FPGA devices with increased BRAM and logic
resources at the cost of DSP blocks (which are entirely un-
used), which would allow a higher population of modules per
configuration.

Next, the performance of Ramethy is measured for real-
istic bisulfite sequenced data. The Sherman read simulator
is used to generate 10M reads of 75 bases from the refer-
ence genome. To make the data as realistic as possible,
the bisulfite conversion rate of the reads is adjusted to val-
ues typically seen in real experiments. For completeness,
the alignment time of Ramethy is also compared to notable
hardware-based designs, including the Smith-Waterman de-
sign in [19] and the FM-index design in [8]. Since different
data sets and alignment parameters are used in these efforts,
we define a normalised performance merit, bases aligned per
second (bps), to allow for a fairer comparison.

bps =
read length× read count

alignment time
(5)

Table 3 indicates that Ramethy is approximately 14.9
times faster than soap2 running on dual Intel Xeon E5-
2650 CPUs and 3.8 times faster than soap3-dp running on
a NVIDIA GTX-580 GPU. The upper bound performance
estimate for the MPC-X1000 indicates that Ramethy can
achieve a maximum speedup of 88.4 times and 22.6 times
compared to soap2 and soap3-dp respectively. All of these
systems are housed in a 1U rack unit, suggesting that Ram-
ethy offers the highest performance per unit volume.

To evaluate the proposed reconfigurable architecture, the
performance of Ramethy is compared to a statically config-
ured design. Given the available resources on the MPC-
X1000, and the process time for each configuration, the
optimal static design would appear as illustrated in Figure
7. Assuming there is zero communication overhead between
modules and the modules are never stalled, the maximum
performance for a static design is given by Equation 6, in
which Ni is the number of reads processed by the i mis-
match module, ti is the time for the corresponding module

Module Clock LUT FF BRAM
(MHz)

EM 150 70676 (27%) 124224 (24%) 690 (27%)
OM 150 70267 (27%) 124001 (24%) 621 (24%)
TM 150 70858 (27%) 125624 (24%) 633 (25%)

Table 2: Module resource usage on a Altera Stratix
V FPGA. Note: EM, OM, and TM denote exact
match, one mismatch and two mismatches respec-
tively.

to process a read and Pi is the module population.

T = max

(
N0t0
P0

,
N1t1
P1

,
N2t2
P2

)
(6)

Table 3 indicates that Ramethy exceeds the maximum per-
formance for a static design. When accounting for the re-
configuration time in a full alignment workload, Ramethy is
11% faster than the static design.
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Figure 7: Optimal statically configured design.
Note: EM, OM, and TM denote exact match, one
mismatch and two mismatches respectively, and
each module is mapped to a single DFE.

Given that the alignment time scales linearly with the
read count, the runtime of Ramethy can be linearly extrap-
olated to that of a typical alignment workload. Experiments
typically sequence DNA using a single flow cell lane, which
produces approximately 300M reads with 75 bases. Ram-
ethy can align this volume of reads in 6 minutes, whilst the
upper bound estimate gives a minimum time of just over a
minute. Considering that an alignment workload this size
can take hours for a high-end server to complete, Ramethy
can significantly shorten the diagnosis time, which would
allow faster responses and increase the number of patient
samples that can be analysed per day.

The bps values in Table 3 indicate that Ramethy is ap-
proximately 5.0 times faster than the design in [8], yet 1.8
times slower than the design in [19]. The upper bound per-
formance estimate for the MPC-X1000 indicates that if the
platform-specific limitations are addressed, Ramethy can
achieve 3.3 times speedup compared to the design in [19].
Whilst it is difficult to directly compare these hardware-
based designs fairly, it can be noted that Ramethy has three
disitinct advantages over the FM-index based designs in pre-
vious efforts. First, the n-step FM-index modification re-
duces the required number of steps in each alignment with
no increase in the computational complexity of each step.
Second, the incorporation of the 2-way BWT into the one
and two mismatches modules greatly increases the approxi-
mate matching performance. Third, the breadth-first back-
tracking strategy improves the alignment accuracy, which is
identical to that of soap2 and soap3-dp.

In the final experiment the energy consumption of Ram-
ethy is measured. Power values are taken from the vendors
product information for the CPU and GPU devices, and
directly from the operating system in the case of the MPC-
X1000 dataflow node. Table 4 indicates that Ramethy con-
sumes approximately an order of magnitude less energy than

Program Total Power (W) Energy Consumption (kJ)

soap2 190 31.9
soap3-dp 244 10.5

Ramethy v1 72 1.5

Table 4: Energy consumption.



Table 3: Performance comparison.
program read length read count platform clock freq. devices runtime bps speedup

(M) (MHz) (s) (million)

soap2 75 10 Intel E5-2650 2000 2 168 4.5 1.0x
soap3-dp 75 10 NVIDIA GTX-580 772 1 43 17.4 3.9x

[8] 101 18 Convey HC-1 150 4 138 13.2 3.0x
[19] 76 54 Pico M-503 250 8 34 120 26.8x

static design 75 10 MPC-X1000 150 8 12.8 58.5 13.1x
Ramethy v1 75 10 MPC-X1000 150 8 11.3 66.4 14.9x
Ramethy v2 75 10 MPC-X1000 150 8 1.9 395 88.4x

soap2 and soap3-dp. This result can be explained by the low
operational clock frequencies which the FPGAs are run at,
coupled with the shorter runtime. This result suggests that
the relatively high initial cost of the MPC-X1000 can be
amortised given the much lower operational energy costs.

8. CONCLUSION
This paper presents a novel reconfigurable architecture

for accelerating sequence alignment. This architecture is ap-
plied to bisulfite sequence alignment, a bottleneck in recently
developed bioinformatics pipelines for cancer and non-invasive
prenatal diagnostics. Our design, referred to as Ramethy, is
based on the FM-index which we optimise to reduce the
amount of search steps and improve approximate match-
ing performance. Ramethy is implemented on the Max-
eler MPCX-1000 dataflow node and measured results show
a 14.9 times speedup compared to soap2, and 3.8 times
speedup compared to soap3-dp. In addition to runtime,
Ramethy consumes over an order of magnitude lower energy,
and has an accuracy identical to soap2 and soap3-dp, mak-
ing it a strong candidate for integration into bioinformatics
pipelines. Future work involves accelerating the other stages
of the Methy-Pipe application, exploring how the proposed
reconfigurable architecture can be applied to other bioin-
formatics pipelines, and automating the implementation of
such pipelines from a high-level description.
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