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Abstract—The computationally intensive nature of atmo-
spheric modelling is an ideal target for hardware acceleration.
Performance of hardware designs can be improved through
the use of reduced precision arithmetic, but maintaining
appropriate accuracy is essential. We explore reduced precision
optimisation for simulating chaotic systems, targeting atmo-
spheric modelling in which even minor changes in arithmetic
behaviour can have a significant impact on system behaviour.
Hence, standard techniques for comparing numerical accuracy
are inappropriate. We use the Hellinger distance to compare
statistical behaviour between reduced-precision CPU implemen-
tations to guide FPGA designs of a chaotic system, and analyse
accuracy, performance and power efficiency of the resulting
implementations. Our results show that with only a limited
loss in accuracy corresponding to less than 10% uncertainly
in input parameters, a single Xilinx Virtex 6 SXT475 FPGA
can be 13 times faster and 23 times more power efficient than
a 6-core Intel Xeon X5650 processor.

I. INTRODUCTION

Climate and weather prediction are computationally in-

tensive; even with high-performance computing resources,

it is typically impossible to resolve important convective

cloud systems in global models [1]. Numerical models

of weather and climate show significant model error due

to limited resolution and complexity, necessitating a need

for even more resource-intensive models. Performance and

power requirements for running such models with hard

time constraints have led to the exploration of hardware

accelerators to obtain greater throughput and power efficiency.

A common approach to enhance throughput of hardware

designs is to reduce precision of computations so that

additional hardware resources can be employed to increase

parallelism. Excessive precision reduction however, reduces

calculation quality and usefulness, so a trade-off must be

made between performance and accuracy.

Lorenz showed that weather forecasting involves the

prediction of a chaotic system [2]. This implies an exponential

growth of errors in initial conditions; significant divergence

between a CPU and hardware implementation is expected

simply due to implementation differences, and is not in

itself an indicator of error. Diagnostics that rely on solution

convergence between implementations for validation are

inappropriate here.

Short-term forecasts may have uncertainty in initial condi-

tions due to the nature of measurement. Also, the response to

a forcing (e.g. a change in CO2 concentration) is difficult to

predict and must be tested with numerical simulation. Given

the chaotic nature of weather and initial condition uncertainty,

one may consider a reduction in precision appropriate so long

as the behaviour change introduced is acceptable compared

to those introduced by other factors.

We investigate the reduction of precision in chaotic

systems using the Lorenz 1996 model (a.k.a. Lorenz 1995),

designed by Lorenz [3] to study interactions of atmospheric

processes with non-linear, chaotic dynamics. Our analysis has

applicability beyond this model – scale interactions within

the Lorenz ’96 model resemble scale interactive behaviour

of various parts of numerical atmosphere models that is

typically difficult to capture in idealised systems. Similar

scale interactions are also important for turbulent energy

cascades relevant to most applications in CFD (computational

fluid dynamics). This paper contributes and presents:

• the hardware architecture of a two-scale Lorenz ’96

simulation using Runge-Kutta time-stepping;

• a demonstration of how it is possible to make trade-offs

between precision and throughput for a system where

numerical divergence is expected;

• an analysis of the impact of varying the precision of

variables at different scales in the Lorenz ’96 implemen-

tation using error metrics appropriate to chaotic systems

(the Hellinger distance);

• performance, precision and power consumption compar-

isons of reduced-precision FPGA implementations to

an optimised CPU implementation.

II. BACKGROUND

A. Lorenz ’96

The two-scale Lorenz ’96 model (hereafter called L96) was

designed by Lorenz as a simple model to study predictability

in a chaotic system. Despite its simplicity, L96 shares

important properties of numerical atmosphere models such as

scale interactions and chaotic behaviour. Also, its numerical
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Figure 1. Visualisation of a two-scale L96 system with J = 8 and K = 6.
Global-scale values (Xk) are updated based on neighbouring values and
a reduction applied to the local-scale values (Yj,k) associated with that
value. Local-scale values are updated based on neighbouring values and
the associated global-scale value. The neighbourhood topology of both the
local and global-scale values is circular.

implementation has significant similarities to widely used

CFD finite difference models in terms of the discrete grid

point representation and time stepping schemes.

The model is defined by a set of coupled equations

involving K global-scale variables (X1≤k≤K ), each of which

is associated with a set of J local-scale variables (Y1≤j≤J,k):

dXk

dt
=−Xk−1(Xk−2 −Xk+1)−Xk + F − hc

b

J∑
j=1

Yj,k

(1)

dYj,k

dt
=− cbYj+1,k(Yj+2,k − Yj−1,k)− cYj,k +

hc

b
Xk (2)

where F is a forcing term, h is the coupling constant, b is

the spatial-scale ratio and c is the time-scale ratio. Often

h = 1, F = 20, b = 10 and c = 4 or c = 10.

Global and local-scale variables are arranged circularly

(Fig. 1) such that Xk = Xk+K , Yj,k = Yj,k+K and Yj,k =
Yj−J,k+1. For clarity we show a small system; in practice we

look at how to scale J and K to hundreds of thousands. We

explore how to scale both J and K, but only run simulations

with relatively small values of J (144) since local-scale values

only influence global-scale values through a summation so

larger values of J result in statistically similar behaviour.

For all simulations, we temporally discretise using Runge-

Kutta. This has a significant impact on our accelerator design

due to the number of intermediate terms required during each

time-step.

B. Related Work

While FPGAs have been used in implementing chaotic

systems, previous work has focused on security and digital

communication [4]. This paper provides the first FPGA

architecture and precision analysis for atmospheric modelling

with chaotic behaviour.

Oriato et al. have accelerated the dynamical core of a

Limited Area Model derived from the BOLAM model [5].

The model includes three-dimensional non-linear equations

covering conservation of momentum, continuity and thermal

energy. An explicit finite-difference scheme is used to

solve these equations over a staggered C-grid. Parts of the

computation are converted to use fixed point arithmetic.

Gan et al. have investigated a hybrid CPU-FPGA approach

for computing the upwind stencil of the global shallow

water equations [6] using a finite-volume and TVD Runge-

Kutta discretisation on a cubed-sphere mesh. Range analysis

is applied to kernels, and used to transform values to

fixed point and reduced-precision floating point. Despite the

stencil’s small size, the high computational intensity leads

to significant speedups in the FPGA implementation.

A major difference from our work is that the two studies

above consider short-term simulations that show only limited

propagation of model errors due to the chaotic dynamics

of the atmosphere. We consider the influence of reduced

precision on a long-term diagnostic for a system with strong

chaotic behaviour.

Düben et al. have explored simulated stochastic processors

and low-precision arithmetic in the context of atmospheric

modelling for short [7] and long-term simulations [8]. Their

two-level L96 model is run with bits in the mantissa randomly

flipped after floating point operations, emulating a stochastic

processor. Additionally, the dynamic core of the Intermediate

Global Climate Model is run with both reduced precision, and

with stochastic processor emulation for global simulations.

Results suggest that imprecise computing strategies can

be aggressively applied to small-scale dynamics without

significantly altering those at larger scales.

III. ARCHITECTURE

A. System Overview

The entire L96 Runge-Kutta update is moved to a hardware

accelerator. The system state is copied from host memory

to the accelerator’s off-chip memory prior to computation.

Arbitrary numbers of Runge-Kutta updates can be performed

with the system state sent back to the host when needed.

All computations are moved to hardware, but host involve-

ment remains during updates. Memory controller commands

are sent by the host to the accelerator during computation

since data access patterns for multiple iterations (Sec. III-G)

are expensive to compute in hardware. The data-volume is

small, so transfer time is not a limiting factor.

The structure of our design is shown in Fig. 2. The

padding/stripping steps add/remove padding needed to satisfy
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Figure 2. The hardware structure of a Runge-Kutta time-step for L96.
Xn and Y n represent the state of the system at time-step n. kXi and kYi
represent the ith Runge-Kutta increment for the X and Y states, respectively.
Expressions containing the factor h

6
represent intermediate values in the

computation of Xn+1 = Xn+ h
6
(kX1 +2kX2 +2kX3 +kX4 ) and Y n+1 =

h
6
(kY1 +2kY2 +2kY3 +kY4 ). All other expressions are Runge-Kutta estimated

slopes.

memory controller constraints on read/write sizes. The dein-

terleave/interleave steps split/combine the X and Y state so

that sending an X element can be synchronised with sending

the first element of the associated Y state. Each Runge-

Kutta step is implemented by a single kernel, computing the

updated partial X and Y states and intermediate values.

B. In-memory Representation

We treat the state of a L96 system as a matrix (Fig. 3).

The matrix is flattened to memory in column-major order so

that all Y values associated with a particular X value are

located contiguously in memory. We interleave the Y and X
state such that each X-value is located before the associated

Y values.

C. Data Path

For clarity, we describe the Runge-Kutta method for

calculating yn+1 from yn given the function f that calculates

the gradient of y at t such that dy
dt = f(t, y):

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) (3)

tn+1 = tn + h (4)

where:

k1 = f(tn, yn) (5)

k2 = f(tn + 0.5h, yn + 0.5hk1) (6)

k3 = f(tn + 0.5h, yn + 0.5hk2) (7)

k4 = f(tn + h, yn + hk3) (8)

The kernels for each Runge-Kutta step are similar but

differ in the number of inputs and outputs (e.g. all steps

except the first take an input containing intermediate values

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 X2 · · · XK

0 0 · · · 0
...

...
. . .

...

Y1,1 Y1,2 · · · Y1,K

Y2,1 Y2,2 · · · Y2,K

...
...

. . .
...

YJ,1 YJ,2 · · · YJ,K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3. State of the L96 system arranged as a matrix. Each column
contains a single X elements and all Y elements associated with the X
element. Each column may contain zero or more padding elements after
the X element due to vectorisation (Sec. III-F).

of Xn+1 and Y n+1). Each step is specialised to avoid un-

necessary computation and communication. X and Y remain

deinterleaved during processing, but are synchronised so that

each X entry is sent/received by kernels simultaneously with

the first element of the associated Y -values.

D. Precision

We analyse the effect of precision reduction at the level of

global and local-scale values of L96. In weather and climate

modelling, it is important to represent large-scale patterns

(analogous to global-scale quantities in L96) accurately, but

of lesser importance to represent small-scale dynamics (anal-

ogous to local-scale quantities) in high accuracy. Small-scale

dynamics are inherently uncertain due to the strong influence

of parametrisation schemes and viscosity in atmosphere

models and initial value uncertainty. Therefore, precision

of local-scale quantities should be chosen to be equal to or

less than the precision of global-scale quantities [8].

In our design, all values are stored in off-chip memory

as IEEE 754 single-precision floating-point values. Global

and local-scale quantities are converted to and from lower

precision in the “deinterleave” and “interleave” kernels,

respectively (Fig. 2).

All intermediate values such as derivatives and slope

estimates are maintained in the same precision as the

associated X or Y state. For the summation of Y elements

needed by the X-derivative, we use an accumulator of the

same type as the X elements for improved precision.

E. Boundary Conditions

Calculation of X and Y derivatives both involve stencil

operations with circular boundary conditions. Both stencils

are small, however:

• Data dependencies force output to be delayed and

reordered with respect to the stencil input. Since we

pass the original input and Runge-Kutta intermediate

values through the pipeline, these must be reordered

and delayed in an identical manner.

• Since we couple X and Y , any buffering of X elements

requires buffering of entire columns of Y . We wish to

avoid this as much as possible since the required buffer

size will increase with K.
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Figure 4. Time at which columns of the input state are processed and
output produced for a stencil operation over X . The pre-read region (shaded)
is used to calculate the X-derivative stencil with the Y elements discarded.
The original state is output, but rotated in the same manner as the X-
derivative with pre-read elements removed. Look behind causes the final
output elements to be delayed by one column relative to the final input
element.

We consider calculation of a stencil requiring Sn elements

applied to a stream of n elements where n � Sn and we

wish to store as few elements as possible. We call the Sf

elements ahead of those being processed “look-ahead” and

the Sb after as “look-behind” such that Sn = Sb + 1 + Sf .

1) Look-ahead: Look-ahead makes it impossible to output

updated elements in the same order as they are received.

We start producing elements as soon as we receive the first

Sn and output X and Y elements in a “rotated order” with

respect to the input.

Calculation of the final elements of the output requires

elements from the start of the stream. For Y updates, we

can store the initial Sf elements from the stream and use

them later. For X updates, storing initial elements requires

storing entire columns of Y . To avoid this, we implement

a “pre-read“ approach whereby initial columns of the input-

state are read both at the start and end of an update. The

first pass over the ‘pre-read“ region uses the X values but

discards Y ; the second pass uses both X and Y .

For the stencil over X , Sf = 2. Since each Runge-Kutta

intermediate step introduces a rotation, we need to pre-read

8 columns of the input state. The rotation to X is undone

by the host when the state is copied back.

2) Look-behind: A stencil with only look-behind does

not introduce rotations, but the output is still delayed until

sufficient elements are received to evaluate the stencil. Since

we need to maintain synchronisation between input and

output, Sb columns of the input must be buffered.

We illustrate the effect of look-ahead and look-behind on

the X-derivative stencil in Fig. 4. Buffering of state due to

look-ahead is eliminated via pre-reading but buffering due

to look-behind cannot be avoided.

F. Vectorisation

To maximise throughput we vectorise handling of the Y
state (by creating multiple in-kernel data-paths). Alternatively

we could have replicated the Runge-Kutta pipeline, but the

vectorisation approach has a number of benefits.

Our design is constructed such that we can choose

an arbitrary vector length vn representing the number of

elements read from a Y -related stream in a single cycle. We

enforce the requirement that J is a multiple of vn.

The arithmetic required to implement the Y -derivative

calculation is duplicated vn times. Since we do not duplicate

the pipeline, we generate no additional counters nor com-

munication channels between kernels. Most importantly, the

sizes of the buffers required to store and delay Y -related

values are nearly independent of vn so increasing vn has

minimal effect on on-chip memory usage.

Calculation of the X-derivative involves a summation

over each column of Y . We implement an accumulator that

accepts one element per cycle, which is relatively costly in

terms of adders. With vectorisation we avoid duplicating the

accumulator; instead we use another vn − 1 adders to sum

the vector elements for input to the accumulator.

One overhead incurred is that each X-state element must

be padded to vn elements. For an arbitrary system, this means

that the fraction of padding of an in-memory representation

of the system will be vn−1
J+1 . For a typical value of J = 128,

a system where vn = 8 will consist of 5.4% padding and

where vn = 16, it will have 11.6% padding.

G. Multiple Iterations

We can perform multiple L96 time-steps with only a

single invocation from the host machine. As described in

Section III-E, a “pre-read” region is read at both the start

and end of a time-step update. Therefore, the pre-read region

cannot be overwritten until it has been read both times.

The memory controller requires all reads and writes to

have sizes and occur at addresses which are multiples of a

burst size (384 bytes). During a time-step update, the new

state is written starting at the first burst that does not contain

any pre-read data, causing the start of the L96 state to move

forward in memory each time-step.

The L96 state is padded to the memory controller’s burst

size and circular addressing is used such that the flattened

representation of the system state (including padding) “rotates”

in memory by multiples of the burst size; rotation is undone

by the controller on state transfer to the host. Fig. 5 illustrates

the memory layout transformation caused by the first time-

step.

IV. PRECISION ANALYSIS

A. Metrics

L96 exhibits complex wave-like and chaotic behaviour [9].

Specifically, small perturbations in the initial conditions of the

system will result in significant differences in its evolution.

Consequently, we cannot use a direct comparison of state

between hardware and CPU implementations after a large

number of time steps due to the expected divergence.
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Figure 5. Rotation of the L96 system state caused by a single time-step
update. We show a rotation by 3 columns rather than the actual 8. Dashed
lines indicate burst size aligned addresses. The updated state is written in
front of the pre-read region causing the flattened state (including padding) to
rotate in-place. The pre-read region size is chosen to be the minimum burst
size multiple capable of holding the number of columns to be pre-read.

The climatology of L96 is typically defined as the proba-

bility density function (PDF) of the X variables, averaged

over a long run: 10,000 model time units, equivalent to more

than 100 “atmospheric years” [3]. For assessing simulation

accuracy, we compare the PDFs of both local and global-scale

variables.

A metric often used to compare PDFs is the Hellinger dis-
tance (see for example [10]). For two probability distributions

p and q, the Hellinger distance H is defined as:

H(p, q) =

√
1

2

∫ (√
p(x)−

√
q(x)

)2

dx (9)

Taking the Hellinger distance between a high-precision

CPU implementation and reduced-precision implementations

enables us to determine the quality of the simulation. As a

baseline, we calculate the Hellinger distance between two

high-precision CPU implementations with different starting

states. Since the Hellinger distance is a measure of long-

term dynamics, a change in initial conditions should not

change the PDF and the Hellinger distance should be close

to zero. The Hellinger distance between simulations that only

differ in the initial conditions can serve as an estimate of

the uncertainty in the measurement of the Hellinger distance

for a given model setup.

B. Precision Reduction

Reducing calculation precision enables the reduction of

hardware resource utilisation, permitting instantiation of

additional functional units for increasing throughput. For

the L96 simulations, we wish to determine the extent to

which we can increase throughput while maintaining an

acceptable level of accuracy.

We only consider reduced precision floating point and do

not attempt to use fixed point. We do not attempt to optimise

each intermediate value in our pipeline; rather, we investigate

the effects of precision reduction on terms associated with

the global and local-scale quantities of L96. Düben et al.

have shown for an atmosphere model that the precision to

calculate small-scale dynamics can be reduced much further

than the precision for large-scale dynamics with a smaller

influence on model results and forecast quality [8].
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Figure 6. Hellinger distances (smaller is better) for X and Y state
values between a double-precision CPU implementation and the CPU
implementation using truncated precision for local and global-related values.
F = 40, b = 10, c = 10, J = 64, K = 2000 and the simulation was run
for 3,750,000 time-steps with the state sampled every 1000 time-steps.

C. Implementation of Analysis

We extended the L96 C++ implementation to support

reduced precision. To match the hardware implementation,

we require behaviour equivalent to IEEE 754 with round-

to-nearest, no denormalised value support and non-standard

mantissa lengths. We originally used an arbitrary precision

library but required higher-performance for long runs so

we approximated reduced precision with round-to-nearest,

tie-to-even behaviour through bit manipulation of double-

precision values. Since we have no access to the “sticky” bits

of the underlying implementation, we will sometimes invoke

tie behaviour when a correct implementation would round.

We note that the rounding mode has significant impact on

the behaviour of this model at low precisions; using either

truncation or round-to-nearest, tie away from zero rounding

behaviour altered results significantly.

Since the hardware and reduced-precision CPU imple-

mentations differ in order and implementation of arithmetic

operations, the results from each will diverge. Also, the

chaotic nature of L96 causes even tiny perturbations to lead

to divergence. However, we can use the CPU implementation

as a tool to analyse the effect of different local and global-

scale value mantissa widths on the Hellinger distance.

We plot the Hellinger distances between the PDFs of the

elements of the global and local-scale states against a double-

precision implementation (Fig. 6). We see expected behaviour

– that reduced precision leads to greater error. Although

the probability distribution of global-scale values appears

minimally affected by the use of small (≤ 8 bits) mantissas

for local-scale values, this is misleading since the probability

distribution of local-scale values has been significantly altered.

The results also confirm previous work [8] that concludes the

precision of values at different scales should be optimised

independently, which is important for scaling our analysis to

more complex models.

To determine the extent to which precision can be reduced,

we must choose an acceptable Hellinger distance. We

calculate Hellinger distances between the double-precision

reference, the same with changed initial conditions, and with
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Table I
HELLINGER DISTANCES (4 S.F.) BETWEEN A DOUBLE-PRECISION

SIMULATION AND THE SAME WITH DIFFERENT INITIAL CONDITIONS

(AVERAGED FROM FIVE RUNS) AND ALTERED PARAMETERS.

Run H
(global)

H
(local)

Est. min.
mantissa
(global)

Est. min.
mantissa
(local)

Changed initial conditions 2.788e-3 1.939e-4 15 12

c× 0.99, F × 0.99 4.605e-3 1.505e-3 13 10

c× 1.01, F × 1.01 5.042e-3 1.719e-3 13 10

c× 0.9, F × 0.9 4.047e-2 1.625e-2 11 9

c× 1.1, F × 1.1 3.620e-2 1.415e-2 11 9

We estimate minimum mantissa widths required to produce a simulation
with smaller global and local-scale Hellinger distances based on the
results from CPU simulation. Where multiple combinations of global
and local-scale mantissa lengths satisfy the requirements, we choose the
configuration with the smallest combined mantissa length.
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Figure 7. Exponent (base-2) distributions for global and local-scale values
derived from CPU simulation with F = 40, b = 10 and c = 10. The
profile includes all intermediate values calculated in the specified precision.

c and F altered by 1% and 10% (Table I). Model parameters

always have a degree of uncertainty, and we consider 1%

to be realistic for most numerical models in Computational

Fluid Dynamics and 10% to be reasonable within atmospheric

modelling [11].

Runtime profiling of floating-point exponent values in the

CPU simulation was performed for 8000 time-steps (Fig. 7).

Results suggest that exponent values of up to 10 and 11 are

required to capture the largest global and local-scale values,

respectively. Exponent widths of 5-bits for both global and

local-scale values can represent the majority (≥ 99.999%)

of values generated during a simulation.

V. RESULTS

Hardware simulations were performed on a Maxeler

MAX3A Vectis Dataflow Engine (DFE) which contains a

Xilinx Virtex 6 SXT475 FPGA and 24GB of DD3 RAM.

Connection to the host was via PCI express. All designs

were compiled to run at 150MHz.

To compare performance between DFE and CPU, we

wrote an optimised L96 simulation in C++. OpenMP was

used for intra-node parallelisation and NUMA functionality

employed to prevent thread migration between physical cores.

The code was compiled with the Intel C++ Compiler 12.1.4.

CPU simulations were run on the DFE host machine which

contained two 6-core Intel Xeon X5660s running at 2.67GHz,

each having 12MB L3 cache (System 2 in Sec. V-C). Hyper-

threading was found to be beneficial so two threads were

assigned to each physical core. The host was running Centos

Table II
PRECISION, VECTOR WIDTHS AND RESOURCE UTILISATION OF L96 DFE

BUILDS.

Build
Global-scale
type

Local-scale
type

Vector
width

Utilisation (%)

Logic DSP BRAM

DFE1 float(8, 24) float(8, 24) 8 55.00 48.16 24.25

DFE2 float(6, 15) float(5, 12) 16 69.85 32.84 28.67

DFE3 float(5, 13) float(5, 10) 16 64.28 32.84 27.63

DFE4 float(5, 13) float(5, 10) 24 79.15 47.92 33.74

Table III
HELLINGER DISTANCES (4 S.F.) AGAINST A DOUBLE-PRECISION CPU

IMPLEMENTATION.

Build
J = 64 J = 144

H (global) H (local) H (global) H (local)

Changed initial cond. 2.788e-3 1.939e-4 7.029e-3 6.291e-4

c× 0.99, F × 0.99 4.605e-3 1.505e-3 1.399e-2 1.726e-3

c× 1.01, F × 1.01 5.042e-3 1.719e-3 1.067e-2 1.861e-3

c× 0.9, F × 0.9 4.047e-2 1.625e-2 1.167e-1 1.487e-2

c× 1.1, F × 1.1 3.620e-2 1.415e-2 8.826e-2 1.236e-2

DFE1 2.934e-3 2.881e-4 7.472e-3 1.180e-3

DFE2 2.776e-3 2.707e-4 4.320e-2 2.443e-3

DFE3 3.267e-3 6.742e-4 7.289e-2 1.012e-2

DFE4 N/A N/A 7.404e-2 1.005e-2

F = 40, b = 10, c = 10, J = 120, K = 2000 and the simulation
was run for 3,750,000 time-steps with the state sampled every 1000 time-
steps. Results are provided for both J = 64 (as in Table I) and J =
144. Since J must be a multiple of the vector width we cannot calculate
Hellinger distances for DFE4 where J = 64.

Linux 6.3.

Four DFE designs were built for benchmarking and

precision analysis: one at single precision, one at the precision

estimated necessary for similar accuracy to single-precision

and two at the precision level estimated to have errors of the

same order of magnitude as those caused by 1% uncertainly

in the input parameters. To enable comparison with the

Hellinger distances in Table I, design DFE3 was built with

a reduced vector width. DFE3 can be run with J = 64
permitting comparison with the CPU simulations but DFE4

cannot since J is not a multiple of the vector width.

All designs (except DFE3) were compiled with the

maximum supported vector width (Table II). The notation

float(e, m) denotes a floating point type with an e-bit

exponent and m-bit mantissa, including the implicit bit. The

maximum value of J each design could support was reduced

to 512 since larger values are of minimal interest to climate

scientists and this improves the chances of routing. DFE2

was compiled with a 6-bit exponent for global-scale values

due to restrictions on mantissa-exponent size combinations

imposed by the Maxeler tools. We compiled a design using

float(5,13) for both global and local-scale variables with a

vector width of 16 and a maximum value of J of 128000,

demonstrating we can scale J much higher if necessary.

A. Precision

We calculate the Hellinger distances for the local and

global-scale state variables between each DFE implementa-

tion and a double-precision CPU implementation (Table III).

For J = 64, DFE1 and DFE2 have Hellinger distances

similar to those seen between double-precision simulations
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Figure 8. Throughput of CPU and DFE implementations in elements/second
for J = 144 and varying values of K. CPU simulations were run in both
single and double precision. The DFE simulations were compiled using the
configurations in Table II.

Table IV
SPEED-UP FACTORS.

Build
Speedup (3 s.f.)

CPU
(single, 1 core)

CPU
(single, 12 cores)

CPU (single, 1 core) 1.00 0.0954

CPU (single, 6 cores) 5.30 0.506

CPU (single, 12 cores) 10.5 1.00

CPU (double, 1 core) 0.921 0.0879

CPU (double, 6 cores) 2.70 0.258

CPU (double, 12 cores) 5.39 0.514

DFE1 29.6 2.83

DFE2 56.3 5.37

DFE4 72.7 6.93

Factors are relative to a single-precision CPU implementation running
with a single core and 12 cores (two threads per hyper-threaded physical
core). J = 144 and K = 819200.

with changes to the initial conditions. DFE3, which has the

lowest precision exhibits a Hellinger distance comparable to

that caused by a 1% variation in c and F (Table I). We also

show Hellinger distances for J = 144 (the least common

multiple of vector widths used that is ≥ 128). For DFE4

(with J = 144), our Hellinger distances are outside those

expected by varying input parameters by 1% (we expect

larger distances due to having optimised for a different J)

but within those expected by 10% variation.

B. Performance

We compare performance between the C++ implementation

running on different numbers of cores in single and double-

precision and different DFE builds (Fig. 8) with speedup

factors shown in Table IV. DFE3 is excluded since it has

the same precision as DFE4, but lower throughput due to

the smaller vector width.

Our results show that a single DFE running with reduced-

precision can outperform a 6-core Xeon X5660 running a

single-precision implementation by over 13 times, and over

6 times when using two sockets.

For problems where K ≤ 6400, the single and double-

precision CPU implementations have near-identical perfor-

mance. These computations appear arithmetic-bound and

Table V
SYSTEM THROUGHPUT, TOTAL POWER CONSUMPTION AND EFFICIENCY

(3 S.F.) FOR CPU AND DFE IMPLEMENTATIONS

Build Throughput
(elements/s)

Power
(W)

Efficiency
(elements/J)

Relative
Efficiency

System 1 (4-cores) 1.63e8 208 (228) 7.83e5 0.972

System 2 (6-cores) 2.05e8 399 (477) 5.14e5 0.638

System 2 (12-cores) 4.05e8 503 (581) 8.05e5 1.00

DFE1 (System 1) 1.14e9 137 8.35e6 10.4

DFE2 (System 1) 2.17e9 143 1.52e7 18.9

DFE4 (System 1) 2.81e9 146 1.92e7 23.9

Throughput is specified in updated elements per second where an element
is a single scalar from the L96 state produced by a full Runge-Kutta
update. We subtract estimated static power requirements of unused
Maxeler cards from our power values (original values in parentheses).
CPU implementations were run with two threads per hyper-threaded
physical core. Relative efficiency uses the most power efficient CPU
execution as the baseline.

manual vectorisation would likely increase performance for

these sizes. At K = 6400, J = 144 the size of a double

precision L96 system state is just over 7MB which can

reside within the 12MB L3 cache of a single socket. Larger

systems no longer fit into cache and the single-precision

implementation achieves ≈ 2 times the performance of the

double-precision one for these sizes, suggesting they are

bandwidth limited.

Our CPU implementation scales well from 6 to 12 cores.

To achieve this, we use a “first-touch” policy for initialising

the L96 state so memory is allocated in the NUMA domain

of each thread. Prior to implementing this, performance

improvement when moving from 6 to 12 cores was minimal,

also indicating the implementation is bandwidth limited for

large sizes.

C. Power Consumption

We measure the power requirements of the CPU and FPGA

implementations on two systems:

1) A hyper-threaded four-core Intel Core i7 870 running at

2.93 GHz with 8MB L3 cache, 16GB RAM and a single

MAX3A Vectis card. Total idle power consumption of

93W.

2) A dual-socket machine with each socket containing

a hyper-threaded six-core Intel Xeon X5650 running

at 2.67 GHz with 12MB L3 cache and four MAX3A

Vectis cards. The system had 48GB of RAM with

24GB in each socket’s NUMA domain. Total idle power

consumption of 373W.

Total workstation power consumption was measured when

running each implementation in different configurations

(Table V). We subtract the static power requirements of the

unused Maxeler cards from our reported figures (the average

reported static power requirement per card is 19.6W).

In terms of computation per Watt, the reduced precision

designs achieve power efficiency of up to 23 times higher

than the most efficient CPU-only system. Assuming perfect

scaling (not unreasonable considering the need in weather

forecasting to calculate emsembles) system 1 could reach
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Table VI
READS AND WRITES PERFORMED ON INPUT, OUTPUT AND

INTERMEDIATE STATE BUFFERS BY EACH RUNGE-KUTTA STEP IN THE

CPU IMPLEMENTATION.

Runge-Kutta Step

State Value

Input Output Intermediate

Read Written Read Written Read Written

1 � � �
2 � � � � �
3 � � � � �
4 � � �

a relative efficiency of 41 times if it contained three fully

utilised MAX3A cards.

D. Discussion

Excluding data transfer due to pre-reading and padding,

the amount of data read from and written to off-chip memory

for a complete time-step is close to the L96 state size (a

theoretical minimum). In contrast, the CPU implementation

reads 9 times and writes 7 times the state size, respectively.

The CPU implementation has a working set of approximately

3 times the state size consisting of storage for the input

and output states, and a Runge-Kutta intermediate value.

The buffers each Runge-Kutta step accesses are shown in

Table VI.

Each buffer access in Table VI can be mapped to the cor-

responding inter-stage links in the hardware implementation

(Fig. 2). However, the pipelined nature of the implementation

means that the state passed between Runge-Kutta steps is

never stored completely. Parallelisation occurs across the

entire Runge-Kutta update as kernels operate on all four

steps simultaneously.

In a CPU implementation, the natural approach involves

domain decomposition to reduce inter-core communication.

Parallelisation occurs across each Runge-Kutta step, with

each thread updating partitions of the state. However, all

threads work on the same Runge-Kutta step simultaneously.

Consequently, communication between each Runge-Kutta

step must occur via main memory (for large systems).

We consider the reduced memory bandwidth required

for our DFE implementations to be a natural consequence

of being able to express the Runge-Kutta update as a

pipeline. Reducing the bandwidth requirements of the CPU

implementation would most likely require some sort of

iteration space partitioning beyond the scope of current

compilers, or cause a significant increase in code complexity

if implemented by hand.

VI. CONCLUSION

We designed a hardware architecture for the chaotic

two-scale L96 system. We built FPGA implementations at

different precision levels, guided by our CPU-based analysis

of Hellinger distances and showed that acceptable behaviour

can be achieved at precision significantly lower than single-

precision. We demonstrated how to reduce precision of

a chaotic system to improve throughput of a hardware

implementation.

The performance improvements achieved have enabled

climate scientists to substantially increase the scales of

analyses involving the L96 system with and without reduced-

precision. Previous work in this area was limited to using

simulations to explore the latter [8].

Current and future work includes extending our research to

cover more realistic models, supporting systems with multiple

accelerators, and exploring techniques and tools to automate

the architecture optimisation and precision analysis steps in

our approach.
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