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ABSTRACT
We present designs for in-circuit monitoring of custom hard-
ware designs implemented in reconfigurable hardware. The
monitors check hardware designs against temporal logic spec-
ifications. Compared to previous work, which uses custom
hardware to monitor software, our designs can run at higher
speeds and make better use of hardware resources, such as
shift registers and embedded memory blocks. We evaluate
our monitor circuits on example hardware designs targeting
FPGA implementation, showing that they have low overhead
in terms of circuit area, and can run at the same speed as
the circuits they monitor.

1. INTRODUCTION
As hardware technologies in general, and reconfigurable

hardware devices such as field-programmable gate arrays
(FPGAs) in particular continue to improve, designs imple-
mented on them become larger and more complex, and hence
harder to verify. Many approaches have been tried to ver-
ify such designs, from traditional exhaustive simulation, to
formal verification.

A promising approach to run-time verification is to add in-
circuit assertions – circuits monitoring Boolean expressions
which must be true if the design is running correctly [1] – to a
reconfigurable design [2], allowing running hardware designs
to be monitored. Although useful, simple Boolean conditions
cannot capture all correctness conditions for a circuit; in
particular, such conditions cannot describe time-dependent
behaviour, such as asserting that when one signal becomes
true, another signal must be asserted within a bounded
number of cycles. Such assertions are useful for designing
circuits such as state machines and memory controllers.

This paper proposes in-circuit, temporal logic-based moni-
tors for verifying time-dependent behaviour of circuits. Tem-
poral logic allows properties involving time to be specified.
Although similar circuits have been proposed before, these
targeted the verification of programs running on soft proces-
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sors implemented on an FPGA fabric [3]. In contrast, our
designs target verification of hardware designs (such as the
soft processor itself), meaning that they must run at the
full circuit speed. We develop multiple architectures for our
monitors, including one derived from a novel transformation
reducing the amount of computation from O(N) to O(logN).

While our monitor designs must be added to the design
under test at compile-time, recent work has shown how to
accelerate this process, allowing monitoring hardware to be
added incrementally without requiring completely rerunning
FPGA place-and-route tools. Such techniques allow our
in-circuit monitors to be added to an existing design [4, 5].

This paper makes the following contributions:

• An approach to runtime verification of hardware designs
using in-circuit monitors for temporal logic specifica-
tions;

• Feedforward and feedback architectures for temporal
logic monitors;

• Proof of an O(N) to O(logN) optimization of such
temporal monitors;

• Evaluation, showing resources used and speeds of cir-
cuits with our monitor designs.

The rest of the paper is organized as follows. Section 2
reviews background and related work. Section 3 shows our
approach to in-circuit temporal-logic based monitors. Sec-
tion 4 describes hardware architectures for our monitors.
Section 5 outlines a proof of correctness for the optimized
architecture. Section 6 evaluates our monitor designs using
various examples. Finally, Section 7 concludes and suggests
future work.

2. BACKGROUND
In-circuit assertions: Traditionally, hardware designs are

validated by extensive simulation, but as designs become
larger, the simulation space becomes impractically large.
Assertions – Boolean expressions which must be true if the
design is functioning correctly – have been proposed for
hardware designs [2].

Temporal logic monitors for software and hardware: Sev-
eral researchers implement temporal logic monitors. Backash
et al [6] verify multicore system-on-chip (MPSoC) designs
using linear temporal logic monitors compiled from a higher-
level specification. Their work targets software designs imple-
mented on the MPSoC, whereas we target hardware designs;



-1

KEY:

-1

and

delay

-1 -1 -1

Figure 1: Straightforward feedforward invariant op-
erator �[0,3]φ1.
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Figure 2: Straightforward feedforward since opera-
tor φ1S[2,4]φ2.

their monitors can run on FPGAs up to 50MHz whereas
our feedforward monitor architectures can be arbitrarily
pipelined, and hence run at high clock rates, up to 300MHz..

The Property Specification Language (PSL) is based on
linear temporal logic and used in both static and runtime
hardware verification. Several researchers have studied syn-
thesizing hardware monitors from PSL expressions, such as
work by Borrione et al [7]. The area used by the monitors
“increases gracefully” with the observation window size; for
our optimized feedforward design, registers increase linearly,
but logic gates increase logarithmically.

Thati and Roşu [8] develop algorithms for monitoring MTL
specifications which break MTL formulae into subformulae;
we also use subformulae to develop our monitor architec-
tures. The total number of memory bits needed to monitor
is similar to our feedforward architectures, but our optimized
architecture uses only a logarithmic amount of hardware
resources.

The closest work to ours is by Reinbacher et al [3], in which
the system under test is a software program running on a soft
processor implemented on a reconfigurable hardware device.
The soft processor is augmented with hardware monitors for
temporal properties written in past-time metric temporal
logic. Unlike this work, we monitor streaming hardware,
not software, meaning that our monitors must run at the
same rate as the rest of the hardware design. Their moni-
tors are memory efficient but complex; we trade complexity
for throughput. Although our monitors can have higher
asymptotic complexity, we show that they make better use
of hardware resources such as shift registers and embedded
memory blocks.

3. RUNTIME VERIFICATION MONITORS
This section shows our approach to runtime verification,

and details our abstract specification language for runtime
hardware monitors for hardware designs.

In our approach, we verify that design meets a specification.

The user separates the design specifications into compile-time
and run-time properties, where run-time properties cannot
be verified at compile-time, because they depend on run-time
data. Compile-time properties are checked by compile-time
methods such as symbolic simulation.

The user captures run-time design properties to be checked
as temporal logic specifications. The specifications are writ-
ten in past-time MTL (ptMTL), the past-time fragment of
Metric Temporal Logic (MTL). We choose ptMTL to specify
run-time properties as specifications that target synchronous
hardware designs, with a single global clock.

Metric Temporal Logic extends linear temporal logic with
operators expressing time bounds [9]. In our approach, time
is represented by the global system clock applied to the
hardware, so temporal properties are expressed in terms of
intervals of clock cycles ([t, t′] = {i ∈ N0|t ≤ i ≤ t′}) .

Specification grammar : Given a set of atomic propositions
AP , the formal grammar of a ptMTL specification η is as
follows:

η ::= true|false|Σ|¬η|η • η|ηSJη

where Σ ∈ AP , • ∈ {∧,∨,→}, and interval J = [t, t′] for
t, t′ ∈ N0, and t′ ≥ t. Essentially, a ptMTL formula is a
Boolean formula augmented by one temporal monitoring
operator, SJ .

An execution e is a sequence of system states st, where
t ∈ N0. For a ptMTL formula η, time n ∈ N0 and execution
e, we inductively define en |= η, meaning η holds at time n
of execution e as:

en |= true is true

en |= false is false

en |= Σ,whereΣ ∈ AP iff Σ holds in state sn

en |= ¬η iff en 6|= η

en |= η1 • η2 iff en |= η1 • en |= η2,

where • ∈ {∧,∨,→}
en |= η1SJη2 iff ∃i ∈ [0, n] : (n− i ∈ J∧

ei |= η2∧
∀j ∈ [i+ 1, n] : ej |= η1)

en |= D(η) iff

{
en−1 |= η if n > 0

e0 |= η otherwise

We denote repeatedly applying the delay operator D by
a superscript, such that D2(φn) = D(D(φn)) = D(φn−1) =
φn−2 and D0(φn) = φn.

Informally, the temporal since operator η1SJη2 means that
η2 was true at some time in the past (within range J), and
since then, η1 has been true. For hardware designs, this
can be used to express useful properties that must hold for
correct execution, for example that if signal s1 becomes true,
then within a bounded number of cycles, another signal s2
must become true.

Other useful operators can be derived from the since oper-
ator SJ : ·2Jη (invariant within interval J) and ·3Jη (exists
within interval J). In terms of the since operator, these can
be written as ·3Jη ≡ trueSJη and �Jη ≡ ¬(trueSJ(¬η))
respectively.

Useful properties of temporal operators: The temporal
operator S[a,b] and operators derived from it ( ·3 and �)
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Figure 3: Optimized feedforward invariant
operator�[0,15]φ1, for 2-input LUTs (k=2).
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Figure 4: Optimized feedforward invariant
operator�[0,15]φ1, for 4-input LUTs (k=4).
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Figure 5: Optimized since operator architecture for
φ1S[0,7]φ2. Intermediate results are labelled, show-
ing how the result is built from φ1S[0,3]φ2, φ1S[0,1]φ2,
�[0,3]φ1 and �[0,1]φ1.

have several useful properties which we use to derive circuit
architectures for them.

Given non-empty interval [a, b], current cycle n ∈ N0 and
subformula φ, the invariant within interval operator can be
written as:

�[a,b]φ≡ ¬(trueS[a,b](¬φ))

= ¬
( b∨
i=a

(¬φn−i ∧
i−1∧
j=0

true)

)
= ¬

( b∨
i=a

(¬φn−i)
)

=

b∧
i=a

φn−i = φn−b ∧ φn−b+1 ∧ · · · ∧ φn−a (1)

where φi means the value of φ on cycle i.
An invariant operator over a range, �[a,b], can be split

into subranges:
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Figure 6: Feedback architecture for invariant opera-
tor �[0,τ ]φ.

KEY:

Multiplexor

Other 
combinatorial
logic

0

+1

register

0

0

1

1

0

0

0

1

0 +1

>

0

-a

Figure 7: Feedback architecture for since operator
φ1S[a,b]φ2.

�[a,b]φ = �[a,t]φ ∧�[t,b]φ (2)

where a ≤ t ≤ b. Moreover, these subranges can overlap, so
that: �[a,b]φ = �[a,t1]φ∧�[t2,b]φ where a ≤ t2 < t1 ≤ b. This
is possible because of the idempotency of logical conjunction,
i.e. η ∧ η = η. Note that �[a,b]φ = Da(�[0,b−a]φ).

The temporal logic since operator S[a,b] also has useful
properties. It can be written as:

φ1S[a,b]φ2≡ φn−b2 ∧ φn−b+1
1 ∧ · · · ∧ φn1

∨ φn−b+1
2 ∧ φn−b+2

1 ∧ · · · ∧ φn1
· · ·
∨ φn−a2 ∧ φn−a+1

1 ∧ · · · ∧ φn1

so the since operator over a range S[a,b] can be normalized
into an operator over the range [0, b− a]:

φ1S[a,b]φ2 = Da(φ1S[0,b−a]φ2) ∧�[0,a−1]φ1 (3)

4. IN-CIRCUIT MONITOR ARCHITECTURES
This section shows our designs for in-circuit monitors for

temporal logic specifications. We devise both feedforward
and feedback architectures implementing our operators; feed-
forward architectures do not cycle intermediate results back
to the inputs, and can achieve high throughput at the ex-
pense of area. In contrast, feedback architectures can be
more compact, but can have lower maximum clock speeds.



Architecture Compute Storage
Straightforward O(b) O(b)
Optimized O(log2b) O(b)

Table 1: Summary of different architectures for tem-
poral logic monitors; both architectures can be used
for both since and invariant within interval oper-
ators. The optimized version saves compute re-
sources compared to the straightforward version.

4.1 Feedforward architectures
Straightforward architectures: We derive straightforward

architectures for temporal logic operators directly from their
specification.

Invariant within interval: We use equation 1 to derive an
architecture for an invariant operator of the form �[0,τ ]φ;
figure 1 shows an example for �[0,3]φ1. To implement the
more general form �[a,b]φ, we use equation 2.

Note that this design uses a linear amount of resources: b
1-bit registers and b− a 2-input gates.

Since within interval : Similarly, given non-empty interval
[a, b], current cycle n ∈ N0 and subformulae φ1 and φ2, the
since operator can be written as:

φ1S[a,b]φ2 =
b∨
i=a

(
φi2 ∧

i−1∧
j=0

φn−j1

)
meaning that at some time i in the interval [n− b, n− a], φ2

was true, and for all cycles j, i < j ≤ n since then, φ1 has
been true. We derive a straightforward architecture in the
same manner as for the invariant within interval, as shown
in figure 2.

Again, the total hardware resources are of order O(b): 2b
1-bit registers and b+ 2(b− a) 2-input gates.

Optimized architectures: We use the properties of the
temporal operators to derive optimized architectures which
use O(log b) computational area, rather than O(b).

Invariant within interval: Using equation 2, we can imple-
ment a power-of-2 length range as:

�[0,2l−1]φ = D2l−1

(�[0,2l−1−1]φ) ∧�[0,2l−1−1]φ

Applying this equation recursively leads to the architecture
in figure 3. Note that while the total number of register bits
is still b, the number of 2-input gates is reduced to O(log b).

Moreover, this architecture can take advantage of wider
combinatorial operators afforded by multi-input lookup tables
(LUTs) in many FPGAs: figure 4 shows an example for LUTs
with k = 4 inputs, where the total LUT usage is logk(τ).

Since within interval : Similarly, the same approach can
apply to the since operator, using equation 3 to recursively
implement the operator in terms of smaller since and in-
variant operators; figure 5 shows an example. Again, the
computational resources are reduced to O(log b).

Table 1 summarizes the different architectures we propose
for temporal logic monitors.

4.2 Feedback architectures
We derive feedback architectures for the since and in-

variant operators based on counters. Firstly, an invariant
previously operator can be derived directly from its natural
language specification: �[0,τ ]φ is true iff φ has been true for
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Figure 8: Proof of O(b) to O(log b) optimization.

the last τ cycles, including the current cycle. This can be
implemented using a counter enabled when φ is asserted, and
reset otherwise, plus logic to output true when the counter
value exceeds τ ; Figure 6 shows this design. To implement
the invariant operator �[a,b], this design can be used to im-
plement �[0,b−a], with shift registers to delay the result by a
cycles.

Total resources used by this design are wt bits for the
register plus a bits for the shift register totalling wt + a =
O(a); total compute resources are O(1) (does not depend on
a or b).

Similarly, a feedback architecture for the since opera-
tor can be derived from its specification and the property
φ1S[a,b]φ2 = Da(φ1S[0,b−a]φ2) ∧�[0,a−1]φ1. Figure 7 shows
an implementation directly derived from the property. The
top counter implements �[0,a−1]φ1, while the bottom counter
checks that the last time φ2 was not asserted lies within
[0, b− a], and that φ1 has been asserted at least since then.

5. PROOF OF OPTIMIZATION
This section outlines a proof that our optimized designs

(O(log b) computation, where b is the maximum number
of cycles that the temporal operator looks into the past)
are equivalent to the straightforward design with (O(b))
computation. The proof is not limited to temporal logic
assertions; it applies to any associative operator.

Although we have implemented the steps of this proof using
the Ruby hardware description language [10], we outline
the proof graphically here, to avoid having to introduce a
language in the space available.

Figure 8 shows the main proof steps: (1) First, start with
the straightforward implementation of �[0,τ ] (figure 8(a)).
The operators are labelled S because the proof applies to any
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associative operator S; (2) Unfactorize the delay elements into
a triangle of delays (figure 8(b)); (3) Since S is associative,
replace the unbalanced tree of S operators with a balanced
tree (figure 8(c)); (4) Split the delay triangle vertically into
two halves: at the bottom, a delay triangle half the size of
the input; at top, the same size of delay triangle followed
by a set of delay chains; similarly, split the balanced tree
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Figure 12: Avionics case study: logic resources used
for FPGA monitors, for b = 103.

of S operators into two halves (figure 8(d)); (5) Retime
the delay chains in the upper half to move them after the
upper part of the balanced tree of S operators (figure 8(e));
(6) Finally, factorize the two identical delay triangles followed
by balanced trees of S operators (figure 8(f)). (7) If we assume
we have already proved the transformation for the left-hand
side of figure 8(f) (the inductive hypothesis), then figure 8(c)
reduces to figure 3.

6. EVALUATION
In this section we evaluate our runtime monitor designs

against previously published work, comparing: 1. Our im-
plementation of straightforward monitors; 2. Our improved
monitors, using feedforward and feedback designs; 3. Our
implementation of Reinbacher et al’s monitors [3], which
trade complexity for memory size.

Experimental setup: we implement designs using Maxeler’s
compiler (version 2013.2.2), aided by Xilinx ISE version
13.3, targeting a Maxeler MAX3 board with a Xilinx Virtex
xc6vsx475t FPGA. Designs target a clock speed of 100MHz.

Asymptotic complexity : We compare resources used by
Reinbacher et al’s monitors to ours. Reinbacher’s monitors
use timestamps to record intervals where the monitored signal
or signals are true. Each timestamp is of wt bits, where
the size is chosen to match the maximum length needed;
we choose wt = 32 to match their presentation. The total
number of bits used by Reinbacher et al’s monitors to monitor
a range [a, b] is given as [3]:

2wt

⌈
2 max(a, b)−min(a, b) + 2

max(a, b)−min(a, b) + 2

⌉
(4)

which compares to b bits used by our designs for invariant,
and b+ bb/2c bits used for since operator.

Figure 9 plots the difference between the total number
of register bits used by Reinbacher et al’s designs and ours
versus parameter a, for several values of b. We observe that
although Reinbacher et al’s designs use a lower number of
register bits across most of the parameter space, the number
is not much lower than for our design. For example, for
[a, b] = [0, 1000], our designs use about 1000 bits, whereas
theirs use a minimum of 128. For b < 200, our designs always
use fewer bits.

Moreover, where our designs use fewer register bits, they
often use significantly fewer, due to the demoninator in
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equation 4. The worst case is always along the line a = b;
for example, for [a, b] = [1000, 1000], our design uses about
1000 bits, whereas their design uses 32, 064 bits.

Hardware speed and area versus monitor size: We imple-
ment our designs and our implementation of Reinbacher’s
designs on FPGA hardware, using Maxeler’s dataflow and
state machine compilers. We implement designs for b = 105

and various values of a between 0 and b. Figure 10 plots
FPGA logic resources (LUTs) used versus parameter a. We
observe that both our optimized feedforward and feedback
designs use an almost constant number of LUTs, a little
lower than for Reinbacher et al’s design for low values of a;
for values of a approaching b, Reinbacher et al’s design uses
many more LUTs, due to the denominator of equation 4. The
straightforward design uses many more LUTs as the registers
are interleaved between logic gates, making it impossible for
the tools to infer shift registers; for a < 90, 000, the FPGA
build does not complete. Figure 11 plots the number of Block
random access memories (BRAMs) used versus a; again, the
Reinbacher design uses many more as a approaches b.

Avionics case study : We consider a straightforward mon-
itoring requirement from the avionics application domain.
Figure 13 shows a schematic of an embedded avionics sys-
tem. The design repeatedly requests input from its sensors;
when the sensors reply, it requests changes from its actuators,
which reply with the actual value they achieved. Informally,
the specification is that each sensor or actuator must respond
to requests within a bounded number of cycles (< 1000). We
write this as a ptMTL specification: replyi → �[t1,t2]requesti;
every reply implies the corresponding request must have been
made within the range [t1, t2] cycles ago. Figure 12 shows
our design uses fewer resources than the rival design.

7. CONCLUSION
We present techniques for in-circuit monitors for reconfig-

urable hardware, which can be used to verify that hardware
circuits meet temporal logic specifications. Compared to pre-
vious work, our monitors map better to hardware resources
such as shift registers and embedded memories, and can run
at high clock rates.

Our current monitor designs assume a single global clock,
but many practical FPGA designs have multiple clocks. We
would like to examine how to monitor temporal properties

of such designs, possibly by using a richer temporal logic
to write specifications. We would also like to extend our
work to future-time MTL. Streaming languages already allow
forward stream offset operations, to look ahead in a stream.

Current and future work includes: extension to runtime
reconfigurable designs, where the circuit can change, possibly
while other parts of the design are still running. The possi-
bilities include adaptively adding more monitors to a design,
altering balance between monitors and design, monitoring a
runtime reconfigurable design, and monitoring correctness of
reconfiguration.
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