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Abstract—Over the past years, examining financial markets
has become a crucial part of both the trading and regulatory
processes. Recently, genetic programs have been used to identify
patterns in financial markets which may lead to more advanced
trading strategies. We investigate the use of Field Programmable
Gate Arrays to accelerate the evaluation of the fitness function
which is an important kernel in genetic programming. Our
pipelined design makes use of the massive amounts of parallelism
available on chip to evaluate the fitness of multiple genetic
programs simultaneously. An evaluation of our designs on both
synthetic and historical market data shows that our implemen-
tation evaluates fitness function up to 21.56 times faster than a
multi-threaded C++11 implementation running on two six-core
Intel Xeon E5-2640 processors using OpenMP.

I. INTRODUCTION

Genetic programming is an important machine learning
technique which can be used to identify patterns in the
financial markets. Genetic programming involves repeatedly
generating a set of programs, evaluating them on a large data
set and selecting the best performing ones. The evaluation step
computes a fitness metric for each program, based on which
the best performing programs can be selected for the next
iteration. The potentially complex programs and large data sets
on which they need to be evaluated make fitness evaluation one
of the most computationally expensive components in genetic
programming. In some cases fitness evaluation may take up to
95% of the total execution time. [1].

In finance, genetic programming can enable the recognition
of complex market patterns and behaviours [2], but the high
computational demands make it an unfeasible technique in the
context of high-frequency markets. However, recent develop-
ments in hardware acceleration tools have enabled the efficient
use of flexible run-time reconfigurable algorithms which are
able to rapidly react to changing market conditions [3].

We propose to use Field Programmable Gate Arrays (FP-
GAs) to accelerate the fitness evaluation of a genetic program,
enabling identification of complex data patterns such as those
within Foreign Exchange data which could lead to more
advanced trading strategies [4]. Our contributions are:

• A novel pipelined architecture for evaluating the fit-
ness function of complete expression trees;

• Support for mixed-precision computation with both
fixed point and single-precision floating-point arith-
metic targeting Maxeler systems;

• Demonstration of the proposed approach with sets
of both synthetic and real market data, showing a
speedup of up to 21.56 times when compared to an
optimised 12-core CPU implementation.

II. BACKGROUND

A. Genetic Programming

A “genetic program” (GP) is a search method that mimics
the process of natural selection. This method is used to
generate individuals by repeatedly mutating and recombining
parts of the best currently known individuals for a number of
different optimisation and search problems [5]. GP searches
a population of candidate individuals in order to identify the
best performing individual out of the entire population.

Our approach adopts generational genetic programming
[6] which works as follows. Firstly, solutions are randomly
generated to form an initial population; the individuals are
represented as trees, where a leaf contains a terminal, and
an internal node contains a function (operator) whose arity
is equal to the number of its children. Secondly, part of the
existing population is selected to create a new generation;
usually, for this purpose a problem specific fitness metric is
defined, and better performing individuals are more likely
to be selected. Furthermore, a pair of “parent” individuals
are selected and, using genetic operators such as crossover,
mutation and reproduction, a new solution is created. This step
is repeated until a new population of solutions of the desired
size has been generated. Finally, the new generation replaces
the old generation and the above steps are repeated. This
generational process is repeated until it reaches a termination
condition such as a solution is found that satisfies minimum
criteria or a fixed number of generations have been reached [7].

Computing the fitness value of each individual is a central
computation task of GP applications, usually consuming most
of the overall computation time. Thus, the main effort to
speedup a genetic programming application is focused on the
fitness evaluation. Our study aims to use hardware acceleration
techniques such as Field Programmable Gate Array technology
in order to significantly reduce the fitness evaluation execution
time and obtain a better overall execution time for a genetic
programming application (see Figure 1).

B. High Frequency Trading in the Foreign Exchange Market

Currency Trading is the world’s largest market which con-
sists of a daily volume of almost trillion data points. Foreign
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Fig. 1. Genetic Programming Algorithm

Exchange (FX) is considered to be the most liquid market
in the world, thus differentiating itself from other financial
markets [8]. There are four major currency pairs that are traded
frequently. These include EUR/USD, USD/JPY, GBP/USD,
and USD/CHF [9].

Some of the main characteristics of the Foreign Exchange
Markets are: First, the market is tradable 24 hours a day,
excluding weekends. Second, there is a high geographical
dispersion thus giving rise to a variety of factors affecting
exchange markets. Third, FX has a huge trading volume - the
largest asset class in the world leading to high liquidity.

Foreign Exchange Markets, as well as other markets, are
often suitable for high-frequency trading (HFT). Currently,
HFT uses sophisticated tools and complex algorithms to trade
on a rapid basis [10]. Banks and other institutions use HFT to
apply proprietary trading strategies by a computer algorithm
in real-time [11].

C. Genetic Programming on FPGAs

Given the computational intensive nature of GP and close
to real-time constraints on the execution time, a number of
previous works have studied the use of FPGAs to accelerate
various GP kernels.

Some of the previously proposed solutions show that a
good speedup over software implementation is achievable but
at the cost of restricting either the population size or the
supported tree depth. For example [1] presents an interesting
approach to a whole genetic programming implementation
on FPGAs. The fitness evaluation targets a specific problem:
having the trees represented by certain tree templates, thus not
providing a flexible solution towards the overall GP approach.
In that approach, the user would need to build different tree
templates for different problems. This compares infavourably

with our design in which the user has the freedom to build
any complete binary tree with a range of given terminals and
operators. The results obtained in the study presented in [1]
include a 19 times speedup when performing an arithmetic
intensive operation. This implementation is also limited to a
significantly smaller population of 100 individuals, compared
with our approach where up to 992 individuals are supported.
[13] shows a different approach to a whole genetic program-
ming implementation on FPGAs. This design supports a very
small number of individuals, such as 8 or 16, with each
individual tree being able to have a maximum depth of 2.
Our approach does not have this limitation. [14] presents an
interesting approach to implement an evolutionary algorithm
for a hardware-based path planning architecture, created for
unmanned aerial vehicle adaptation. This design proves to
be highly efficient, managing to reach the 10 Hz update
frequency of a typical autopilot system. However, the number
of individuals evaluated at once is again limited to just 32.

Some solutions show that one other way in which we can
obtain a significant speedup using FPGAs over the conven-
tional software implementation is to restrict the type of the
supported individuals. As an example of this, [12] implements
an evolutionary computation coprocessor on FPGAs, in order
to solve the iterated prisoners dilemma (IPD). The authors
claim 200 times speedup in processing the IPD when compared
to a 750 MHz Pentium processor. A limitation of this approach
that we solve is the number and complexity restriction of the
supported individuals (we support a flexible complete binary
tree representation, while this paper enforces the use of bit-
strings).

There are also a number of solutions available which try
to accelerate genetic algorithms and some of them prove to
be very successful. For example, [15] shows a good approach
of implementing a parallel GA framework. The users can re-
tune parameters at run-time and the authors claim a significant
speedup of 26 times when compared to a optimised CPU
version of the framework. This design deals with genetic
algorithms, not genetic programs, thus trying to solve different
complexity search problems.

III. DESIGN

We propose to exploit the high level of internal parallelism
which can be achieved on FPGA based reconfigurable comput-
ers to accelerate fitness evaluation. In this section we describe
a design which achieves the throughput rate of one data point
per clock cycle. In Section IV we explain how our design
can be extended to take advantage of larger commercial chips,
where multiple parallel processing pipelines can be deployed
concurrently to speed up the computation further. Our design
targets a generic accelerator model:

• a CPU based system is connected to an FPGA accel-
erator;

• both CPU and FPGA have large on-board memory
available;

• transfer speed from on-board memory is much faster
than via the interconnect;

• all data are initially in on-board memory on the CPU;



• a substantial part of the computation is offloaded to
the FPGA.

Figure 2 shows an example expression tree, which corre-
sponds to a trading rule supported with the proposed design.
These expression trees are generated on the CPU as part of
the larger Genetic Programming Algorithm (Figure 1). They
are then transferred to the FPGA where they are evaluated on
a stream of past market data. On each market data tick, the
outcome of the evaluation (true or false) indicates whether the
algorithm should buy or sell stock at that particular point. For
each trading rule, the fitness is computed as outlined in [16]:

Rc = Πt(1 + zt ∗ rt) − 1

where rt = (pt - pt−1) / pt−1 is the one-period return of the
exchange rate and pt corresponds to either the bid or ask
price, depending on whether the outcome of the evaluation
is to buy or sell; zt takes the value 1 when buying and −1
when selling [17].

≤

+ /

+/ - min

+ / -x

Levels 
Bid 0.2 Slope 

Ask 0.1

Depth 
Bid

-+ xx

Depth 
Ask 0.2

Delta 
Bid

Levels 
Ask 0.1

Best 
Quantity Bid

Levels 
Bid

Delta 
Bid

0.1 0.3 0.4 0.1

Buy / Sell

Market Variablest0

Market Variablestn
… 

Fig. 2. Example expression tree for a trading rule. Terminals nodes are either
market variables (shown in light gray) or constants. Internal nodes are binary
arithmetic operators and the root node is a binary boolean operator.

To make fitness evaluation more amenable to an efficient
hardware implementation, we make a number of assumptions
in order to simplify the structure of the expression tree to be
evaluated. First, we assume the expression tree is a complete,
binary tree. This results in a well-defined connection pattern,
which can be implemented efficiently on the FPGA and also
entails that all internal nodes must be binary operators. Second,
we restrict the set of internal arithmetic nodes, known as the
GP function set, to any of the following operations: +, *,
-, /, min, max. Although more complex expressions could
be used, it is important to note that there is a trade-off
between the complexity of the expression and resource usage.
In general, the design should not consume a substantial number
of resources for internal nodes which are not likely to be used
in all expressions. Third, the root node must be a boolean
operator, since the output of the evaluation must always be
true or false. Supported operators are ≤ and ≥. The terminal
nodes of the expression trees can be either constants (which
are streamed from the CPU along with the expression) or

market variables. The value of market variables may change
in each time step. The number of market variables is arbitrary,
but since market data are read from on-board memory on
every clock cycles, it may be necessary to limit their number.
Both constants and market values are single precision floating
point numbers. In practice, we found that 16 variables provide
sufficient basis to derive interesting trading strategies, although
our design could support much more (up to 96) on large
commercially available chips.

It is important to note that under these assumptions, it is
possible to derive good trading strategies, based on market
data. In Section V we show that some of the supported
strategies are profitable, by evaluating them on past Foreign
Exchange market data and performing appropriate financial
tests. Furthermore, we note that the degree of profitability in-
creases with the number of iterations of the genetic algorithm,
which makes hardware acceleration even more important to
reduce the overall computation time.

A. Overview

The design is organised in multiple Processing Elements
(PEs). Arithmetic Processing Elements (APEs) are used to
evaluate the internal nodes of the tree. Terminal Processing
Elements (TPEs) are used to resolve the access to either market
variables or provided constants. The Root Processing Element
(RPE) provides binary boolean operators. Since the design only
accepts complete binary expression trees, the PEs are arranged
in a binary tree structure. The depth of the tree (Tdepth) is a
design parameter. Figure 3 shows an example of an architecture
for Tdepth = 4, which could be used to evaluate the expression
shown in Figure 2. There are in total 16 TPEs, 14 APEs
(partially omitted for clarity) and one RPE.
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Fig. 3. Architecture Diagram for Tdepth = 4. There are in total 16 TPEs,
14 APEs (partially omitted for clarity) and one RPE.

The result of the expression evaluation is used to decide
whether to buy or sell the current instrument. Correspondingly,



either the bid or ask price for the current time step is used to
compute the expected return of the action. This is done inside
the rT block.

The return must then be accumulated across all market
ticks. Performing partial accumulation on the FPGA, before
sending the results back to the CPU, reduces traffic over
the slow interconnect, and also reduces the volume of work
required on the CPU. We accumulate the fitness values into
partial values using a feedback multiplier. The number of
partial values is equal to the latency of the feedback loop
FPMultLatency . Increasing the latency (in cycles) results in a
more pipelined implementation of the floating point multiplier
which in turn enables a higher maximum clock frequency.
However, this also increases the amount of partial sums to
be transferred back to the CPU and the amount of work to
reduce these partial sums. In practice we find that a value of
16 cycles is sufficient to enable good clock frequency with
small impact on the transfer and CPU reduction time.

The output control signal is used to enable the output to
the CPU and is high only on the last FPMultLatency cycles
of processing an expression.

B. Processing Elements

Terminal Processing Element (TPE) The TPE is used
to process expression terminals. These can be either constants
or indices into the market variables read from DRAM. By
convention we interpret values in [0, 1) to be constants and
values above (or equal to) 1 to be indices. Since the terminals
are streamed from the CPU as floating point values, an
additional cast to an integer is required for values which are
to be used as indices. An index is then used to control a 16
input multiplexer to select the correct market variable.

Arithmetic Processing Elements (APEs) The APEs im-
plement binary arithmetic functions. Their inputs are two real
numbers (either from TPEs or from APE on a previous layer).
Their output is also a real number.
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Fig. 4. Arithmetic Processing Element

The structure of an APE is shown in Figure 4. Operators
in the current expression to be evaluated are decoded into an
Opselect signal. To simplify decoding, operator codes for arith-
metic operations are integers starting from 0. A demultiplexer

is required to route the left hand side (LHS) and right hand side
(RHS) operands to the correct arithmetic unit. A multiplexer
is used to select the output from the correct arithmetic unit
and forward it to the next level of the tree.

Root Processing Element (RPE) There is a special root
processing element evaluating comparison operators such as:
≤, ≥. The RPE has real numbers as inputs and boolean output,
which ensures the output of the algorithm is boolean. The
result produced by the RPE is used in the return evaluation
to decide whether to buy or sell the particular instrument.

C. Operation

Most accelerator configurations have a reduced bandwidth
between the host CPU and the accelerator card in comparison
to the memory bandwith. This is true for systems using PCIe,
Inifiniband or Ethernet network as the transport layer.

We note that in the proposed Algorithm, market values,
bid and ask prices will be reused for each expression that is
evaluated. As such these will be stored in DRAM and only
incur the transfer penalty over the slow interconnect between
the CPU and FPGA once.

In contrast, the expressions to be evaluated are only
loaded once. Therefore there is no need to store them in
on-board DRAM. Instead, the expression trees and terminals
are streamed over the CPU/FPGA interconnect. Since this
interconnect is not likely to deliver data at a rate which allows
one full tree and the operators to be read in one clock cycle, a
BRAM buffer is used to store expressions and operators. This
allows the design to only pay the large transfer penalty once:
while the evaluation of the current expression progresses, the
design can fetch the following expression to be evaluated (and
terminals) in the background, at effectively no additional cost.

The operation of the design can be summarised as follows:

1) Load market data to accelerator DRAM;
2) Queue expression trees from CPU to FPGA BRAM;
3) Evaluate expression on market data;
4) Fetch next expression to FPGA BRAM;
5) Output partial results to CPU;
6) Repeat the above steps until done.

We assume all data, including market data and generated
expressions, are initially in CPU memory - as part of the
genetic programming algorithm. In this case, the time to
initialise the design is the sum of the initial latency of the
interconnect, the time to load the market data into accelerator
DRAM and also the number of clock cycles required to load
the initial expression into the on-chip expression buffer. For
large problem sizes, this initial cost can be ignored.

After the initialisation the design is memory bound if the
number of values which can be read from DRAM per clock
cycle is smaller than the number of market variables in the
TPEs.

Otherwise, assuming the design is compute bound in the
limit, the compute time can be estimated by

TTotal =
NExprNTicks

F
(1)



where NExpr is the total number of expressions to be evalu-
ated, NTicks is the number of market ticks to evaluate each
expression tree and F is the FPGA clock frequency.

IV. IMPLEMENTATION

The implementation of the proposed design depends heav-
ily on the properties of the target system. Our implementation
targets a Maxeler MPCX node, which contains a Maia dataflow
engine (DFE) with 48 GB of on board DRAM.

A. Input/Output

The DFE is optimised for relatively large transfer bursts
from on-board DRAM (384 Bytes). Maximum efficiency of
DRAM transfer is achieved when more bursts are read in a
linear access pattern. We note that this is the case for the
market data variables in our problem, which are all read from
DRAM in a sequential fashion.

In this situation, we can read up to 1536 bits per clock
cycle from DRAM and an additional 128 bits per clock cycle
from Infiniband. Our design makes use of both DRAM and
the Infiniband interconnect. As a result, the design is compute
bound, which is ideal for the FPGA.

Since market data variables are single precision floating
point values (32 bits wide), we could read up to 1536/32 =
48 different market variables from on-board DRAM without
causing the design to become memory bound. This is well
within the limits of our problem. We note that this value could,
if needed, be increased even further by doubling the clock
frequency of the memory controller from the default value
of 400 MHz to 800 MHz. However in practice this results
in higher resource usage since more pipelining is required to
enable timing closure, and in longer compilation times. Since
we use only 16 distinct market variables in our problem, we
can use the default memory controller frequency.

B. Parallelisation

The DFE has a large commercial FPGA chip, the Stratix
V 5SGSMD8N1F45C2. This enables us to further improve the
performance of the proposed design by implementing multiple
parallel processing pipelines on-chip; we refer to these simply
as pipes.

To parellelise the design, two options are possible:

• read more data points per clock cycle and evaluate the
same tree on multiple ticks simultaneously;

• read more trees and evaluate just one data point on all
trees in parallel.

The first option requires much higher DRAM bandwidth
since DRAM bandwidth increases linearly with the number of
pipes, and, depending on how many pipes can fit on the FPGA,
the design may become memory bound before it is resource
bound. Since in practice we observe that we can fit up to 8
pipes and possibly beyond, we do not consider this approach
feasible.

The second option scales much better, since it does not
increase DRAM traffic. It does however increase Infiniband
traffic linearly. As explained in the previous section, the impact

on overall latency is negligible. First, subsequent expressions
are cached in on-chip BRAM while the current expressions are
being evaluated, effectively hiding the latency of transferring
the next expression over Infiniband. Second, we can also
reduce the transfer size of the operators, by encoding them in
smaller bit widths. In theory, since we support only 6 functions
for the APEs, we could require as few as 4 bits to encode each
operator. However, in practice, we find it easier to use 8 bits
– this achieves sufficient savings to avoid making the design
bounded by the Interconnect transfer bandwidth, while still
being easy to implement on the CPU since 8 bit wide values
are part of standard C++.

C. Mixed precision

We implement mixed precision numerical computation to
reduce on-chip resource consumption and improve design
scalability. We split the computational flow into a full precision
floating point part and a fixed point part. We provide single
precision implementation of APEs for comparison. Table IV
summarizes the logic utilisation for the single precision float-
ing point implementation, while in Table V we can notice the
resource utilisation for the fixed point precision version.

Precision analysis shows that market inputs belong to
the interval (1, 2) with only 4 significant digits. For division
operations the dynamical range is constrained to 10−4, ..., 104,
which is well covered by 32 bit fixed point representation. An
important observation is that tree expressions are evaluated at
independent inputs, so there is no round-off error accumulation
associated with reduced precision.

Another numerical part of the design, the accumulation of
returns and computation of current stock (rT ) is more sensitive
to round-off error accumulation and thus implemented in float-
ing point. However this part of the design has smaller impact
on design scalability due to a lower amount of arithmetic
operations.

We store market data in DRAM in single precision and
convert it to a fixed point format on-chip as part of a hardware
pipeline. These fixed point numbers form inputs to fixed point
APEs, which provide the boolean output to choose between
buy or sell choice.

Dealing with division by zero. The market data and termi-
nal constants are guaranteed to be nonzero numbers. However
a cancellation of terms may occur within expression trees,
resulting in division by zero or a very small number. In order
to avoid making marketing decisions based on numerically
unstable arithmetic, we check whether a divisor is greater than
tol = 10−4 at any sample of the training set. Our APEs
compute both the resulting expressions as well as validity
flags, compensating for lack of infinity and NaN values in fixed
point representation. Once expression evaluation yields invalid
output, we effectively invalidate the whole tree expression and
prune it from the GP population.

V. EVALUATION

The accelerator system we use is a Maxeler MPCX node.
The system properties are summarised in Table I. It consists
of a CPU node and a DFE node. The two are connected via
Infiniband through a Mellanox FDR Infiniband switch.



TABLE I. SYSTEM PROPERTIES

CPU Dual Intel Xeon E5-2640, 6 cores per CPU
CPU Cache 15 MB

CPU DRAM 64GB DDR3-1333
CPU DRAM Bandwidth 42.6 GB/s (Peak)

FPGA Stratix V 5SGSMD8N1F45C2
FPGA DRAM 48 GB

FPGA DRAM BANDWIDTH 38 GB/s (Achieved)
CPU to FPGA BANDWIDTH 2 GB/s

A. CPU Implementation

The CPU implementation is built using C++11 and par-
allelised using OpenMP. We compile the CPU implemen-
tation using g++ 4.9.2 with flags -O3 -march=native
-fopenmp to enable general performance optimisations, ar-
chitectural optimisations for the Intel XEON (such as genera-
tion of vectorised instructions) and the use of multithreading.

The CPU code is parallelised in a similar manner to the
hardware implementation: each core is assigned one expression
which it executes to measure the fitness of the entire data
set. All the CPU times shown are obtained using a total of
12 threads (2 x Intel Xeon, with HyperThreading disabled to
provide more accurate timing measurements and scalability
information).

Table II shows the scalability of our CPU implementation
with the number of threads. Since HyperThreading may cause
the CPU implementation to scale sub-linearly with the number
of threads, we disable it on the CPU node and only use 6
threads per CPU (for a total of 12 threads). Table II shows close
to linear scaling (as expected) for the CPU implementation,
when tested on 19.2M ticks and 992 expressions. The 19.2M
ticks represent 16 days of high-frequency-trading activity for
the GBP/USD market during different time periods. This is
to be expected given that our parallelisation strategy requires
minimal communication between threads and therefore, for
large problem sizes, the computation times dominate.

TABLE II. CPU SCALABILITY RESULTS SHOW LINEAR SCALING FOR
UP TO 12 THREADS.

# Threads 1 2 4 8 10 11 12
CPU Comp. Time (s) 248.139 125.873 62.931 31.497 25.470 23.020 21.396

Speedup 1X 1.97 3.94 7.88 9.74 10.78 11.60

In the C++ code the tree depth is marked as a constant
which allows the compiler to unroll the expression evaluation
loops and to resolve some computations at compile time to
achieve better performance.

All run times are measured using the
chrono::high_resolution_clock which is part
of the C++11 standard library.

B. FPGA Implementation

Table III shows the speedup achieved by our implementa-
tion, with respect to the previously described CPU implementa-
tion. The numbers shown correspond to the fixed point version
of our design, but we note that for the same number of pipes,
both single precision and fixed precision implementation have
the same performance. We note that for the fixed point version
it is possible to fit more parallel pipes on chip, which leads

to a larger speedup. The FPGA execution does not include
the time to load the initial market data in the FPGA DRAM
(market variables, ask and bid prices) and reconfiguration
overhead. It does include the time to stream market data from
DRAM during expression evaluation, the time to queue and
stream the expressions and the time to accumulate the partially
evaluated sums on the CPU along with any other overhead
incurred by the framework. The numbers shown correspond to
a run over 3.84M ticks and 992 expressions. The performance
evaluation has been performed on a synthetic benchmark,
which contains randomly generated expressions, that comply
with the assumptions presented in Section III. Table III also
shows that for large problem sizes the estimated compute
times (estimated by using Equation 1, with NTicks = 3.84M,
NExpr = 992, F = 190MHz) closely matched the observed
execution times. This confirms that the design is compute
bound as predicted.

The speedup obtained and presented in table III represents
the speedup for the fitness evaluation acceleration only. If we
are to take into account research that claims that the fitness
evaluation part of an evolutionary algorithm can take up to
95% of the total execution time of the algorithms, then our
best overall algorithm speedup would be 20.9340 times.

TABLE III. FPGA SPEEDUP RESULTS COMPARED TO 12 CPU
THREADS.

# Pipes 1 2 4 8
Average CPU Time 50.4203 50.4203 50.4203 50.4203

FPGA Time (s) 20.0782 10.0532 5.04229 2.5353
Est. Speedup 2.47835 5.02975 9.81301 20.1063

Speedup 2.5111 5.0153 9.9994 19.8873

Figure 5 shows that the achieved speedup increases with
the number of expressions and ticks that are processed as
the impact of the initial transfer latency diminishes with
respect to the overall execution time. This shows that the
proposed approach works better for larger problem sizes where
acceleration is most needed.

Fig. 5. Measured Speedup for Fixed Point Implementation

Table IV shows the total resource usage as a percentage of
the total available resources on chip for the single precision
floating point implementation based on 1 pipe and 4 pipes. We
note that almost 10% of logic resources and 15% of BRAMs
are used for the DRAM controller (since the Maxeler DFE
uses a soft memory controller) and the Infiniband interface as



well as other overhead, including the expression buffer used to
buffer the expressions on chip, which was described previously.
We note that, in order to reduce logic usage substantially and fit
more pipes on chip we have reduced the amount of pipelining
used by default for floating point and/or fix point arithmetic
units. The achieved clock frequency for our single precision
floating point implementation is 200MHz.

TABLE IV. FPGA TOTAL RESOURCE USAGE FOR SINGLE PRECISION
FLOATING POINT ARITHMETIC

# of Pipes LUTs FFs BRAMs DSPs of use
1 10.69% 7.49% 15.82% 0.00% used by manager
1 5.56% 3.97% 7.40% 4.99% used by kernels
1 16.42% 11.64% 23.72% 4.99% total resources used
4 10.86% 7.61% 17.65% 0.00% used by manager
4 22.15% 15.70% 29.10% 19.97% used by kernels
4 33.21% 23.49% 47.25% 19.97% total resources used

Table V presents the FPGA total resource usage expressed
as a percentage of the total available resource on the chip for
the fixed point precision implementation based on 1 pipe and
8 pipes.

TABLE V. FPGA TOTAL RESOURCE USAGE FOR FIXED POINT
ARITHMETIC

# of Pipes LUTs FFs BRAMs DSPs of use
1 10.76% 7.61% 16.21% 0.00% used by manager
1 7.40% 4.35% 3.12% 1.88% used by kernels
1 18.33% 12.14% 19.83% 1.88% total resources used
8 10.95% 8.05% 22.32% 0.00% used by manager
8 51.49% 30.98% 22.52% 15.08% used by kernels
8 62.61% 39.21% 45.34% 15.08% total resources used

C. Financial Tests and Results

We verify the applicability of trading strategies which
can be supported using the proposed approach by evaluating
expressions that conform to the assumptions set out in Section
III. Historical GBP/USD tick-data from the Foreign Exchange
Market corresponds to time-periods from 2003 and 2008.

1) Individual Returns: Table VI shows the daily returns
of the best fit trading strategy for a different number of
expressions (X) used in the GP, after 10, 000 iterations. The
results show a clear decrease in the return levels from 2003
and 2008, this might indicate greater FX market efficiency in
2008 due to the growth in electronic high-frequency trading
that occurred during the 2003 - 2008 period. This shows that
we can use supported trading strategies to identify underlying
characteristics of the financial market (e.g. market efficiency).

TABLE VI. 2003–2008 GP INDIVIDUAL RETURNS

X Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08
992 1.278 1.188 1.103 1.076
768 1.047 1.024 0.998 0.937
384 0. 904 0.856 0.889 0.793
144 0.789 0.683 0.654 0.578

TABLE VII. 2003–2008 GP INDIVIDUAL RETURNS

Work X Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08
[16] 150 1.142 1.094 1.003 0.991

This paper 144 0.789 0.683 0.654 0.578

As seen in Table VII, comparing the same number of
iterations/individuals results in inferior performance due to the
reduced tree depth of our implementation. Table VI shows that
for a smaller tree depth but a higher number of iterations/in-
dividuals than in [16] our solution is able to produce better
overall returns due to the immense performance of the FPGA.
Such performance allows us to evaluate 10 times as many
iterations across 6.5 times as many individuals with a faster
fitness evaluation approach than the CPU based equivalent.
Hence, even with a smaller tree depth and less complex
strategies, overall performance is preferable. Additional future
enhancement will enable us to increase tree depth, thus im-
proving performance further.

Figure 6 shows that ensuring genetic diversity throughout
our genetic program, by increasing the number of expressions
and the number of market data we evaluate them on our ex-
pressions on, shows promising results giving rise to potentially
better performing trading strategies. Hence, we demonstrate
that with the FPGA’s computational acceleration power, we are
now able to explore historical market prices without needing
to worry too much about the reduced computation time that
a GP often brings into place. Being able to evaluate trading
strategies quickly, brings us closer to obtaining significant
market feedback in reasonable time.

Fig. 6. Individual Returns

2) Anatolyev-Gerko Tests: Table VIII shows the results of
the Anatolyev-Gerko Test (AG) for a range of expressions
(X) after 10,000 iterations. This test statistically compares
return levels based on conditioning information with those
that might randomly occur within the correct distribution. For
the test data, returns are adjusted to a daily basis, taking into
account the transaction costs reflected in the bid-ask spread.
For efficiency, we apply the “majority” rule in which 99
independent runs of 10,000 iterations are conducted. If the
majority of these best in-sample trading strategies produce a
buy/sell signal, then our rule will produce the same signal.
The resulting trading rule will then be tested out-of-sample.
In order to perform the AG test we need to make use of the
data in order to obtain the real returns values. For the test,
real return values are obtained from the data, while predicted
return values are calculated according to the “majority” rule.

We notice that our test results are statistically significant,
so despite the apparent predictability shown in Table VI,
our algorithm does not deliver good profitability in 2008



TABLE VIII. 2003-2008 GP AG TEST

X Jan (20-24) 2003 Feb (17-21) 2003 March (10-14) 2003 March 31, 2008
992 1.82 1.52 1.73 - 0.37
768 1.56 1.63 1.22 + 0.46
384 1.20 1.17 0.93 - 0.66
144 0.84 0.92 0.44 - 1.02

compared to 2003. This confirms our earlier observation that
the efficiency of FX markets significantly increases in the
2003-2008 period.

3) T-statistics Tests: Table IX shows the results of the T-
Statistics test for a different number of expressions (X), after
10, 000 iterations. This test allows us to examine if the mean
of the returns is significantly different from zero. Table IX
shows that these results do not appear to be significant at a
5% level, however they show what looks like a systematic
predictable pattern for the 2003 data set, but no pattern for the
2008 one. This further confirms the AG test results, showing
increases in the FX markets efficiency potentially due to high
frequency trading. This shows that we can use our resulting
trading strategies not only for increased profitability, but to
identify different market behaviours in different regimes, as
well as to identify potential trading rules which could cause
significant market changes (e.g a sudden GBP/USD price drop
due to a certain market condition).

TABLE IX. 2003-2008 GP T-STATISTICS

X Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08
992 1.625 0.801 0.543 0.463
768 1.608 0.768 0.477 0.494
384 1.486 0.698 0.312 0.395
144 1.583 0.606 0.301 0.434

VI. CONCLUSION

We show that FPGAs can effectively accelerate genetic
programming approaches used to identify and evaluate high-
frequency trading strategies. We demonstrate that one of the
most computationally intensive tasks associated with this pro-
cess, fitness evaluation, can be accelerated substantially by ex-
ploiting the massive amounts of on-chip parallelism available
on commercial FPGA chips. Our single precision floating point
and fixed precision implementations are up to 11.25 and 21.56
times faster respectively than a corresponding multi-threaded
C++11 implementation running on two six-core Intel Xeon E5-
2640 processors. An evaluation on historical Foreign Exchange
market data shows that trading strategies supported by the
proposed design are reliable and, if further exploited, can
increase profitability from trading high frequency FX markets.

Future work opportunities include extending the GP al-
phabet and increasing the maximum supported depth for
expression trees. We will also look into adding support for
more flexible strategies that could potentially be built using
unbalanced trees. These improvements could lead to more
profitable trading strategies as outlined in [16]. Given the
nature of the problem, real-time/time-constrained tests will be
performed in order to provide more useful insights into the
performance of our tool. The spare on-chip resources required
for these extensions could be provisioned by using runtime
reconfiguration [18] to remove expensive functions when they

are not being used (e.g. division). In addition, resulting spare
resources could be used to increase the level of parallelism,
further improving overall performance when necessary.
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