
Collaborative processing of Least-Square Monte

Carlo for American Options

Jinzhe Yang

Imperial College &

Aberdeen Asset Management

London, UK

jinzhe.yang12@imperial.ac.uk

Ce Guo

Imperial College

London, UK

ce.guo10@imperial.ac.uk

Wayne Luk

Imperial College

London, UK

w.luk@imperial.ac.uk

Terence Nahar

Aberdeen Assent Management

London, UK

terence.nahar@aberdeen-asset.com

Abstract—American options are popularly traded in the fi-
nancial market, so pricing those options becomes crucial in
practice. In reality, many popular pricing models do not have
analytical solutions. Hence techniques such as Monte Carlo are
often used in practice. This paper presents a CPU-FPGA col-
laborative accelerator using state-of-the-art Least-Square Monte
Carlo method, for pricing American options. We provide a
new sequence of generating the Monte Carlo paths, and a pre-
calculation strategy for the regression process. Our design is
customisable for different pricing models, discretisation schemes,
and regression functions. The Heston model is used as a case
study for evaluating our strategy. Experimental results show that
an FPGA-based solution could provide 22 to 64.5 times faster
than a single-core CPU implementation.

I. INTRODUCTION

Monte Carlo methods are numerical computational methods

which can simulate problems that are impossible or impractical

to have an analytical solution. Although Monte Carlo methods

make it possible to simulate options pricing process in the

sophisticated market [1], overnight calculations cannot reach

the run time requirement. There is a trend in the financial

industry of using High Performance Computing technologies

to accelerate complex simulation models for quick and ac-

curate result. By the influence of these modern technologies,

practitioners do not only refer to the simulation result to make

decisions, but also in some circumstances, let the machine do

the decisions itself.

The Heston model [2] is a commonly accepted stochastic

volatility [3] model, especially for equity derivatives: unlike

the Black-Scholes model [4], the volatility of the asset in

Heston model follows a random process, instead of constant

or deterministic. The model intuitively extends the Black-

Scholes model as a special case. For derivatives whose un-

derlying is the spot itself, it directly models stock price at

time t for pricing. Heston’s setting takes into account non-

lognormal distribution of the asset returns, leverage effect,

important mean-reverting property of volatility and it remains

analytically tractable.

Much research based on FPGA with Monte Carlo methods

to simulate option pricing process has been done in the

past few years. However, to the best of our knowledge,

little research has been done on Least-Square Monte Carlo

(LSMC). It is not a new method, but it is a relatively novel

approach for the finance industry, and it has a significant

characteristic in simplifying the simulation progress [5]. It

needs to traverse all the Monte Carlo paths, and update the

regression coefficient matrix under some conditions. So the

problem would be transformed into solving a linear equation.

After the linear equation is solved, the approximation function

coefficients would be acquired. The acquired approximation

function would be used for updating information based on

those paths that fulfils the previous conditions. This progress

is activated iteratively until all the steps are operated.

It is easy to conclude that a pipelined design of LSMC

has the following restrictions: traversing all the Monte Carlo

paths for three times, and solving the linear equation. Our

pipelined design has the following characteristics: by adjusting

the calculation sequence and pre-calculate the inverse of the

coefficient matrix, we only need to traverse twice, and also

the pre-calculate process provides flexibility to the regression

functions. In consideration of CPU-FPGA bandwidth limita-

tion, we store all the information on the on-board memory

(DRAM), and also in reason that if we deploy traditional

generation sequence on our FPGA design, we may suffer

high offset problem. Therefore, we reorganise the sequence

so both generation process and regression process reads from

the DRAM in a serial order.

This paper presents the design and implementation of a

CPU-FPGA collaborative platform to simulate the result of

using Least-Square Monte Carlo method to price American

options via Heston model. Our major contributions are listed

as follows:

• A CPU-FPGA collaboration strategy, which could make

full use of both calculation advantage and capacity of

both CPU and FPGA.

• A pipelined design of LSMC for pricing American op-

tions, which provides availability for different models and

discretisation schemes.

• A generalised solution that could support various accurate

but complex regression function.

We have tested for different sets of data size parameters

which are all commonly used in practice, and experimental

results show that we could achieve 22 and up to 64.5 times

faster than a single-core CPU implementation.

The rest of the paper is organised as follows. Section II

978-1-4799-6245-7/14/$31.00 ©2014 IEEE

briefly introduces the American options, Least-Square Monte

Carlo method and Heston model. Detailed introduction to our

system design, as well as the pipeline-friendly algorithmic

development for the problem, would be presented in section III

and section IV. Experimental results and performance estima-

tion would be provided in section V.

II. BACKGROUND

This section provides a short introduction about why the

problem is important to the finance industry.

First consider the American Options. Options are contracts

between two parties for a future transaction on an asset at the

strike price, the reference price. The buyer of the option has

the right, but not the obligation, to exercise the transaction. The

option valuation generally depends on a number of different

variables in addition to the value of the underlying asset.

American option has an expiration date, however, it can

be exercised at any time before the expiration date. It is

straightforward that an early exercise decision is made only

when people could predict with high confidence that it could

have more benefit than exercise at expiration, and possibly has

the highest benefit compared with all the potential exercise

dates before expiration.

American options are widely traded in the market, and

it has no analytical solution. Hence, valuation and optimal

American-style derivatives, or any derivatives with early excise

features, is one of the most important practical problems in

options pricing. This feature mathematically means decisions

should be made for all time steps. More precisely, for each

time point that could make early exercise, we need to choose

between immediate exercise or hold the option for better

opportunity in the future. Simulating exercise price is relatively

easy, however, there is no analytical form for calculating the

continuation.

Second, consider the Least-Square Monte Carlo method.

In real market requirement, we wish to calculate an accurate

and reliable result over some future time horizon. The full

nested simulation of this process (see Figure 1) is generally

considered with two steps: we first generate the economic

scenario, by projecting a number of realisations of the key

economic variables, or risk-drivers, in which the future liability

is likely to depend. Based on the economic scenario result, we

can calculate the liability at the projection date. The former

step is real world scenarios (outer scenarios), and the latter

step is market consistent scenarios (inner scenarios).

It is intuitive that if we could cut down some branches of

outer scenarios or inner scenarios, without losing accuracy,

the computation would be reduced immediately. We now

use only one inner scenario for valuing our liabilities, rather

than running many of the market-consistent scenarios. The

liability valuation has now been calculated very inaccurate,

nevertheless, by applying regression, we could correct the

inaccuracy.

For the regression, we use as explanatory variables, the

values of the risk drivers at t = 1, and as a response variable,

the liability value. The corresponding regression curve gives an

Fig. 1. Full nested valuation

approximation of the liability value as a function of the input

and the different risk drivers. The function we will select to

do our regression is crucial for the quality of our estimations.

There are many different ways to do the regression, we

generally assume the approximation function of y and given

set of data x is y = f(x), so in order to have the best fitting

curve, f(x) has the least square error. More details about the

Least-Squares regression would be found in Section IV.

Finally, consider the Heston Model. This paper selects the

Heston model in a case study for various pricing models. De-

spite the tremendous success of the Black-Scholes model for

options pricing, people found popularly-existed deficiencies

in real market data, and perhaps the most important is the

assumption for the underlying asset, the volatility of the return

is constant. In reality, both strike price and maturity of traded

options are generally considered to vary of implied volatility.

A key concept to cope with the problem is that of stochastic

volatility, and one of the most popularly used is the Heston

model. Below is the definition of Heston model.

∆St = µSt ∆t+
√
vt St ∆WS

t (1)

∆vt = κ (θ − vt)∆t+ ξ
√
vt ∆W v

t (2)

where St is the price of the asset at time t, µ is the rate

of return, θ is the long variance, κ is the rate at which vt
reverts to θ, and ξ is the volatility-of-volatility that determines

the variance of volatility. The instantaneous variance vt, is

a time-independent Cox-Ingersoll-Ross Markov Process (CIR

Process) [6]. ∆W s
t and ∆W v

t are two Wiener Processes, the

correlation between ∆WS
t and ∆W v

t is ρ.

To calculate the stock price, the main difficulty is to solve

the stochastic differential equation (SDE), so that the variables

could be expressed as a function of finite set of state variables

with known joint distribution. The calculation problem could

then be reduced to sampling from the distribution. The stock

price path follows a Markov Process, the calculation at time

t+ 1 solely based on information from time t:

vt+∆t = fv(vt) (3)

St+∆t = fS(St) (4)

where fv and fS are different discretisation methods for

variance v and stock price S.

III. SYSTEM DESIGN

The process of pricing American options using LSMC

involves a sequential memory read sequence of generating

stock price paths and a reverse order of regression. Regarding

the memory read/write sequence, we apply the strategy of

two kernels in one chip, controlled by the same host code,

with one kernel represents the generation, while the other one,

regression.

A. Overall Design

We referred to previous research on FPGA [7] and found

the restrictions which prevent those works for practical use.

The main restrictions and challenges are:

1) Few works are stochastic volatility model, and the stock

price paths are generated independently. More precisely,

in each path, the stock price of each step only follows a

normal distribution from S0, and there is no relationship

between the steps inside each path [8].

2) Traditionally, the stock price and variance are gener-

ated path-by-path, but are regressed step-by-step, which

would bring high offset for memory allocation.

3) The regression function that previous work used is

y = a + bx + cx2, which is too simple and inaccu-

rate. In practice, the regression function is much more

complex. In addition, their FPGA solution only provides

Cholesky-decomposition for solving 3 × 3 coefficient

matrix of linear equation, which cannot be used for

larger matrix (complex regression functions). In real-

ity, the approximation function for regression could be

binary, and the regression would be a 3-dimensional

approximation [9].

To address challenge 1, we apply discretisation schemes

to our hardware design. It is a pipeline-friendly algorithm

because for each iteration, the calculation is only based on the

result of the previous iteration, with several random numbers.

In practice, lots of discretisation schemes are popularly used,

and there is no generally accepted scheme that fits all re-

quirements (e.g. jump diffusion, accuracy, computation speed).

For a general purpose, our system design has no restriction

to discretisation schemes, but we only provide the IMM-IJK

scheme as a case study.

To address challenge 2, we provide a new generation

sequence. Take the stock price at time t of path n (Sn,t) as

an example. If we use traditional generating sequence on the

FPGA, so Sn,t and Sn,t+∆t would be stored on the DRAM

as neighbours, so obviously, during the generation, the FPGA

reads from the DRAM in a serial sequence without offset.

However, when doing the regression, we need stock price

information of time t from different paths, the offset is N ,

as N denotes the total number of paths. To avoid the offset

N , we reorganise the sequence so that during the generating

process, the DRAM is read and written in a linear sequence,

and during the regression, the sequence is revised but still it

is a linear sequence.

To address challenge 3, the reason why some previous works

are using simple regression function is that FPGA could not

solve linear equation easily. The solution could be simplified

as: we update the coefficient matrix of the linear equation as

soon the new step of Monte Carlo path is updated, we use the

CPU to calculate the inverse of the matrix instead of directly

solving the linear equation on FPGA. Detailed solution for

challenge 2 & 3 would be provided in section IV.

Fig. 2. System Design

Our system design could be simplified as figure 2, where

the two kernels are represented as kernel 1 (generation) and

kernel 2 (regression). The reason why the kernel is partitioned

is: the read/write sequence on the DRAM is opposite for the

two progresses, and the calculation inside each process is

significantly different from the other. As mentioned before,

we merge the three traverse process into two, so each kernel

is one of the two traverses. The stock price and variance are

generated by kernel 1, write to the DRAM in one dimensional

linear sequence, and could be read from the DRAM in a

inverse sequence by kernel 2. Kernel 1 has a data transfer

from the CPU and to the DRAM, while kernel 2 has data

transfer to and from the DRAM, and eventually transfer to

the CPU. The block exercise information in the figure is also

a DRAM block, the exercise prices and dates are stored in

linear sequence. Kernel 2 reads the exercise information for

each time step and writes back after it is updated. The exercise

information would be read by the CPU after all the iterations

are activated.

B. The Valuation Framework

Assume a finite time horizon [0, T], where 0 is the start

date of the contract, T is the expire date. We are focusing

on valuing American-style derivative securities with random

cash flows which may occur during [0, T]. [10] implies the

value of American option equals to the maximised value of the

discounted cash flows from the option, where the maximum

is taken over all stopping times. Introduce the notation Cs,t

to denote the cash flow paths generated by the option, and

for all s, t < s ≤ T , the conditions of the option not being

exercised at or prior to time t, the option holder follows the

optimal stopping strategy. The LSMC method is objective to

provide a pathwise approximation that maximises the value of

the American option.

The process of generating stock price paths is illustrated

as Algorithm 1. The algorithm provides a general method

for pricing models without jump diffusion [11]. The change

of pricing model and/or discretisation scheme only influences

how vt+∆t and St+∆t is expressed. For a detailed explanation,

different pricing model has the different calculation for ∆St

and ∆vt, and the discretisation scheme defines how the

variables could be expressed as a function of finite set of

state variables with known joint distribution. When applying

different discretisation scheme to the same model, it changes

not only how the function of finite set of state variables is

expressed, but also the accuracy, bias, convergence, e.t.c..

Algorithm 1 Generate Stock Price Path

1: for i = 1 to paths do

2: for j = 1 to steps do

3: Generate ∆W v
t+∆t ∼ N(0, 1), ∆WS

t+∆t ∼ N(0, 1)
4: Correlate ∆W v

t+∆t and ∆WS
t+∆t by:

5: ∆W v
t+∆t = ∆W v

t+∆t

√
∆t

6: ∆WS
t+∆t = ρ∆W v

t+∆t +
√

1− ρ2
√
∆t∆WS

t+∆t

7: vt+∆t = fv(vt,∆W v
t+∆t)

8: St+∆t = fS(St, vt+∆t,∆W v
t+∆t,∆WS

t+∆t)

As for the model with jump diffusion, the only change

for algorithm 1 is to add the functions of simulating the

jump diffusion, before calculating vt+∆t and St+∆t. For

some models, an additional random number might be needed.

For example, for a double-jump model, a uniformed random

number between [0, 1] is required for sampling the number

of jumps. The jump diffusion model is also applicable in our

strategy.

C. Regression

Continued from the previous valuation process, at the ma-

turity of the option, as introduced before, the option holder

has the right, but not obligation to exercise at the strike price.

So the investor exercises the option if it is in the money, or

allows it to expire if it is out of the money. However, before

the expiration time, the option holder must choose whether to

exercise immediately or to continue the life of the option and

revisit the exercise decision. The investor exercises as soon

as the immediate exercise value is greater than or equal to

the value of continuation, because the option is maximised

pathwise.

At time t, the cash flows from continuation, of course, are

not known at this time step. No-arbitrage valuation theory,

however, implies that the value of the option, assuming that

it cannot be exercised until after t, is given by taking the

expectation of the remaining discounted cash flows Cs,t with

respect to the risk neutral pricing measure.

The LSMC method for pricing American options uses least

squares to approximate the conditional expectation functions

at each time step in a backward sequence, because Cs,t is

generated recursively [12][13]. Cs,t can be differ from Cs,t+∆t

because it might stop at time t + 1, thereby changing all

subsequent cash flows.

In the estimation, at time t− 1, we regress only from paths

when it is in-the-money at time t, because the exercise decision

is only relevant when the option is in-the-money. Once the

conditional expectation function at time t−1 is estimated, we

can determine whether early exercise at time t−1 is optimal for

an in-the-money path ω by comparing the immediate exercise

value with the continuation, and repeating for each in-the-

money path. As soon as the exercise decision is identified,

the cash flow path can then be approximated. This recursive

process rolls back from the expire date, until the exercise

decisions at each exercise time along each path have been

determined.

The American option is then valued by starting at time zero,

moving forward along each path until the first stopping time

occurs, discounting the resulting cash flow from the exercise

date back to time zero, and eventually taking the average over

all paths. Algorithm 2 is a generalised regression process.

Algorithm 2 Regression

1: for i = steps to 1 do

2: for j = 0 to paths do

3: Update the coefficient matrix of step t

4: Calculate the approximation function

5: for i = 0 to paths do

6: Calculate continuation of step i, path j

7: if K − Si,j < continuation then

8: Update exercise information

IV. KERNEL DESIGN

This section will introduce the kernel design of the LSMC

simulation of Heston model, as well as the introduction of

our algorithmic improvements in a detailed way. Our pipelined

design contains two main parts in FPGA: scenario generator,

Least-Square regression.

A. Scenario Generation

There are two steps in generating stock price path: generate

two random number series, and use the random number pairs

to calculate corresponding stock price. As mentioned in section

II, ∆WS
t and ∆W v

t has the correlation ρ. So we first generate

two Gaussian distributed random number series (x, y) without

correlation, and the ∆WS
t and ∆W v

t would be calculated as

follows:

∆W v
t = x

√
∆t (5)

∆WS
t = (ρx+ y

√

1− ρ2)
√
∆t (6)

Although the Uniformed Euler-Maruyama discretisation

method is a classic way that provides an accurate yield in

many cases, however, when simulating a long-term stock price

path or large time intervals, the convergence would be erratic

and uncontrollable in some cases. We referred to an improved

method, which at least for Heston model, yields the best results

as measured by a strong convergence measure. [14] applied

the implicit Milstein method (IMM) to the variable, combined

with their bespoke IJK scheme for the logarithm of the stock

price. The IMM method discretises the variance as follows:

vt+∆t =vt + κ∆t(θ − vt)) + ξ(
√
vt ∆W v

t)

+
1

4
ξ2(∆W v

t
2 −∆t)

(7)

The IMM method preserves the positivity for mean-reverting

square root process. The scheme for the logarithm of stock

price is their IJK scheme [15]:

lnSt+∆t =lnSt + µ∆t−
1

4
∆t(vt + vt+∆t) + ρ

√
vt ∆W v

t

+
1

2
(
√
vt +

√
vt+∆t)(∆WS

t − ρ∆W v
t)

−
1

4
ξρ(∆W v

t
2 −∆t)

(8)

It is specifically tailored to stochastic volatility models, where

typically ρ is highly negative. The combined scheme is called

IJK-IMM scheme, and it is a quasi-second order.

It could be easily concluded that both v and S has a data

dependency with the corresponding v and S of previous time

step. Thus, researchers always generate it in a horizontal way,

as shown in figure 3.

Fig. 3. Traditional Calculation Sequence

In figure 3, each dot means an early exercise time. The

dots in the same row indicate all the early exercise times in

the same Monte Carlo path, the columns indicate different

Monte Carlo paths, and the arrows describes the calculation

sequence. The figure implies that traditionally, the paths are

generated path-by-path, while the regression is step-by-step.

Due to the bottleneck of data transfer between the CPU and

the FPGA, most of our data would be stored in the DRAM.

However, it brings high offset of memory access, because it

generates path-by-path, and calculated from backward step-by-

step. The offset is the number of paths, which could always be

relatively high. By analysing the pricing progress, we found

the regression part has a much stronger requirement of stock

price data continuity, since it needs to operate all the stock

price step-by-step. In addition, if we could find an alternative

solution to generate price path step-by-step, the pricing process

would become pipeline-friendly.

We present an alternative sequence of generation. It is

generated step-by-step by using a customised memory address

generator, and the progress is shown in figure 4. Therefore,

the stock price and variance would be loaded sequentially

during the backward regression. We also make benefit from

our new sequence of generation, we could accumulate for the

coefficient matrix of regression while generating the path.

Fig. 4. Step-by-Step Generation Sequence

From the IMM-IJK method, vt+∆t is calculated by vt,

∆W v
t , ∆W v

t+∆t, and St+∆t has additional data dependency

on vt+∆t, ∆WS
t , ∆WS

t+∆t, which shows at each time step,

the variance and stock price only directly need the result of

the previous step. Detailed illustration for our new generation

sequence, as well as updating the coefficient matrix, would be

introduced together with the regression part.

For a simple illustration, and considering the space limit,

we use simple Eular-Maruyama discretisation scheme and one

accumulator for the graphic explanation of our kernel design.

vt+∆t = vt − κ(vt − θ)∆t+ ξ
√
vt∆W v

t (9)

St+∆t = St(1 + µ∆t+
√
vt+∆t∆WS

t) (10)

The real design for the valuation process and multiple accu-

mulators would be similar but much more complex. Here, and

also for the figure 8, the approximation function is only a two

dimensional approximation function ft(S) = a + bSt + cS2
t .

The design for kernel 1 could be separated into two parts, one

for the variance, and the other, the stock price. Figure 5 shows

the design for generating variance, where vt+∆t is the output

for kernel 1, and it is also the input for generating stock price.

Figure 6 shows the design for calculating the stock price, as

well as how to use the accumulator to calculate the coefficients

of the matrix. We only show a single accumulator for S2
t+∆t,

however, we have multiple accumulators in our real design.

The multiplexer MUX works as follows: if it is in-the-money

(St+∆t < K), the MUX outputs the stock price, otherwise, it

outputs zero. The reason why there is an accumulator would

be illustrated later.

Fig. 5. Generating Variance

Fig. 6. Generating Stock Price

B. Least-Square Regression

After the paths are completely generated and stored, the

backward calculation for continuation is now activated. For

each time step t, we calculate both exercising cash-flow and

continuation cash-flow.

For the Least-Square Regression, we have three steps,

generating the regression coefficient matrix, solve the linear

equation, and update the exercise price and exercise date.

The generating progress follows the idea of minimising the

least square error of the fitting curve f(x). Here, we use a

polynomial regression function as an example. Assume the

approximation function is:

y = b0 + b1x+ b2x
2 + · · ·+ bmxm (11)

where b0, b1, · · · , bm are unknown coefficients. It’s obvious

that these coefficients must yield zero first derivatives.

n
∑

i=1

yi = b0

n
∑

i=1

1 + b1

n
∑

i=1

xi + · · ·+ bm

n
∑

i=1

xm
i

n
∑

i=1

xiyi = b0

n
∑

i=1

xi + b1

n
∑

i=1

x2
i + · · ·+ bm

n
∑

i=1

xm+1
i

n
∑

i=1

x2
i yi = b0

n
∑

i=1

x2
i + b1

n
∑

i=1

x3
i + · · ·+ bm

n
∑

i=1

xm+2
i

...
n
∑

i=1

xm
i yi = b0

n
∑

i=1

xm
i + b1

n
∑

i=1

xm+1
i + · · ·+ bm

n
∑

i=1

x2m
i

(12)

Therefore, we can get a polynomial approximation formula:

Xb = Y (13)

where

b = [b0 b1 · · · bk]T (14)

X =































n
n
∑

i=1

xi · · ·
n
∑

i=1

xk
i

n
∑

i=1

xi

n
∑

i=1

x2
i · · ·

n
∑

i=1

xk+1
i

· · · · · · · · · · · ·

n
∑

i=1

xk
i

n
∑

i=1

xk+1
i · · ·

n
∑

i=1

x2k
i































(15)

Y = [

n
∑

i=1

yi

n
∑

i=1

xiyi · · ·
n
∑

i=1

xk
i yi]

T (16)

In the polynomial approximation formula, n is the given set

of data, and in our case, the number of paths that is in-the-

money at time t. b is the coefficient vector we are going to

calculate, xi could be the stock price at time t, and yi could

be the discounted corresponding cash-flows.

The regression function we actually use can be found in

[16]. It is a three dimensional approximation. More precisely,

the regression function is f(S, v) instead of f(S). The vari-

ables in function f are independent variables: S is the stock

price, and v is the corresponding variance.

The most difficult problem for the regression step, and also

for this paper, is efficiently solving the linear equation with

symmetric coefficient matrix. Obviously there are myriads

of methods for solving linear equations, nevertheless, few

algorithms have good performance on FPGA. There are two

ways of solving a problem: directly and indirectly. Direct

method solves the linear equation problem by using an efficient

and data-flow-friendly algorithm (e.g. iterative methods for

solving linear equation), and the indirect method is to find

an alternative solution. We have both solutions, however, in

consideration of the flexibility of regression function, we only

present the indirect method in this paper.

The key issue is most of the algorithms for solving the linear

equation need to access memory randomly, or in other words,

data dependency is with large offset. Some publications had

been focused solving Cholesky-decomposition in the FPGA,

which is complicated for data flow acceleration. Instead,

we present a collaborative CPU-FPGA strategy to solve the

coefficient equation.

Take the following scenario as an example. Obviously, in

each time step, we need to generate and solve Xb = Y , note

that the stock prices (and variance, if it is a three dimensional

approximation) only contribute to the coefficients in matrix X

if and only if the stock price is in-the-money. Consider that Y

has the data dependency on continuation which could only be

acquired during the regression progress, and the stock price

contributes to coefficients in Y is under the same condition

with X , so we calculate X and Y separately. As for the matrix

X of time step t, it is generated simultaneously with the stock

price in the same time step. Figure 7 provides a Gantt chart to

illustrate the time usage. For the CPU, the shorter line indicates

the calculation of matrix inverse, while the longer indicates

generating the random numbers for the next step.

The proposed CPU-FPGA collaboration strategy is as fol-

lows: when the stock price in time step t− 1 (t > 1) is fully

generated, the FPGA output the matrix Xt−1 to the CPU and

starts calculating the stock price of time t. So at time t, X−1
t−1

is being calculated, and also the random numbers for time

t+ 1 would be generated, both on the CPU, while the FPGA

holds the calculation of generating the variance, stock price,

and matrix X of time t, concurrently.

Fig. 7. Time Usage of the Collaborative Strategy

After the paths and the corresponding matrix X have been

fully generated, the regression step is activated. Once the

kernel moves to a new time step t + 1 of regression, the

X−1
t would be transferred from the CPU to the FPGA. By

continuously accumulating the contribution to Yt, under the

same condition when generating Xt, we eventually acquire

Yt, as well as the corresponding X−1
t . So the linear equation

Xtbt = Yt for time t could be transformed and solved in

a simple way, by calculating bt = X−1
t Yt. In addition, at the

same time, exercise information is updated as we have already

received all the required information for current step t during

regression in step t+ 1.

As mentioned before, the decision of exercise or hold the

option is made now. Assume continuation denotes the value

of not immediate exercise of path n at time t, continua-

tion = f(Sn,t, vn,t). If and only if we can acquire more benefit

by exercising now (exercise > continuation), we update the

exercise price matrix. The regression progress is proceeding

recursively, until the first time step is calculated.

Figure 8 shows our hardware design of the regression part.

Fig. 8. Kernel Design for Regression

Because the vector Y of time step t requires exercise

information of time step t+ 1, so it could only be generated

during the regression process. Assume in time step t, we

merge the updating exercise information of t and updating

coefficients of vector Y of time t − 1 together. EP and ED

represent for exercise price and exercise date, respectively. The

six inputs of multiplexer MUX1 are: time t, cash flow at time

t, continuation, stock price at time t, and exercise price and

exercise date from previous results. If the cash flow is greater

than the continuation, the MUX1 outputs the EP as St, and

ED as t, otherwise, EP and ED remain unchanged. The inputs

of MUX2 are: stock price of the previous step, and the cash

flow based on updated exercise information, after discounted

to previous time step. If it is in-the-money for the previous

step, the MUX2 outputs St−∆t to the accumulator, otherwise,

it outputs zero.

V. HARDWARE IMPLEMENTATION AND EVALUATION

A. Experimental Evaluation

The mathematical derivation of our hardware design targets

a MAX3 acceleration system. The hardware is described in a

Java based MaxJ language and compiled with Maxeler Max-

Compiler. The acceleration system is equipped with a Xilinx

Vertex-6 V-SX4757 FPGA card. It communicates with the host

computer via a PCI-Express interface. In our implementation,

we set the clock frequency to 100MHz.

We also build a CPU-based system by implementing a

traditional sequence of generating the Monte Carlo paths, on

the CPU platform in a server with a Xeon X5650 CPU, with 6

cores 12 threads running at 2.67GHz. The experimental code

for both CPU version and the host code for our FPGA design

are written in C programming language, and complied with

Intel C compiler with the highest compiling optimisation.

Experimental results are shown in table I. One condition

is that if the number of steps T is also extremely big, which

means early exercise interval we estimate is short, we might

face bottleneck on the CPU version because the CPU cache is

not large enough. This would be expressed as the experimental

result of scenario 1 and scenario 4. Also, in consideration that

in practice, 10M paths would be enough for most calculation

requirements, so we haven’t further tested the case when the

number of paths N is extremely large. We have 5 test cases,

for the first 3 tests, we set T = 252 and keep it unchanged,

252 means the total trading days per year, and we have 3 cases

with N = 1M, 5M, 10M, respectively. For the remaining 2

test cases, we have N = 1M and keep it unchanged, while the

T is 2520 and 5040, which means that for each trading day,

the early exercise opportunity we estimate is 10 and 20.

Steps Paths CPU CPU+FPGA speedup

252 1,000,000 83.26s 3.78s 22.0x
252 5,000,000 423.78s 13.86s 30.6x
252 10,000,000 834.36s 26.46s 31.53x

2520 1,000,000 2489.63s 39.23s 63.5x
5040 1,000,000 4986.91 77.35s 64.5x

TABLE I
FPGA PERFORMANCE

Interestingly, we found that the speedup changed signifi-

cantly between different sets of data size. We explain sce-

nario 3 and 4 to illustrate the reason. Scenario 3 and 4 are both

popularly used data size parameter sets in practice, one attempt

is increasing the number of Monte Carlo paths, and the other,

decreasing the discretisation time intervals. The total amount

of data is the same, however, the CPU execution time and the

speedup varies. The difference between the two scenarios is

that scenario 3 is doing regression for 252 times, but each time

updating 10M paths, while scenario 4 is having regression for

2520 times but each time only for 1M paths. The information

is stored in a two dimensional array, however, the cache is

not big enough to handle data in such amount. So scenario 4

might be suffering from a much more serious cache missing

problem than scenario 3, because they are both stored in the

same ”structure”, but read/write offset is quite different. If we

revert the column and the row, scenario 3 would face a similar

cache problem as scenario 4. As for our pipelined design, the

time consuming change is brought by the times that kernels

are revoked and the number of paths. In addition, in our FPGA

design, all the information is stored in the DRAM in a one

dimensional linear sequence, so all of the offsets are 1.

B. Performance Estimation

Based on our experimental result, we provide an approxi-

mation of performance estimation. Assume we have N Monte

Carlo paths, T steps, and the clock frequency is F . Let R1 and

R2 be the revoke time for kernel 1 and kernel 2, respectively,

and L1 and L2 be the latency, which equals to the cycle

number between the first data is input to and output from

FPGA of kernel 1 and kernel 2, respectively. So the total

execution time of FPGA, ttotal, could be approximated by:

ttotal ≈
T
∑

i=1

(
(N + L1)

F
+

(N + L2)

F
+R1,i +R2,i)

≈
2NT

F
+ T (R̂1 + R̂2)

(17)

where R̂1 and R̂2 is the average revoke time for kernel 1

and kernel 2, respectively. L1 and L2 could be ignored if N

is large enough. At present, our experimental result are only

based on a single FPGA. By comparing cases with different N ,

we estimate that R̂1 ≈ R̂2 = 0.005s, so T (R̂1+ R̂2) ≈ 0.01s,

and equation 17 could be changed to:

ttotal ≈
2NT

F
+ 0.01T (18)

As for scalability, although we have not tested our scheme

on multiple FPGAs, but we could provide an analytical illus-

tration for why the speedup would grow almost linearly when

we deploy the scheme on more FPGAs.

VI. CONCLUSION

This paper has presented a pipeline-friendly solution for

pricing American options using Least Square Monte Carlo

method. Instead of providing an accelerator for a special case,

we provide a general strategy that could support different mod-

els and discretisation schemes, especially different regression

functions in two dimensional, three dimensional or even high

dimensional approximations. By changing the accumulator,

our design could fit different regression functions properly.

Our implementation result shows 22 to 64.5 times speedup

compared with a single-core CPU implementation.

This work shows the potential of reconfigurable computing

for pricing American options in practice, and the flexibility for

different requirements. Future work includes raising the clock

frequency to around 200 MHz, so that the speedup of a single

FPGA design can be doubled to reach 130 times; this can be

achieved by adopting optimisations such as mixed precision

representation [17] and idle function elimination by run-time

reconfiguration [18].

ACKNOWLEDGMENT

The research leading to these results has received funding

from the European Union Seventh Framework Programme

(FP7/2007-2013) under grant agreement n 289032. This work

is also supported in part by the UK EPSRC, by the Maxeler

University Programme, by the HiPEAC NoE, by Altera, and

by Xilinx.

REFERENCES

[1] P. Glasserman, Monte Carlo Methods in Financial Engineering.
Springer Science, 2004.

[2] S. L. Heston, “A closed-form solution for options with stochastic
volatility with applications to bond and currency options,” The Review

of Financial Studies, vol. 6, no. 2, pp. 327–343, 1993.
[3] P. Jackel, “Stochastic volatility models: past, present and future,” Incor-

porating the Quantitative Finance Review, 2005.
[4] F. Black, “The pricing of options and coporate liabilities,” Journal of

Political Economy, pp. 637–654, 1973.
[5] F. Longstaff and E. Schwartz, “Valuing American options by simulation:

A simple least-squares approach,” Review of Financial Studies, vol. 14,
no. 1, pp. 133–147, 2001.

[6] J. Cox, J. Ingersoll, and S. Ross, “An intertemporal general equilibrium
model of asset prices,” Econometrica, vol. 53, pp. 363–384, 1985.

[7] X. Tian and K. Benkrid, “Implementation of the Longstaff and Schwartz
American option pricing model on FPGA, Journal of Signal Processing

Systems, pp. 79–91, 2012.
[8] X. Tian, “American option pricing on reconfigurable hardware using

least-squares Monte Carlo method,” in International Conference on

Field-Programmable Technology, 2009.
[9] D. Yang, G. Peterson, H. Li, and J. Sun, “An FPGA implementation

for solving least square problem,” in Field Programmable Custom

Computing Machines, 2009.
[10] A. Bensoussan, “On the theory of option pricing,” Acta Applicandae

Mathematicae, pp. 139–158, 1984.
[11] R. C. Merton, “Option pricing when underlying stock returns are

discontinuous,” Journal of Financial Economics, pp. 125–144, 1976.
[12] H. White, “Asymptotic theory for econometricians,” Academic Press,

1984.
[13] T. Amemiya, Advanced Econometrics. Basil Blackwell, 1985.
[14] C. Kahl, “Positive numerical integration of stochastic differential equa-

tions,” Ph.D. dissertation, University of Wuppertal and ABNAMRO,
2004.

[15] C. Kahl and P. Jackel, “Fast strong approximation Monte Carlo schemes
for stochastic volatility models,” ABNAMRO and University of Wup-
pertal, Tech. Rep., 2005.

[16] M. J. Cathcart, “Monte Carlo simulation approaches to the valuation
and risk management of unit-linked insurance products with guarantees,”
Ph.D. dissertation, Heriot-Watt University, 2012.

[17] G. Chow et al, “A mixed precision Monte Carlo methodology for
reconfigurable accelerator systems,” in International Symposium on

Field Programmable Gate Arrays, 2012.
[18] X. Niu et al, “Automating elimination of idle functions by run-time

reconfiguration,” in Field-Programmable Custom Computing Machines,
2013.

