
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013 2179

SPREAD: A Streaming-Based Partially
Reconfigurable Architecture and

Programming Model
Ying Wang, Xuegong Zhou, Lingli Wang, Member, IEEE,

Jian Yan, Wayne Luk, Fellow, IEEE, Chenglian Peng, and Jiarong Tong

Abstract— Partially reconfigurable systems are promising com-
puting platforms for streaming applications, which demand both
hardware efficiency and reconfigurable flexibility. To realize
the full potential of these systems, a streaming-based partially
reconfigurable architecture and unified software/hardware mul-
tithreaded programming model (SPREAD) is presented in this
paper. SPREAD is a reconfigurable architecture with a unified
software/hardware thread interface and high throughput point-
to-point streaming structure. It supports dynamic computing
resource allocation, runtime software/hardware switching, and
streaming-based multithreaded management at the operating
system level. SPREAD is designed to provide programmers of
streaming applications with a unified view of threads, allowing
them to exploit thread, data, and pipeline parallelism; it enhances
hardware efficiency while simplifying the development of stream-
ing applications for partially reconfigurable systems. Experi-
mental results targeting cryptography applications demonstrate
the feasibility and superior performance of SPREAD. Moreover,
the parallelized Advanced Encryption Standard (AES), Data
Encryption Standard (DES), and Triple DES (3DES) hardware
threads on field-programmable gate arrays show 1.61–4.59 times
higher power efficiency than their implementations on state-of-
the-art graphics processing units.

Index Terms— Hardware thread, parallelism, partial reconfig-
uration, streaming application.

I. INTRODUCTION

DURING the last decade, embedded processor and recon-
figurable processing units (RPUs) have been integrated

within field-programmable gate arrays (FPGAs) to form par-
tially reconfigurable systems. On these systems, streaming
applications, which commonly appear in the context of multi-
media processing, digital signal processing, and data encryp-

Manuscript received April 19, 2012; revised October 5, 2012; accepted
October 30, 2012. Date of publication January 11, 2013; date of current
version October 14, 2013. This work was supported in part by the National
Natural Science Foundation of China under Grant 61131001 and Grant
61171011, the National 863 Program of China under Grant 2009AA012201,
and the State Key Laboratory of ASIC and System Research Program of Fudan
University under Grant 09XT004 and Grant 09ZD005, the U.K. Engineering
and Physical Sciences Research Council, and the European Union Seventh
Framework Program under Grant 248976, Grant 257906, Grant 287804, and
Grant 318521.

Y. Wang, X. Zhou, L. Wang, J. Yan, and J. Tong are with the State Key
Laboratory of ASIC and System, Fudan University, Shanghai 201203, China
(e-mail: ying_w@fudan.edu.cn; zhouxg@fudan.edu.cn; llwang@fudan.
edu.cn; 11210720144@fudan.edu.cn; jrtong@fudan.edu.cn).

W. Luk is with the Department of Computing, Imperial College London,
London SW7 2AZ, U.K. (e-mail: wl@doc.ic.ac.uk).

C. Peng is with the School of Computer Science and Technology, Fudan
University, Shanghai 201203, China (e-mail: clpeng@fudan.edu.cn).

Digital Object Identifier 10.1109/TVLSI.2012.2231101

tion/decryption have demonstrated performance improvement
and reconfigurable flexibility [1]–[4]. However, there are still
challenges in designing these applications. First, with the
increasing need for both higher performance and design
flexibility, how do we combine partial reconfigurability with
streaming structure on a chip? Second, since a computation
kernel or a task can be implemented in software or hardware,
how do we enable switching between software and hardware
to improve runtime adaptability? Third, as the number of
RPU increases, the spatial organization of streaming channels
among RPUs supports different kinds of parallelism; how do
we expose such parallelism to application programmers for
further performance improvement?

To address these challenges, SPREAD provides a hier-
archical software/hardware (SW/HW) co-design solution
specifically designed for streaming applications. At the archi-
tecture level, we propose a high throughput point-to-point
streaming structure, where a streaming computation can
be represented as a set of software threads and hardware
threads that communicate explicitly over streaming chan-
nels. A unified hardware thread interface (HTI), coupled
with a novel method based on “switchable threads” and
“stub threads,” allows hardware threads to be managed in
the same way as software threads, and enables seamlessly
online switching between software and hardware implemen-
tations. At the operating system level, a lightweight operating
system kernel has been extended for dynamic computing
resource allocation and streaming-based multithread manage-
ment. Moreover, an extended SW/HW multithreaded program-
ming library is provided to improve design productivity and
SW/HW switching adaptability. It is easy for programmers
to design streaming applications and exploit the inherent
thread, data, and pipeline parallelism with the aid of this
library.

A case study involving data encryption/decryption appli-
cations is used to demonstrate the feasibility and SW/HW
switching adaptability of SPREAD. Experimental results indi-
cated that the resource overhead of the HTI is accept-
able. Hardware threads show superior performance compared
with accelerators using fast simplex link (FSL) or system
bus. Moreover, the power efficiency of the AES/DES/3DES
hardware thread is found to be superior to the correspond-
ing implementations on state-of-the-art graphics process-
ing units (GPUs) by making use of different kinds of
parallelism.

1063-8210 © 2013 IEEE

2180 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

To summarize, the following contributions are made in this
paper.

1) A high-throughput point-to-point streaming channel is
proposed. These channels can be dynamically intercon-
nected according to thread dependency, making par-
tially reconfigurable architecture simple and efficient for
streaming applications.

2) A method based on switchable threads and stub threads
to enable smooth switching between software and hard-
ware implementations. Such switching can be achieved
through dynamic resource allocation, fast context trans-
fer, and stream redirection to improve runtime adaptabil-
ity.

3) An extended stream programming library for both
software threads and hardware threads, which facili-
tates the design of streaming applications in a unified
SW/HW thread model, and allows exploitation of thread,
data, and pipeline parallelism for further performance
improvement.

4) An evaluation of the proposed approach based on cryp-
tographic designs on an XC4VFX60 FPGA, showing
that SPREAD offers higher throughput and higher power
efficiency than implementations on CPU and digital
signal processing (DSP) chips. Compared with GPUs,
SPREAD is capable of higher power efficiency of 1.61
to 4.59 times.

This paper is arranged as follows. Section II discusses
related work. Section III gives overall design considera-
tions. Section IV presents hierarchical design of SPREAD in
detail. Section V provides experimental results and analysis.
Section VI compares our work with other solutions. Finally,
Section VII concludes this paper.

II. RELATED WORK

Efficient architectures and portable programming models
play an important role for streaming applications. For hetero-
geneous reconfigurable systems, including CPU and RPUs,
several solutions have been proposed at different abstraction
levels. Some solutions are based on specific compilers and
predefined libraries/streaming languages [5]–[8], which con-
tribute to achieving a working prototype much faster but
do not support partial reconfiguration. SCORE is a pro-
gramming model, which combines pipe-and-filter architecture,
customized compiler, and runtime support [9]; it has not been
implemented in FPGA platforms.

Several groups focus on unified SW/HW programming
models with different extensions. A virtualization layer and
the corresponding operating system architecture have been
proposed for reconfigurable applications [10]. An extended
Linux kernel has been introduced in BORPH to support a
unified file system access for SW/HW tasks [11]. An hthread
programming model has been developed [12], where key
operating system services of inter-thread synchronization and
thread scheduling are migrated to hardware units, providing
equal access to both hardware and software threads. Recently,
a framework named FUSE is proposed at the operating system
level, where hardware tasks are viewed as memory-mapped

I/O devices [13]. However, these extensions do not address
several important aspects for stream-oriented partially recon-
figurable systems.

1) A high throughput streaming channel support at struc-
ture level. Although BORPH supports file streaming I/O,
the bandwidth of the streaming channel is limited. FUSE
and hthread are based on system bus architecture, which
are unsuitable for streaming computations.

2) SW/HW switching support to improve runtime adapt-
ability, which is not addressed by these solutions.

3) The structure and programming model should support
exploitation of different kinds of parallelism, which
would contribute to further performance improvement
of streaming applications.

An effort related to ours is ReconOS [14], an extended
pthread programming model introduced as a general solution
for reconfigurable applications, which provides a rich set
of operating system functions for hardware threads. Unlike
ReconOS, SPREAD is an integrated solution specifically
developed for streaming application design and runtime man-
agement. Hardware threads designed with SPREAD can be
dynamically created, terminated, or switched to software
implementations, thus increasing runtime flexibility and RPU
resource utilization. Compared with statically allocated FIFO
module between hardware threads, the streaming channels in
our architecture can be dynamically interconnected at runtime,
providing efficient inter-thread communication and support for
exploiting multiple kinds of parallelism.

Furthermore, although the idea of a unified SW/HW thread
abstraction is employed, we focus on providing an extended
streaming communication support in a unified way for both
software threads and hardware threads. Our approach takes
into account characteristics of a stream processing model,
and supports high throughput inter-thread communication and
explicit parallelism description in streaming applications.

III. DESIGN CONSIDERATIONS

A streaming application often organizes data as streams and
carries out computation by kernels. Partially reconfigurable
systems are promising computation platforms for streaming
applications, where kernels can be designed as hardware
threads for high performance and reconfigurable flexibility.

From the view of stream processing, the concept of thread
provides a suitable abstraction for computation kernels. First,
the behavior of a hardware thread has a significant similarity
with a software thread. Once created or reconfigured, it enters
an active state until exit. It is easy for programmers to
describe software/hardware partitioning in a unified thread
view. Second, after entering the active state, a hardware thread
operates on a long sequence of data, i.e., a data stream.
There are three regular execution phases: data reading, data
processing, and result writing. These phases are the same as
software threads, offering an opportunity for runtime SW/HW
switching. Third, streaming applications can be represented as
a composition of software and hardware threads, which can be
managed in a unified way at the operating system level. One
thread can communicate with another thread explicitly over

WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2181

Fig. 1. Comparison between (a) pthread programming model and (b) SPREAD model.

data-driven streaming channels, and either or both threads can
be implemented in software or in hardware to simplify inter-
thread communication and synchronization.

Based on the above considerations, computation kernels can
be abstracted to concurrently running hardware threads. Com-
pared with the traditional pthread programming model [15]
illustrated in Fig. 1(a), the SPREAD model shown in Fig. 1(b)
is built on a partially reconfigurable architecture where soft-
ware threads run on the CPU, while hardware threads run on
the RPUs. Through streaming interface adaptation, hardware
threads can be managed by an extended operating system
kernel, and a high throughput streaming channel can be
used for inter-thread communication. The extended operating
system kernel is provided for stream management and dynamic
resource allocation to improve runtime adaptability and RPU
resource utilization. Furthermore, SPREAD also includes
pthread-compatible APIs and an extended stream program-
ming library for both software threads and hardware threads.

To illustrate the SPREAD approach, consider the two
streaming computations shown in Fig. 1(b). One computation
consists of four threads organized as a split-join structure,
while the other consists of three threads organized as a pipeline
structure. The SPREAD library mentioned above enables
programmers to specify the T 2, T 3, and T 6 tasks in these
two computations as hardware threads. All running threads,
whether hardware or software ones, are under the control of
the extended operating kernel.

During the development of applications, we adopt switch-
able threads, which are a special kind of hardware thread,
to facilitate switching between software and hardware at
runtime. A switchable thread includes a pair of hardware
and software implementations with the same behavior, so
that its implementation style can be dynamically changed
depending on application or environment requirements. The
SW/HW switching can be achieved via dynamic resource
allocation, fast context transfer, and stream redirection. Taking

the scenario in Fig. 1(b) as an example, T 6 is defined as
a switchable thread according to initial software/hardware
partitioning at design time. When it is created, if no RPU
resources are available, and all running hardware threads
are unswitchable, then the software implementation of T 6 is
chosen. Once resource RPU_2 is released by hardware thread
T 3, the software implementation of T 6 can be switched to its
hardware implementation with the aid of SPREAD.

To enable the extended operating system kernel to manage
hardware threads at runtime, we propose an approach based
on the idea of a stub thread. As the software delegate of
a hardware thread, a stub thread is created at the same
time as its corresponding hardware thread. A stub thread can
be used to redirect the streaming communication primitives
within the extended operating system kernel to a specific
hardware thread, and to monitor HTI. For a switchable thread,
the software and hardware implementations with identical
functional behavior coexist within a stub thread, which makes
SW/HW switching easy and controllable. The streaming-based
HTI, coupled with a stub thread, allows hardware threads
to be managed via an extended operating system kernel in
the same way as software threads, while keeping streaming
threads running efficiently. The design of a stub thread will
be explained in Section IV-D.

As the dynamically interconnected streaming channels rep-
resent different streaming structures, it is easy for program-
mers to leverage thread parallelism, data parallelism, and
pipeline parallelism in a unified view of threads. Thread par-
allelism can be naturally exploited for streaming applications,
which consist of software threads and hardware threads run-
ning independently and concurrently. Data parallelism can be
exploited by allocating RPUs to duplicated hardware threads
and programming them in a single program multiple data
(SPMD) fashion. SPREAD also allows programmers to create
a producer thread and a consumer thread in a pipeline parallel
fashion. The ability to exploit multiple kinds of parallelism

2182 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 2. Streaming-based partially reconfigurable system architecture.

enhances programming flexibility and performance through
improved utilization of RPU resources and point-to-point
streaming interconnections.

IV. HIERARCHICAL DESIGN OF SPREAD

Fig. 1(b) provides an overview of SPREAD for streaming
applications. This section will introduce each part of SPREAD
in detail.

A. Partially Reconfigurable System Architecture

Fig. 2 depicts the architecture of a streaming-based partially
reconfigurable system, which consists of a CPU, several RPUs,
an external SDRAM, a configuration controller, and other
peripherals. Software threads and the operating system are
running on the CPU. Compared with the CPU, RPUs are
reconfigurable computing resources for coarse-grained hard-
ware threads, which can be dynamically created, terminated,
or switched during runtime.

In order to support high throughput communication for
stream-oriented hardware threads, a control interface and two
streaming interfaces are provided separately in a hardware
thread interface. The bus-based control interface is used for
SW/HW switching and status monitoring. Two streaming
interfaces are provided for full-duplex, synchronous point-
to-point communication, through which a hardware thread
can communicate with another thread, whether software or
hardware, in an efficient way.

For SPREAD, a FIFO is employed as the local memory of
each hardware thread, while the external SDRAM region is
allocated for global data sources and storage of computation
results. The inter-thread communication can be implemented
based on a predefined streaming channel through the point-
to-point streaming interconnection. In addition, this point-to-
point streaming interconnection can be dynamically configured
at runtime according to data dependency among threads. For
example, the interconnection configured on the left side of

Fig. 3. HTI architecture.

Fig. 2 can be used to implement the streaming computation
on the right side. Apart from the simultaneous access issue, a
streaming path eliminates the dataflow bottleneck commonly
found in a system bus, making our partially reconfigurable
architecture simple and efficient for streaming applications.

The architecture proposed here makes it easy to con-
figure streaming threads in different programming struc-
tures, such as split-join, pipeline, and feedback loop. Fur-
thermore, the proposed HTI not only supports hardware
thread customization and high throughput communication,
but also facilitates thread, data, and pipeline parallelism
exploitation.

B. Hardware Thread Customization and Adaptation

A partially reconfigurable system typically comprises an
area (base region) for a static base system and one or more

WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2183

Fig. 4. State transitions of a running hardware thread.

partially reconfigurable regions (PR regions) for RPUs, such
that hardware threads are executed on RPUs. For a given user-
defined hardware task (UHT), a unified HTI is proposed to
integrate a UHT into the system without incurring a significant
performance loss. This stream-oriented HTI structure supports
efficient inter-thread communication, while facilitating the
unified thread management and runtime SW/HW switching.

The HTI consists of the communication and control inter-
face (CCI) in the base region and the task controller (TC)
in the PR region, as shown in Fig. 3. The communication
macros within CCI provide static routing channels. A hardware
thread can connect to these routing channels via predefined
connection points for communication. Besides a bus interface
for thread control and status monitoring, there are two point-
to-point streaming interfaces covering both communication
between two hardware threads, and communication between a
hardware thread and a software thread. The data streams that
a hardware thread operates on are grouped into packets, which
consist of a large sequence of data items. A data item is the
smallest unit of computation in a UHT. The TC is responsible
for dealing with stream computation behavior and SW/HW
switching at runtime.

At the heart of the HTI, the State Controller realizes the
possible state transitions according to the pthread-compatible
semantics, READY, RUN, and WAIT. A running hardware
thread reads data from IN_FIFO, performs computation, and
writes results to OUT_FIFO. IN_FIFO and OUT_FIFO are
provided for data buffering, while enabling blocking to take
place in inter-thread communication.

The state transfer of a running hardware thread is described
in Fig. 4. Since a data-driven hardware thread is characterized
by regular processing of data streams, there are mainly
four states in the State Controller, which are similar to
that of a software thread. A hardware thread enters into
the READY state after successfully created or reset, and

it will turn into the RUN state upon receiving a start of
packet transfer signal (hw_tx_start). While in the RUN state,
when IN_FIFO is empty or OUT_FIFO is full, a hardware
thread will immediately assert an hw_stream_transfer signal,
blocking itself, and entering into the WAIT state. A hardware
thread will return to the RUN state upon receiving an
hw_transfer_done signal. Additionally, a hardware thread
could go back to the READY state upon receiving a cmd_stop
command from the operating system kernel or an hw_rx_stop
signal from the streaming interface.

For switchable threads that could change their implemen-
tation style from hardware to software, the State Controller
also provides SW/HW switching support. Since each data item
expires after being processed, the hardware thread context can
be captured using the OUT_FIFO and the snapshot registers.
The snapshot registers include a data item counter to show
runtime progress and thread parameters. While in the SWITCH
state, snapshot registers can be read out together with the
processed data items within the OUT_FIFO.

The hardware thread customization flow is provided in
SPREAD. First, a given UHT in the form of an RTL code
or a netlist is integrated with the TC to produce a hardware
thread entity. Design optimizations for on-chip communication
infrastructure can also be included [16]. Second, the pro-
posed streaming structure with point-to-point interconnections
and the hardware thread entities are synthesized with RTL
synthesis tools. The output netlists of the base system and
the hardware threads, as well as RPU layout information,
constitute the input to a partially reconfigurable system design
tool, such as Xilinx PlanAhead. Third, the full bitstream of
the system and partial bitstreams of the hardware threads are
produced. The partial bitstreams can be dynamically loaded
when creating a hardware thread at runtime.

C. Operating System Kernel Extension

Since traditional operating systems regard hardware tasks as
devices, streaming application programmers are required not
only to manipulate inter-task communication and synchroniza-
tion according to the customized device driver, but also to deal
with issues of resource allocation and task management. Thus,
it is difficult to exploit different kinds of parallelism, partial
reconfigurable flexibility, and SW/HW switching adaptability.

Hardware threads in streaming applications form a virtual
hardware thread library where partial bitstreams targeting all
available RPUs are stored. The dynamic resource allocation
can be achieved by means of one-to-many mappings between
a hardware thread and the available RPUs. Based on these
considerations, an extended operating system kernel is pro-
vided to manage computing resources, hardware threads, and
streams.

1) Reconfigurable Computing Resource Management: In
our approach, the RPUs shown in Fig. 2 are regarded as
reconfigurable computing resources, which can be allocated
to hardware threads (including switchable threads) during
runtime.

An extended resource manager is responsible for tracking
the changing status of the RPUs. An Idle RPU can be

2184 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Algorithm 1 Definition of the HTCB

dynamically allocated to a newly created hardware thread
without manual intervention. Once a hardware thread is suc-
cessfully created, the corresponding RPU will be transferred
from the Configured state to the Allocated state. This RPU
will be released and returned to the Idle state after the
hardware thread finishes. Configuration hit would occur when
the released RPU is reallocated to the same hardware thread
executed before.

A partially reconfigurable architecture would have a large
impact on the throughput of streaming computations, espe-
cially when hardware threads are created at runtime. A con-
figuration cache mechanism is employed to reduce hardware
thread creation time. Considering possible configuration hits
during runtime, the identification of a hardware thread is
recorded in the resource allocation table (RAT). If a con-
figuration hit takes place when creating a hardware thread,
there is no need to load the partial bitstream and the hardware
thread creation time will be significantly decreased. Otherwise,
a configuration miss occurs and the RPU will be reconfigured
with the corresponding partial bitstream.

2) Hardware Thread Management: A streaming applica-
tion consists of software threads and hardware threads. It is
necessary to manage all software and hardware threads based
upon our partially reconfigurable architecture.

The hardware thread manager is built on the extended
hardware thread control block (HTCB), which tracks state
changes of all hardware threads. The HTCB data structure
is shown in Algorithm 1. The pointer to HTCB is added to
the pthread structure in the operating system kernel, which
simplifies hardware thread management.

3) Stream Management: The data stream is built on a full
duplex streaming channel between two threads. In order to
expose streams and their logic connections to application
programmers, stream management is offered as a service for
software threads and hardware threads.

The stream manager allows flexible point-to-point intercon-
nection between two threads, and provides support for stream-
ing communication. It supports the FIFO style buffer and
the corresponding semaphores for streaming communication
between two software threads. At the same time, the LocalLink
interface [17] and buffer descriptor manipulation are employed
for SW→HW, HW→SW, and HW→HW streaming commu-
nications.

D. Pthread-Compatible SPREAD Programming Model

Based on the extended operating system kernel, a unified
SW/HW multithreaded programming model is proposed for
hardware thread creation and termination, streaming commu-
nication as well as SW/HW switching. Through a light-weight
programming library, programmers can describe pipeline,
split-join, and feedback loop stream structures easily through
dynamically established streaming channels, and exploit the
inherent parallelism and runtime SW/HW switching in stream-
ing applications.

The essential programming support of SPREAD is
described below.

1) Hardware Thread Creation and Termination: It is the
responsibility of the extended hardware thread manager to deal
with the hardware thread creation and termination. Dynamic
resource allocation occurs when a hardware thread is created
via API hwthread_create(). If configuration hits, the released
RPU is allocated immediately with configuration reuse. If
configuration misses, an RPU is allocated to a newly cre-
ated hardware thread according to its attribute settings. It is
assumed that the priority of an unswitchable hardware thread
is higher than that of a switchable thread.

If a RPU is successfully allocated to a hardware thread, the
partial bitstream of this hardware thread will be loaded and
the corresponding stub thread will be created. If there is no
RPU resource available for unswitchable thread creation, API
hwthread_create() will search for the hardware implementa-
tion of the switchable thread for resource preemption. The
implementation style of the preempted switchable thread can
be changed through its stub thread. A successfully created
hardware thread will stay in active hardware thread list until
termination. It will be added to the idle hardware thread list
on termination for the sake of configuration reuse.

For a newly created switchable thread, if there is no RPU
resource available, it will turn to software implementation.
When an RPU resource is available, this software implemented
switchable thread is scheduled for hardware execution accord-
ing to the priority scheduling policy.

2) Streaming Communication Support: Streams provide a
simple and efficient way of communication for software
threads and hardware threads. As depicted in Algorithm 2,
API stream_create() creates a streaming channel for a pair of
threads, and returns an identifier. Thus, two threads, whether
implemented in hardware or in software, can operate on a
streaming channel and are coordinated based on the same
stream identifier. The following are possible results when a
data packet is transferred from the sender thread to the receiver
thread.

1) If both threads are implemented in software, the sender
thread first puts the data packet into the predefined data
FIFO via the available memcpy() function, then the
receiver thread gets the data packet from this data FIFO
by memcpy(). The inter-thread synchronization is based
on traditional semaphore support with FIFO “empty”
and “full” status.

2) If two threads are implemented in hardware and soft-
ware, a synchronous, point-to-point connection, and a

WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2185

Algorithm 2 Stream Creation Process

DMA engine can be used for transmitting and receiving
data packets on a stream. The synchronization here
depends on the built-in synchronous streaming interface
in HTI.

3) When a data packet is directly transferred from one
hardware thread to another, as the streaming interfaces
are synchronized by virtue of the FIFO within each HTI,
the streaming channel is dynamically configured when
a stream is created.

After a stream is successfully created, the programmer can
aggregate data items into packets before the transmission
starts. To support efficient communication between threads,
SPREAD offers a push/pull mechanism for moving high-
volume data streams. Fig. 5 shows a SPREAD-based multi
threaded example, involving AES encryption, where one
software thread produces the data while the unswitchable AES
hardware thread encrypts the data; another software thread
consumes the data.

Within the main process shown in Fig. 5, the streaming
channel SC1 and SC2 are dynamically created. Programmers
can use API stream_open() to request streaming communi-
cation service and open a particular streaming channel in
either read or write mode. Once the stream is opened and
acknowledged, the producer thread uses API stream_out() to
write a data packet to a previously opened stream, while
the consumer thread uses API stream_in() to read a data
packet from the stream. The size of the data packet to be
sent is also passed as an argument. For unswitchable hard-
ware thread responsible for AES data encryption, the stream
input and output operations are automatically implemented
within HTI, thus the stub thread only needs to perform status
monitoring.

3) Stub Thread Enabled SW/HW Switching: When design-
ing streaming applications, there are two possibilities. One is
that a computation kernel can be implemented in software and
hardware, and the implementation style of this kernel is not
determined at design time on account of the changing environ-
ments. The other is that the kernel depends on other software

threads for data input and output. Under these conditions, the
computation kernel can be created as a switchable thread. At
run time, a switchable hardware thread with low priority can
be preempted by another hardware thread with higher priority
to meet the real-time constraints.

In SPREAD, a stub thread enabled SW/HW switching
method is used to improve runtime adaptability. The stub
thread itself provides a unified wrapper for the hardware and
software implementations within a switchable thread. There
are three states in a stub thread: 1) a switchable thread running
in hardware; 2) SW/HW switching; and 3) a switchable thread
running in software. SW/HW switching occurs if resource
preemption occurs during the process of RPU allocation or
the required RPU resource is released. Programmers need
to deal with thread-specific context switching and stream
redirection, and add the necessary synchronization between the
hardware thread manager and the stub thread. However, fre-
quent changes in implementation style (i.e., switch thrashing)
will result in significant decrease in performance and increase
in CPU utilization. In order to prevent switch thrashing, the
number of switches is restricted to one in the hardware thread
manager.

An example of switchable hardware thread on AES encryp-
tion is shown in Fig. 6, where stub thread enabled HW→SW
switching is described. After receiving a switch notification
H2S_Switch from the hardware thread manager, the stub
thread immediately sends a cmd_switch signal to the switch-
able thread running in hardware, and reads the snapshot regis-
ters shown in Fig. 3. The switchable thread in hardware then
enters the “SWITCH” state and initiates context switching.
The context switching method is based on the sliding-window
pattern of streaming computation. Thus, there is no need
to deal with low-level state changes within the UHTs [18].
The stream-oriented thread context consists of data items that
have already been processed and data stored in user-defined
snapshot registers, which are transferred through the streaming
channel. When the context transfer is completed, the stub
thread will update the pointer to the stream buffer, and change
the stream address reference from SC1, SC2 to newly created
SC3 and SC4 (i.e., stream redirection). The use of stub threads
for stream update and redirection enables the implementation
style of a switchable thread to be seamlessly changed from
hardware to software and vice versa.

SW→HW switching is similar to the process discussed
above. The main difference is that the thread manager should
configure the hardware thread before sending the SW→HW
switching notification.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the flexibility and performance of streaming
applications designed with SPREAD, a partially reconfig-
urable system prototype has been developed on our custom
prototype board. Stream-driven cryptography applications are
implemented as test cases. Fig. 7 shows the architecture of our
system prototype and the FPGA floorplan.

The prototype is implemented in the Xilinx XC4VFX60
FPGA, where a PowerPC405 CPU, a multiport memory con-
troller (MPMC), several peripherals on the processor local

2186 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 5. Multithreaded example on AES encryption with SPREAD.

Fig. 6. Example of switchable hardware thread on AES encryption. (a) Stub thread enabled HW→SW switching. (b) Pseudo code of main process and the
stub thread.

bus (PLB), as well as hardware threads are all clocked at
100 MHz. Using the Xilinx EAPR design flow [19], the
prototype is designed with three RPUs and a base system. The
communication between an RPU and a base system is through
predefined bus macros. The UHT is abstracted to the hardware

thread through the HTI. The point-to-point streaming interface
within the HTI makes a hardware thread tightly coupled to its
corresponding sender or receiver thread, bypassing the tradi-
tional bottlenecks of the on-chip system bus. The partial bit-
streams of AES (aes_encryption), AES_INV (aes_decryption),

WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2187

Fig. 7. Partially reconfigurable system prototype. (a) System architecture.
(b) FPGA floorplan.

TABLE I

RESOURCE UTILIZATION OF A HTI

Name Number
of Slices

Number
of FF

Number
of LUT

Number of
BRAM

HTI 488 723 706 2

XC4VFX60 25280 50560 50560 232

Utilization 1.93% 1.43% 1.4% 0.86%

and DES (des_encryption/des_decryption) hardware threads
are produced through the thread customization flow. These
partial bitstreams are stored in the Compact Flash, and then
transferred to the SDRAM at system start-up. The HWICAP
is used for hardware thread configuration at runtime.

The Xilkernel 4.0 [20] is extended to provide RPU resource
management, multithreaded, and stream management. Hard-
ware threads are capable of time-sharing the available RPUs.
A hardware thread can be dynamically created, terminated, or
switched with the support of SPREAD. The SW/HW switching
method can adapt to the changing environment during runtime.
Moreover, the proposed stream-oriented HTI and synchronous
point-to-point connection contribute to different kinds of par-
allelism exploitation for further performance improvement.

A. HTI Resources Utilization

As shown in Table I, the resources used for an HTI are all
kept at a low level, accounting for 1.93%, 1.43%, 1.4%, and
0.86% of the total numbers of slices, flip flops, LUTs, and
BRAMs on the XC4VFX60, respectively.

B. Hardware Thread Creation Time

The creation time of a hardware thread consists of the
overhead on thread configuration, thread management as well
as the corresponding stub thread creation.

Table II gives the total creation time of three hardware
threads within our partially reconfigurable system prototype. It
can be seen that a large portion of the creation time is spent on
loading a partial bitstream when a configuration miss occurs.
The configuration time is large due to the limited throughput
of HWICAP, which processes configuration bitstreams. Based
on the PowerPC405 CPU with I-Cache/D-Cache enabled, the

TABLE II

HARDWARE THREADS CREATION TIME. 252758/241725/229878

BYTES IS THE SIZE OF AES/AES_INV/DES HARDWARE

THREAD

AES AES_INV DES

Configuration Time (ms) 22.14 21.85 20.75

HW Thread Management and
Stub Thread Creation Time (ms)

0.05 0.05 0.05

HW Thread Total Creation Time
with Configuration Miss (ms)

22.19 21.90 20.80

HW Thread Total Creation Time
with Configuration Hit (ms)

0.05 0.05 0.05

Fig. 8. Inter-thread communication bandwidth comparison between SPREAD
and ReconOS.

TABLE III

TOTAL PROCESSING TIME WHEN DATA SIZE = 4M BYTES

SW Thread with
I-Cache/D-Cache

Enabled (ms)

HW Thread with
SPREAD (ms)

Speedup

AES 15687.68 58.65 267.48

AES_INV 24186.88 58.65 412.39

DES 4648.96 112.39 41.36

average time for a software thread creation is 19.2 us with the
default settings of API pthread_create(). When a configuration
hit occurs, the total creation time of a hardware thread is
almost 50 us; the same order of magnitude as that of a software
thread.

C. Inter-Thread Communication Bandwidth

A hardware thread runs at 100 MHz, and the IN_FIFO and
OUT_FIFO within the hardware thread are organized with
32-b wide and 32-word depth. The streaming channel width
is 32-b. The communication bandwidth between two hardware
threads achieves 400M Bytes/s. The communication between
a software thread and a hardware thread involves the SDMA
controller within the MPMC, which employs the burst data
transfer mechanism and reaches almost 200M Bytes/s.

According to the testing results given in [14], Fig. 8
depicts the inter-thread communication bandwidth comparison

2188 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

TABLE IV

THROUGHPUT COMPARISON OF HW TASKS WITH DIFFERENT ARCHITECTURES AND TASK INTERFACES

System Proposed
by [23]

System Proposed
by [24]

System Proposed by [25] Our Prototype

FSL based
Interface

Bus based
Interface FSL based Interface

Bus based
Interface

HW Thread
designed with SPREAD

AES Throughput (Mbps) 70.95 261.6 31.68 10.39 545.61

DES Throughput (Mbps) / 280.8 23.71 5.19 284.72

between SPREAD and ReconOS. The HW→HW communica-
tion bandwidth provided by SPREAD is 3.14 times faster than
ReconOS with the aid of high-speed streaming interface of
the hardware thread. Furthermore, the communication channel
between two hardware threads is fixed in ReconOS, while the
streaming channels in SPREAD can be dynamically config-
ured for streaming applications.

Although the bandwidths of MEM→HW (burst read) and
HW→MEM (burst write) in ReconOS are comparable to
SW→HW and HW→SW in SPREAD, there are three main
differences between these two methods. First, since both burst
read and write operations in ReconOS are built on the bus
master access, the available CPU bandwidth will decrease as
the number of data transfer increases. SPREAD provides bus-
independent, full duplex point-to-point communication among
threads, which permits more concurrent data transfer while
the CPU is still highly available. Second, if there are multiple
hardware threads running concurrently which demand high
throughput inter-thread communication, ReconOS has two
limitations: serial arbitration for memory access and data
transfer on the system bus. In contrast, the MPMC employed
in SPREAD can simultaneously arbitrate all data transfer
requirements with a prior knowledge to efficiently use the
DDR memory. Third, in order to transfer large quantities of
data to and from a hardware thread, ReconOS needs explicit
synchronization on frequent data partitioning and transfers.
SPREAD-based communication via a streaming channel can
be implicitly synchronized by the HTI interface.

D. Hardware Thread Execution

To demonstrate the feasibility and performance of hard-
ware threads designed with SPREAD, UHTs are pro-
vided for cryptographic hardware thread customization and
adaptation. The AES task [21] takes 128-b key and
128-b data as input, performing a complete ciphering sequence
in 12 cycles. The DES task [22] takes 56-b key, 64-b data as
input and generates a 64-b result. It needs 16 cycles to com-
plete a full encryption/decryption sequence. The maximum
throughput of the AES/DES task is 1.02 Gb/s/381.47 Mb/s
at a frequency of 100 MHz.

Once a hardware thread is dynamically created with
SPREAD, there are mainly three phases for stream process-
ing: streams reading from a sender thread, data processing,
and result writing to a receiver thread. Stream processing is
repeated to deal with a large amount of data according to the
application requirement.

As shown in Table III, when compared with software threads
using I-Cache and D-Cache, the performance of hardware

Fig. 9. Throughput of dynamically created hardware threads with the data
size increased from 4 KB to 16 MB.

threads greatly benefits from the abundant fine-grained paral-
lelism and efficient bit-level operations offered by the FPGA,
as well as the streaming support from SPREAD.

Table IV gives the throughput comparison of the
AES and DES hardware tasks with different system
architectures and task interfaces. The throughput of the
AES/DES hardware thread designed with SPREAD achieves
545.61 Mb/s/284.72 Mb/s, which is 54%/75% of the maximum
throughput. Our approach has demonstrated superior hardware
performance over FSL-based and system bus-based hardware
accelerators [23]–[25]. SPREAD can help user-defined hard-
ware tasks achieve high performance through the stream-
oriented communication interface.

As far as the whole lifecycle of hardware threads is con-
cerned, besides the total processing time shown in Table III,
the thread creation time in Table II should be added when
ciphering algorithm is changed at runtime. Fig. 9 shows the
throughput of a dynamically created hardware thread with the
data size increased from 4 KB to 16 MB.

It can be seen that the throughput is not greatly affected by
thread creation when a configuration hit occurs. The hardware
thread configuration time with a configuration miss is in the
range of tens of millisecond, which has a large impact on
throughput especially when data size is small. The throughput
of the hardware thread grows linearly as data size increases
when a configuration miss arises. It is noticed that although
the hardware thread with higher throughput is more sensitive

WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2189

TABLE V

NUMBER OF CLOCK CYCLES NEEDED FOR SWITCHING

SW/HW ON AES ENCRYPTION

SW→HW
Switching

HW→SW
Switching

Context Transfer (cycles) 6834 575

Stream Update and Redirection
(cycles)

1053 1280

Total (cycles) 7887 1855

to the thread creation overhead, the impact of this overhead
will be reduced with the increase of data size. Additionally,
as shown in Table II, there is only a slight difference between
the creation time of the AES and AES_INV hardware threads,
thus the throughput of these two threads shown in Fig. 9 is
nearly equal when a configuration miss occurs.

E. Switchable Thread Execution

In order to illustrate the feasibility of the proposed SW/HW
switching method, we have implemented two switchable
threads on AES encryption and decryption. With the uni-
fied stub thread wrapper, a software implementation and a
hardware implementation with identical functions are pre-
pared for the SW/HW thread switching during runtime. Tak-
ing switchable thread on AES encryption as an example,
Table V lists the number of clock cycles needed for SW/HW
switching.

The total number of cycles spent on SW/HW switch-
ing is obtained by measuring the time for context transfer,
stream update, and redirection. The overhead of the SW→HW
switching and the HW→SW switching are 78.87 and 18.55
µs, which are acceptable for streaming applications to improve
runtime adaptability. Because the software implementation
usually needs more time to reach the SWITCH state when
compared with the hardware implementation, the time for
context transfer on the SW→HW switching is larger than the
HW→SW switching.

For a switchable thread implemented in software style when
created, the execution time of this switchable thread would be
largely decreased if SW→HW switching occurs and a large
portion of data streams is redirected to hardware process-
ing. The proposed switching method combines the extended
hardware thread manager and the stub thread, making use of
the available RPU resources to improve runtime adaptability
while providing performance improvement through SW→HW
switching. For a newly arrived switchable thread started in
hardware implementation, it can be preempted by another
unswitchable thread and turns to software implementation to
improve overall system responsiveness.

F. Coarse Level Parallelism Exploitation

SPREAD provides support for thread parallelism when
software threads and hardware threads running independently
and concurrently. Besides thread parallelism, it is easy for
programmers to exploit coarse-grained data parallelism and
pipeline parallelism on available RPUs. This section will

TABLE VI

3DES EXECUTION TIME COMPARISON WHEN DATE SIZE = 4M BYTES

Implementation
Time
(ms)

System
Proposed
by [25]

FSL based 3DES Accelerator 2443.18

Bus based 3DES Accelerator 7444.89

FUSE [13] 3DES HW Task with LKM Loading 703.89

3DES HW Task without LKM Loading 691.89

Our
Prototype

3DES SW Thread
with I-Cache/D-Cache Enabled 14387.20

3DES Implementation
with three Pipelined DES HW Threads

(Configuration Miss)
179.96

3DES Implementation
with three Pipelined DES HW Threads

(Configuration Hit)
112.54

present the results on the 3DES and AES implementations
by exploiting pipeline parallelism and data parallelism on our
prototype.

Since there are insufficient resources for the 3DES design
within a single RPU, we implement 3DES with three pipelined
DES threads on three RPUs. Table VI lists the execution time
of the different 3DES implementations for processing 4 MB
of data.

More than 80 times speedup is observed for the 3DES
implementation over the software thread on our proto-
type. The speedup is due to the support of coarse-grained
pipeline parallelism with SPREAD, as well as the fine-
grained parallelism within FPGA. Taking advantage of differ-
ent kinds of parallelism and high throughput streaming chan-
nel, the proposed 3DES implementation provides more than
an order of magnitude improvement over the FSL-based and
system bus-based accelerators [25]. It also shows superior
performance compared with FUSE-based 3DES hardware
task [13].

AES encryption is also implemented to illustrate the support
for data parallelism. Data load is uniformly distributed over
concurrent running hardware threads, which are designed
in an SPMD fashion. Fig. 10 gives the execution time of
the parallelized AES encryption. When a configuration hit
occurs, the parallelized implementation achieves significant
improvement in performance, particularly for large data size.
In the case of a configuration miss, the execution time of
parallelized implementation with multiple threads is larger
than a single thread when the data size is small. With the
increase of data size, the influence of the configuration time
will decrease, and the parallelized AES encryption will show
performance advantage.

As far as the degree of parallelism is concerned, we observe
that the speedup is nonlinear with the increasing degree of
parallelism. Although all memory banks can be open at the
same time, and the data source and destination are located
in different memory banks, the time for data transfer is
largely influenced by the increasing number of simultaneous

2190 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 10. Execution time of the parallelized AES encryption for different data size.

TABLE VII

THROUGHPUT AND POWER EFFICIENCY COMPARISON OF AES/DES/3DES DESIGN ON DIFFERENT PLATFORMS

Task Platform
Clock
Freq

(MHz)

Power∗
(W)

Programming
Support

Throughput
(Mbps)

Power
Efficiency
(Mbps/W)

AES TMS320C6201 DSP [26] 200 1.70 linear assembly code implementation 112 65.88

Intel Pentium IV CPU [28] 2260 58.00 crypto library base API 410 7.07

SPI Storm SP16-G160 [35] 500 7.00 SPC 1.104-O3 1120–
1260 160–180

Nvidia GeForce 8800 GTX GPU [30] 1350 177.00 CUDA with T-Box optimization 8280 46.78

Proposed Partially Reconfigurable System 100 5.85 SPREAD base HTI and programming library 1140 194.87

DES TMS320C6201 DSP [32] 200 1.70 linear assembly code implementation 52 30.59

Intel Pentium IV CPU [28] 2260 58.00 crypto library base API 296 5.10

Nvidia GeForce GTX 260 GPU [33] 1242 182.00 CUDA 4821 26.49

Proposed Partially Reconfigurable System 100 5.74 SPREAD base HTI and programming library 698 121.60

3DES TMS320C6201 DSP [32] 200 1.70 linear assembly code implementation 22 12.94

Intel Pentium IV CPU [28] 2260 58.00 crypto library base API 107 1.84

SPI Storm SP16-G160 [35] 500 7.00 SPC 1.104-O3 210–280 30–40

Nvidia GeForce 9800 GTX GPU [34] 1688 140.00 CUDA 4500 32.14

Proposed Partially Reconfigurable System 100 5.50 SPREAD base HTI and programming library 284 51.64
∗Max TDP is used for the power consumption of TMS320C6201 DSP [27], Intel Pentium IV CPU [29] and Nvidia GeForce series GPU [31],

the evaluation result from Xilinx XPower is given for our design.

memory access and the amount of row conflicts. The peak
throughput of our parallelized AES implementation is 1140
Mb/s, achieving over two times speedup when compared
with the single-thread implementation. The implementation
makes use of three AES hardware threads running in paral-
lel with high throughput, point-to-point streaming intercon-
nections. The results further demonstrate the feasibility and
the advantages of SPREAD in exploiting different kinds of
parallelism.

VI. COMPARISON AND DISCUSSION

This section provides a comparison of the throughput and
the power efficiency of different AES/DES/3DES designs on

popular computing platforms, including TMS320C6201 DSP,
Intel Pentium IV 2.26G CPU, SPI Storm stream processor,
and Nvidia GeForce GPU.

Table VII shows that the power efficiency of the parallelized
AES/DES/3DES hardware threads is superior to other comput-
ing platforms. The reasons behind these results come from the
stream-oriented hardware thread interface and different kinds
of parallelism exploitation.

In addition to the comparison given above, we summa-
rize the features of SPREAD from both the architecture
design and programming model points of view. Table VIII
presents a comparative study on BORPH, FUSE, ReconOS,
and SPREAD. The results show that SPREAD provides high

WANG et al.: SPREAD: A STREAMING-BASED PARTIALLY RECONFIGURABLE ARCHITECTURE AND PROGRAMMING MODEL 2191

TABLE VIII

COMPARATIVE STUDY ON BORPH, FUSE, RECONOS AND SPREAD

Method Streaming Communication Support Programming Support

Communication Structure, Mechanism Throughput Configurable
Interconnection

SW/HW
Switching

Coarse Level Parallelism Exploitation

BORPH [11] Message passing interface,
General file I/O

Low Yes No Pipeline Parallelism

FUSE [13] Bus based interface,
Memory mapped I/O

Medium No No Not Addressed

ReconOS [14] Bus based interface and HW FIFO,
Shared memory / Message queues etc

Medium No No Thread / Pipeline Parallelism

SPREAD Streaming-based interface,
Extended stream programming library

High Yes Yes Thread / Data / Pipeline Parallelism

throughput streaming communication, stub thread enabled
SW/HW switching, and support for exploiting multiple kinds
of parallelism. These features contribute to improving hard-
ware efficiency and runtime adaptability.

VII. CONCLUSION

This paper introduced SPREAD, a streaming-based par-
tially reconfigurable architecture and programming model
for simplifying the development of streaming applications,
which demand both hardware efficiency and reconfigurable
flexibility. SPREAD provided high throughput, dynamically
interconnected streaming channels at structure level, as well as
reconfigurable computing resource/stream/thread management
at operating system level.

Through SPREAD, programmers can describe stream-
ing applications in a unified SW/HW multithreaded model,
exploiting the inherent parallelism to increase performance,
while enabling SW/HW switching to improve runtime adapt-
ability. Results from our experiments on cryptography appli-
cations demonstrated that the power efficiency offered by
SPREAD is much better than the state-of-the-art GPUs. The
proposed unified SW/HW interface makes programming with
hardware threads easy, by removing the need to deal with low-
level design details. Compared with other solutions, SPREAD
can provide SW/HW switching, while achieving optimized
hardware efficiency through high throughput communication
and different kinds of parallelism.

Although the proposed design method was demonstrated on
a Xilinx Virtex-4 FPGA, it can be applied to other FPGAs with
partially reconfigurable capability. Currently, we are exploring
the “one-to-many” and “many-to-one” streaming interconnec-
tions to enable a wide range of applications for SPREAD.
Moreover, we plan to include necessary error checking logic
within the HTI and self-healing services within the operating
system kernel, to improve system reliability.

REFERENCES

[1] A. S. Zeineddini and K. Gaj, “Secure partial reconfiguration of FPGAs,”
in Proc. IEEE Conf. Field-Program. Technol., Dec. 2005, pp. 155–162.

[2] M. Fons, F. Fons, and E. Canto, “Fingerprint image processing acceler-
ation through run-time reconfigurable hardware,” IEEE Trans. Circuit.
Syst. II, Exp. Briefs, vol. 57, no. 12, pp. 991–995, Dec. 2010.

[3] A. Ahmad, B. Krill, A. Amira, and H. Rabah, “Efficient architectures
for 3D HWT using dynamic partial reconfiguration,” EURASIP J. Syst.
Archit., vol. 56, no. 8, pp. 305–316, Aug. 2010.

[4] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and A. Dasu, “Dynam-
ically reconfigurable systolic array accelerators: A case study with
extended Kalman filter and discrete wavelet transform algorithms,” IET
Comput. Digital Technol., vol. 4, no. 2, pp. 126–142, Mar. 2010.

[5] R. Dimond, O. Mencer, and W. Luk, “Application-specific customisation
of multi-threaded soft processors,” IEEE Comput. Digital Technol., vol.
153, no. 3, pp. 173–180, May 2006.

[6] J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the streams-C C-
to-FPGA compiler: An applications perspective,” in Proc. ACM/SIGDA
9th Int. Symp. Field Program. Gate Arrays Conf., Feb. 2001,
pp. 134–140.

[7] R. Rinker, M. Carter, A. Patel, M. Chawathe, C. Ross, J. Hammes, W. A.
Najjar, and W. Bohm, “An automated process for compiling dataflow
graphs into reconfigurable hardware,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 9, no. 1, pp. 130–139, Feb. 2001.

[8] R. D. Chamberlain, M. A. Franklin, E. J. Tyson, J. H. Buckley, J. Buhler,
G. Galloway, S. Gayen, M. Hall, E. F. B. Shands, and N. Singla,
“Auto-pipe: Streaming applications on architecturally diverse systems,”
Computer, vol. 43, no. 3, pp. 42–49, Mar. 2010.

[9] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis,
L. Pozzi, J. Yeh, and J. Wawrzynek, “Stream computations organized
for reconfigurable execution,” Microprocess. Microsyst., vol. 30, no. 6,
pp. 334–354, Sep. 2006.

[10] M. Vuletic, L. Pozzi, and P. Ienne, “Virtual memory win-
dow for application-specific reconfigurable coprocessors,” IEEE Very
Large Scale Integr. (VLSI) Syst., vol. 14, no. 8, pp. 910–915,
Aug. 2006.

[11] H. So and R. Brodersen, “A unified hardware/software runtime environ-
ment for FPGA-based reconfigurable computers using BORPH,” ACM
Trans. Embedd. Comput. Syst., vol. 7, no. 2, pp. 1–6, Feb. 2008.

[12] D. Andrews, R. Sass, E. Anderson, J. Agron, W. Peck, J. Stevens, F.
Baijot, and E. Komp, “Achieving programming model abstractions for
reconfigurable computing,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 16, no. 1, pp. 34–44, Jan. 2008.

[13] A. Ismail and L. Shannon, “FUSE: Front-end user framework for O/S
abstraction of hardware accelerators,” in Proc. 19th IEEE Symp. Field-
Program. Custom Comput. Mach., May. 2011, pp. 170–177.

[14] E. Lubbers and M. Platzner, “ReconOS: Multithreaded programming for
reconfigurable computers,” ACM Trans. Embedd. Comput. Syst., vol. 9,
no. 1, pp. 1–23, Oct. 2009.

[15] The ISO POSIX Working Group, IEEE Standard ISO/IEC 9945, Mar. 9,
2002.

[16] M. Koester, W. Luk, J. Hagemeyer, M. Porrmann, and U. Ruck-
ert, “Design optimizations for tiled partially reconfigurable systems,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 6,
pp. 1048–1061, Jun. 2011.

[17] Local Link Interface Specification. (Jul. 2005) [Online]. Available:
http://forums.xilinx.com/t5/Connectivity/Local-Link-Interface-Specific-
ation/td-p/146342.html

2192 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

[18] H. Chun-Hsian, H. Pao-Ann, and S. Jih-Sheng, “Model-based platform-
specific co-design methodology for dynamically partially reconfigurable
systems with hardware virtualization and preemption,” J. Syst. Arch.,
vol. 56, no. 8, pp. 545–560, Aug. 2010.

[19] Early Access Partial Reconfiguration User Guide.
(Sep. 2008.) [Online]. Available: http://www12.informatik.uni-
erlangen.de/esmwiki/images/f/f3/Pr_flow.pdf

[20] Xilkernl 4.0, (Nov. 2007) [Online]. Available:
http://www.xilinx.com/support/ documentation/ sw_manuals/xilinx12_3/
ug758.pdf

[21] AES Project. (2012) [Online] Avaliable: http://www.opencore.org
[22] DES Project. (2012) [Online] Avaliable: http://www.opencore.org
[23] I. Gonzalez, E. Aguayo, and S. Lopez-Buedo, “Self-reconfigurable

embedded systems on low-cost FPGAs,” IEEE Micro, vol. 27, no. 4,
pp. 49–57, Aug. 2007.

[24] C. Pedraza, J. Castillo, J. I. Martinez, P. Huerta, and C. S. L. Lama,
“Self-reconfigurable secure file system for embedded linux,” IET Com-
put. Digital Technol., vol. 27, no. 4, pp. 461–470, Nov. 2008.

[25] I. Gonzalez and F. J. Gomez-Arribas, “Ciphering algorithms in
microblaze-based embedded systems,” IEE Comput. Digital Technol.,
vol. 153, no. 2, pp. 87–92, Mar. 2006.

[26] T. Wollinger, M. Wang, J. Cuajardo, and C. Paar, “How well are high-
end DSPs suited for the AES algorithm?” in Proc. 3rd AES Candidate
Conf., Apr. 2000, pp. 94–105.

[27] TMS320C62x/C67x Power Consumption Summary. (Jul. 2002) [Online].
Available: http://www.ti.com/lit/an/spra486c/spra486c.pdf

[28] Z. Li, R. Iyer, S. Makineni, and L. Bhuyan, “Anatomy and performance
of SSL processing,” in Proc. IEEE Int. Symp. Perf. Anal. Syst. Softw.,
Mar. 2005, pp. 197–206.

[29] Intel Pentium 4 Processor. (2012) [Online]. Avaliable:
http://ark.intel.com/products/27435/

[30] S. A. Manavski, “CUDA compatible GPU as an efficient hardware
accelerator for AES cryptography,” in Proc. IEEE Int. Conf. Signal
Commun., Nov. 2007, pp. 65–68.

[31] NVIDIA Inc. (2012) [Online]. Avaliable: http://www.geforce.com/
Hardware/

[32] Data Encryption Standard (DES) Implementation on
the TMS320C6000. (Nov. 2000) [Online]. Available:
http:// www.ee.ic.ac.uk/ pcheung/ teaching/ ee3_Study_Project/ DES%20
Implementation%28702%29.pdf

[33] G. Agosta, A. Barenghi, F. D. Santis, and G. Pelosi, “Record setting
software implementation of des using CUDA,” in Proc. 7th Int. Conf.
Inf. Technol., Apr. 2010, pp. 748–755.

[34] G. Liu, H. An, W. Han, G. Xu, P. Yao, M. Xu, X. Hao, and Y. Wang, “A
program behavior study of block cryptography algorithms on GPGPU,”
in Proc. 4th Int. Conf. Frontier Comput. Sci. Technol., Dec. 2009,
pp. 33–39.

[35] G. Xu, H. An, G. Liu, P. Yao, M. Xu, W. Han, X. Li, and X. Hao, “Per-
formance and power efficiency analysis of the symmetric cryptograph
on two stream processor architectures,” in Proc. 5th Int. Conf. Intell.
Inf. Hiding Multimedia Signal, Sep. 2009, pp. 917–920.

Ying Wang received the B.S. degree from Xidian University, Xian, China, the
M.S. degree from the East-China Institute of Computer Technology, Shanghai,
China, and the Ph.D. degree from Fudan University, Shanghai, in 1999, 2005,
and 2009, respectively, all in computer science.

She continued her research on partial reconfiguration in the State Key
Laboratory of ASIC and System, Fudan University, as a Post-Doctoral
Researcher, from 2009 to 2012. Her current research interests include com-
puter architecture, the development of partially reconfigurable systems, and
computing resource virtualization.

Xuegong Zhou received the B.S. and Ph.D. degrees in computing science
from Fudan University, Shanghai, China, in 1989 and 2007, respectively.

He joined Fudan University in 2007, where he is currently a Research
Assistant with the State Key Laboratory of ASIC and System, and the School
of Microelectronics. His current research interests include logic synthesis and
reconfigurable computing.

Lingli Wang (M’99) received the M.S. degree from Zhejiang University,
Hangzhou, China, in 1997, and the Ph.D. degree from Edinburgh Napier
University, Edinburgh, U.K., in 2001, both in electrical engineering.

He was with Altera European Technology Center for four years. In 2005,
he joined Fudan University, Shanghai, China, where he is currently a Full
Professor with the State Key Laboratory of ASIC and System in the School
of Microelectronics. His current research interests include logic synthesis,
reconfigurable computing, and quantum computing.

Jian Yan received the B.S. degree in telecommunication from Shanghai
University, Shanghai, China, in 2011. He is currently pursuing the M.S. degree
with the School of Microelectronics, Fudan University, Shanghai.

His current research interests include partially reconfigurable hardware
accelerator customization, and system-on-chip design.

Wayne Luk (F’09) received the M.A., M.Sc., and D.Phil. degrees in
engineering and computing science from the University of Oxford, Oxford,
U.K.

He is a Professor of computer engineering with the Department of
Computing, Imperial College London, London, U.K., and leads the Custom
Computing Group there. He is also a Visiting Professor with Stanford Univer-
sity, Stanford, CA. His current research interests include theory and practice of
customizing hardware and software for specific application domains, such as
media processing, networking, and finance. Further information can be found
in: http://cc.doc.ic.ac.hk.

Chenglian Peng received the B.S. degree in mathematics from Fudan
University, Shanghai, China, in 1964.

He was a Visiting Scholar with Erlangen University, Erlangen, Germany, in
1994. He is a Professor with the School of Computer Science and Technology,
Fudan University. His current research interests include computer architecture,
design automation of digital systems, and fault tolerant computing.

Jiarong Tong received the B.S. degree in physics from Fudan University,
Shanghai, China, in 1965.

He was a Visitor with Electronics Data Systems, Plano, TX, from 1988
to 1989. He served as a Visiting Scholar with Texas University, College
Station, in 1995. He is a Professor with the Department of Microelectronic,
former Dean of the Microelectronic School, Fudan University. His current
research interests include reconfigurable computing, computer-aided design of
integrated circuits, FPGA architecture, and digital integrated circuit design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

