
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013 2193

Multiplierless Algorithm for Multivariate Gaussian
Random Number Generation in FPGAs

David B. Thomas, Member, IEEE, and Wayne Luk, Fellow, IEEE

Abstract— The multivariate Gaussian distribution is used to
model random processes with distinct pair-wise correlations, such
as stock prices that tend to rise and fall together. Multivariate
Gaussian vectors with length n are usually produced by first
generating a vector of n independent Gaussian samples, then
multiplying with a correlation inducing matrix requiring O(n2)
multiplications. This paper presents a method of generating
vectors directly from the uniform distribution, removing the need
for an expensive scalar Gaussian generator, and eliminating the
need for any multipliers. The method relies only on small read-
only memories and adders, and so can be implemented using
only logic resources (lookup-tables and registers), saving multi-
pliers, and block-memory resources for the numerical simulation
that the multivariate generator is driving. The new method
provides a ten times increase in performance (vectors/second)
over the fastest existing field-programmable gate array gener-
ation method, and also provides a five times improvement in
performance per resource over the most efficient existing method.
Using this method, a single 400-MHz Virtex-5 FPGA can generate
vectors ten times faster than an optimized implementation on a
1.2-GHz graphics processing unit, and a hundred times faster
than vectorized software on a general purpose quad core
2.2-GHz processor.

Index Terms— Field-programmable gate array (FPGA),
Monte Carlo simulation, multivariate samples, random number
generation.

I. INTRODUCTION

THE multivariate Gaussian distribution is used to capture
simple correlations between related stochastic processes,

such as the stock prices of companies in similar business
sectors, where the stock prices of companies in the sector
tend to rise and fall together. To simulate the behavior of such
processes, multivariate Gaussian random number generators
(MVGRNGs) are used to generate random samples, which are
then used to drive Monte Carlo simulations. Such simulations
often require a huge number of independent runs in order to
provide an accurate answer, such as the value-at-risk calcu-
lations performed by financial institutions, which are used to

Manuscript received February 18, 2012; revised July 29, 2012; accepted
October 18, 2012. Date of publication January 11, 2013; date of current
version October 14, 2013. This work was supported in part by the U.K. Engi-
neering and Physical Sciences Research Council under Grant EP/D062322/1
and Grant EP/C549481/1, and Alpha Data and Xilinx.

D. B. Thomas is with the Department of Electrical and Electronic
Engineering, Imperial College London, London SW7 2AZ, U.K. (e-mail:
dt10@ic.ac.uk).

W. Luk is with the Department of Computing, Imperial College London,
Imperial College London, London SW7 2AZ, U.K. (e-mail: wl@doc.ic.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2228017

estimate how much money the institution might lose over the
next day.

Such long-running simulations are an ideal target for field-
programmable gate array (FPGA) acceleration, as they offer
abundant parallelism, and are computationally bound [1]–[3];
however, they are reliant on a fast, resource-efficient, and accu-
rate source of random samples from the multivariate Gaussian
distribution. This paper improves on previous methods
[4], [5] for FPGA-based MVGRNG, by developing a method
that provides a large increase in performance, while limiting
resource usage to standard bit-wise logic elements.

Our key contributions are:

1) an algorithm for generating samples from the multivari-
ate Gaussian distribution using only uniform random
bits, table-lookup, and addition;

2) a hardware architecture for implementing an MVGRNG
using only lookup-tables (LUTs) and flip-flops (FFs),
which allows a regular densely-packed placement strat-
egy and achieves 500 MHz+ clock speeds;

3) correction methods for achieving the correct statistical
properties, even when using small fixed-point tables;

4) an evaluation of the statistical properties of the table-
based MVGRNG, demonstrating that the algorithm
and correction methods produce high quality random
vectors;

5) a comparison with two existing FPGA generation meth-
ods, showing more than ten times the performance of
the fastest method, and five times the performance per
resource of the most efficient method;

6) a comparison of FPGA generation performance with
GPU and CPU implementations, showing the FPGA
can provide ten times the performance of an optimized
GPU generator, and a hundred times that of a quad-core
SIMD-optimized CPU generator.

This paper was originally presented in a conference
paper [6]; this paper provides a much better intuitive under-
standing of how the generator point-set operates (Section III),
includes more detail about how to correct for finite-precision
effects in tables and measures the run-time cost of creating
them (Section V), and adds a resource efficient method for
loading new matrices at run-time without requiring configura-
tion bit-stream manipulation (Section IV).

II. MULTIVARIATE GAUSSIAN RANDOM NUMBERS

Generation of the univariate Gaussian distribution with
a specific mean, μ, and variance, σ 2, is achieved by first

1063-8210 © 2013 IEEE

2194 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

generating a standard Gaussian variate r with mean zero and
variance one, then applying a linear transformation

x = σr + μ (1)

where r ∼ N(0, 1). Note that the standard Gaussian variate is
multiplied by the standard deviation (SD) σ , rather than the
variance σ 2.

Generation of a multivariate Gaussian distribution is very
similar, except in this case, each output sample is, a length n
vector x. The mean and variance also increase in dimension, so
the mean is a length n vector m, and the variance becomes an
n × n covariance matrix �. The covariance matrix is a
symmetric matrix, which captures the variance of each output
component on the diagonal, and the correlations between each
component on the off-diagonal elements.

Generation is similar to the univariate linear transform,
except the starting point is a vector r of n independent iden-
tically distributed (IID) standard Gaussian random numbers

x = Ar +m. (2)

The matrix A is conceptually similar to the SD: just as the
variance is the SD squared, so AAT = �. However, in the
multivariate case there is considerable freedom in the selection
of A, as there are many ways of decomposing �.

One method is to perform Cholesky decomposition of
the correlation matrix, producing a lower-triangular matrix.
This choice has computational and storage advantages: only
n(n + 1)/2 of the elements are nonzero and must be stored, so
only n(n + 1)/2 multiplications are required. A disadvantage
is that the Cholesky decomposition only works with positive
definite covariance matrices �-many matrices constructed
from estimates may be singular or very close to singular [7].

An alternative method is to use the singular value decom-
position (SVD) algorithm. This decomposes the matrix into
an orthogonal matrix U and a diagonal matrix S, such that
� = USUT . This decomposition allows the construction of
the solution A = U

√
S. The disadvantage of the SVD-based

construction is that in general all the elements of the matrix
are nonzero, resulting in an n2 cost in both the number of
stored elements, and in the number of multiply-accumulates
per transformed vector. However, the SVD algorithm is able
to handle a wider range of covariance matrices, such as
ill-conditioned matrices that are very close to singular, and
reduced rank matrices, where the output vector depends on
fewer than n random factors. Such difficult covariance matrices
frequently occur in practice [7], so this paper focuses on the
use of a dense SVD-style decomposition.

III. GENERATION USING LUTS AND ADDERS

The standard generation method uses direct matrix multipli-
cation, forming each output element from a linear combination
of r (the vector of n IID Gaussian samples)

xi = mi +
n∑

j=1

ai, j r j , i ∈ 1, . . . , n. (3)

If there is no advance knowledge about the covariance matrix
and the SVD decomposition is used, this requires n2 multiply-
accumulations. In addition, this method also requires the

generation of the n elements of r, which are IID standard
Gaussian samples. Both the generation of r and the multi-
plication with A require significant resources (i.e., DSPs and
block-RAMs in an FPGA), so simplifying the process and
reducing the resource cost is highly desirable.

The method proposed in this paper is that, instead of
generating expensive independent Gaussian samples and then
inducing the desired covariance structure with n2 multiplica-
tions, cheap uniform samples will be converted to correlated
Gaussian samples using n2 table-lookups. Each table contains
a pre-calculated discretized Gaussian distribution with the
correct SD, so the only operations required are table-lookups
and additions.

The following text frequently refers to tables, which in this
context means an array of read-only elements (a ROM) which
will be implemented in the FPGA using LUTs. Unless other-
wise specified, each table contains k elements, and is indexed
using the syntax L[i] to access table elements L[1], . . . , L[k].
Where arrays of tables are used, sub-scripts identify a table
within the array, which can then be indexed as for a standalone
table, e.g., L2,3 [4]. Tables can also be interchangeably treated
as discrete random number generators, where the discrete PDF
of each table is given by assigning each element of the table an
equal probability of 1/k. For example, if u is an IID uniform
sample between 0 and 1, a random sample x from table L is
generated as

x = L [�uk�] (4)

where u ∼ U(0, 1). The central idea of this method is to
construct an n × n array of tables G, such that the discrete
distribution of each table Gi, j approximates a Gaussian dis-
tribution with SD Ai, j

Gi, j ∼ N(0, Ai, j). (5)

Now instead of starting from a Gaussian vector r, the input is
an IID uniform vector u. Generation of each output element
uses each element of u as a random index into the table, then
sums the elements selected from each table

xi = mi +
n∑

j=1

Li, j
[�u j k�

]
, i ∈ 1, . . . , n. (6)

In practice k will be selected to be a power of 2, so each
element of u is actually a uniform integer constructed from
the concatenation of log2(k) random bits.

The simplest method of generating a table-based approxi-
mation to the Gaussian distribution is direct cumulative distri-
bution function (CDF) inversion. To generate a table L with
SD σ , table elements are chosen according to

L[i] = σ�−1(i/(k + 1)), i ∈ 1, . . . , k (7)

where �−1(.) is the Gaussian inverse CDF. The table G
corresponding to a given target matrix A can then be specified
as

Gi, j [z] = Ai, j �
−1(z/(k+1)), i, j ∈ 1, . . . , n, z ∈ 1, . . . , k.

(8)
Construction of G allows the direct transformation of uniform
samples (random bits) into multivariate Gaussian samples
using 6, requiring only table-lookups and addition.

THOMAS AND LUK: MULTIVARIATE GAUSSIAN RANDOM NUMBER GENERATION IN FPGAs 2195

Fig. 1. Comparison of random correlated points from a traditional random number generator to the fixed lattice of a table-based bivariate generator with
16 elements per table.

Fig. 2. Comparison of the CDF of a univariate 16-element table against the
marginal CDF of a bivariate generator using two 16-element tables, showing
convergence to the continuous CDF.

Replacing continuous samples with discrete tables means
that the output distribution range is no longer continuous;
instead, each sample is drawn from within a discrete multidi-
mensional lattice. Fig. 1 shows an example of this process.
On the left is a set of samples drawn from a standard
bivariate random number generator using 2, showing that there
is no structure to the set of points.

The right side shows the point-set for a bivariate table using
two tables with k = 16, and the contrast with the continuous
version is clear. Each sample corresponds to randomly select-
ing one of the discrete points in the lattice and returning the x
and y co-ordinates as the random vector. The point-set seems
alarmingly regular, but it is important to remember that the
application consuming the random samples actually observes
the marginal distribution, i.e., the projection onto each axis.

Fig. 2 shows the effect of this projection process, by graph-
ing the CDF of the marginal distribution. The stepped line
shows the raw CDF of the univariate 16-point table, showing
clear discontinuities. However, the marginal distribution of the
bivariate table is much closer to the continuous version, and
appears (visually, at least) much more continuous.

This smoothing process increases with both the number of
dimensions and the size of each table, as the number of points
in the lattice grows as kn . As will be described in the next
section, modern architectures will efficiently support k = 128,
so even for a bivariate generator, the point set can contain 214

points. For higher dimension sets with n ≥ 2 the point-set
grows rapidly, and in Section VI a more rigorous analysis is
applied to show that the achieved quality is good enough for
use in Monte Carlo simulations.

IV. HARDWARE ARCHITECTURE

The central idea in this paper, of replacing Gaussian
samples and multipliers with uniform samples and tables,
allows for many types of possible implementations. For exam-
ple, the tables can be implemented using LUTs or block-
RAMs, and the generator can vary in throughput from 1 to n
cycles per generated vector. This paper focuses on the highest
performance mode of the generator, to provide the maximum
contrast with previous implementations, while still providing
good efficiency and quality.

The specific choices made are as follows.

1) Logic Resources Only: tables are implemented using
LUTs, so the only resources used are LUTs and FFs
(no DSPs or block-RAMs).

2) Parallel Generation: the generator operates in a fully
parallel mode, providing one new n-element vector per
cycle, unlike previous approaches which generated one
vector for every n cycles.

3) Maximum Clock Rate: the generator operates at the
maximum realistic clock-rate for the target FPGA. For
the Virtex-5 this is effectively 550 MHz, as this is the
maximum clock rate of the DSP and RAM blocks that
will be used in the simulation that the generator is
driving.

4) Regular Architecture: simulations typically consume
almost all resources in the FPGA (due to replication
of simulation cores), and a regular, explicitly placed,

2196 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 3. Tiled hardware architecture for table-based generation.

highly routeable, and generator allows fast place-and-
route while still achieving high overall clock-rate.

5) No Matrix Specialization: the generator is not optimized
for a specific correlation matrix, and should support the
loading of any correlation structure without structural
modification.

The table-based generator maps naturally into a regular
pipelined structure, shown in Fig. 3. At the top is a random
bit source, which generates a new vector u for every cycle.
The elements of u are broadcast vertically down through the
cells, and used to select one element from each table. The
selected elements are then accumulated horizontally from left
to right by implementing the function si, j = si, j−1 + Li, j [u j],
resulting in a new vector output at the right every cycle.
Each node in the grid is very similar to a KCM constant
coefficient multiplier, though due to the specialized table
entries it performs a more complicated function.

This LUT-based architecture is very small, but there are still
tradeoffs in terms of area versus quality, where quality can
be interpreted as the number of table elements–if k is larger,
then the marginal distributions will be closer to the Gaussian
and appear less discrete. In Section IV-B, a low-area solution
is examined, but first a higher quality method is examined,
which aims to maximize the number of elements.

A. Quality Optimized Architecture

A useful optimization for increasing the effective number
of elements per table is to take advantage of the symmetry of
the tables. If the tables have a mean of zero, they have the
property that L[i] = −L[k − i + 1], so it is only necessary
to store the elements L[1], . . . , L[k/2]. The half-table is now
indexed by all but the most-significant bit of the uniform index,
while the most significant uniform bit is used to select whether
the table value is added or subtracted from the accumulator.
Note that the values stored in the table must be signed, so
that it is possible to encode both positive and negative values
from A. This optimization doubles the effective table size of
each LUT; for example, a Virtex-5 6-LUT can support a 128
element table, rather than just 64.

Fig. 4. Resource usage for different vector lengths and table widths.

The exact resource utilization can be calculated from the
following parameters and assumptions.

1) Table elements have width wt .
2) Accumulators have a width wa = wt + �log2 n�.
3) Each LUT can implement a 1 × k bit LUT (using the

symmetry optimization).
4) The uniform generator is implemented using a LUT-

optimized RNG [8], requiring one LUT-FF pair per
uniform bit.

The resource usage of the generator then breaks down as:

1) uniform RNG: n log2 k;
2) tables: n2wt ;
3) accumulators: n2wa = n2(wt + �log2 n�).

Total resource utilization for the entire random number gen-
erator is

n(log2 k + n(2wt + �log2 n�)). (9)

This describes the number of LUTs, the number of FFs,
and also the number of fully-occupied LUT-FF pairs, as all
elements use a LUT connected to a FF.

Fig. 4 charts the increase in resource utilization as n
increases, for table widths from 8 to 20. Also shown are the
number of LUT-FF pairs in the smallest (xl5vlx30), interme-
diate (xc5vlx110), and largest (xc5vlx330) Virtex-5 parts.

In principle it is possible to reach dimensions up to around
100 in a large Virtex-5, such as the xc5vlx330, but it is impor-
tant to remember that the generator has to drive something,
and it probably has to be on the same FPGA. A generator
with n = 100 and wa = 8 running at 550 MHz will generate
55 Gb/s of data, so it would be very difficult to dedicate an
entire FPGA to multivariate generation and ship the vectors
elsewhere. So the practical maximum is around n = 64.

The regularity of the architecture makes it simple to explic-
itly place all components in the generator, reducing the load
on the place-and-route tools, and making it much easier to
achieve high clock-rates for the overall design. In this paper,
the simple placement strategy shown in Fig. 6 is used, where
the accumulator is simply stacked on top of the table.

B. Area-Optimized Architecture

Both the Virtex-5 and Stratix-6 FPGA architectures support
LUTs, which can be fractured in some way. In Virtex-5, each

THOMAS AND LUK: MULTIVARIATE GAUSSIAN RANDOM NUMBER GENERATION IN FPGAs 2197

Fig. 5. Tightly packed RNG cell implementations for Virtex-5 and Stratix-6,
combining both table and adders into one LUT.

6-LUT actually contains two outputs: one (O6) is a 6-LUT,
while the other (O5) is a 5-LUT, which shares five of the O6
inputs. These two outputs are connected to a carry-mux and
XOR-gate, allowing each dual-output LUT to add any two of
its inputs. However, the extra three LUT inputs can also be
used, so it is possible to perform a 16-element table lookup
before performing the add, by feeding in the four-bit uniform
index along with the accumulator bit to be accumulated. The
top of Fig. 5 shows this approach, with z representing the bit
index within a given accumulator.

The Stratix-V architecture uses a fracturable adaptive logic
module (ALM), which can combine multiple smaller LUTs
into two 6-LUTs with four common inputs, and also supports
full-adders on the carry chain. Unfortunately the full-adder
occurs before the components of the 6-LUT are re-combined,
meaning that only the output of the earlier 4-LUTs is available.
This means that a single ALM can implement two bits of
an RNG cell with k = 16, shown in the bottom of Fig. 5,
with z and z − 1 representing consecutive bits within an
accumulator.

Both these packing methods can be implemented by the
vendor’s synthesis tools, providing an absolute saving of wt n2

over the resources given by 9. This approximately halves the
relative resource cost, but comes at the cost of reducing table
size from 128 to 16. Given the previous method is already so
cheap in terms of area, the high-quality version is evaluated
in the rest of this paper, as the area-optimized version is
only appropriate when a designer is willing to check that the
quality-area tradeoff is acceptable in their application.

Fig. 6. Practical dense placement for quality-optimized hardware realization.

C. Implementation Results

The quality-optimized architecture has been described in
VHDL, using Virtex-5 primitives with relationally placed
macro (RPM) constraints. When mapped into hardware, the
resource utilization exactly matches the predictions of 9.
For all n ≤ 16 and wt ≤ 16, this strategy provides
550-MHz operation in an xc5vlx330 device (post place-and-
route timing).

As n grows larger, the fan-out of the uniform generator
lines begins to reduce the clock rate, as each uniform bit must
drive n ROM address bits spread over a tall column. The
overall shape of the RPM’d grid may also fit poorly into a
given device; for example, it may become too tall or wide, or
specialized devices, such as DSP columns may intrude.

Fortunately, the regular data-flow in the architecture, com-
bined with the IID property of the uniform random inputs,
makes it simple to both insert buffering and to fragment the
grid. An arbitrary number of registers can be inserted into the
left to right path through the accumulators, as long they are
inserted on vertical lines through the architecture. Similarly
the top to bottom path from the uniform generators can be
buffered with an arbitrary number of register levels, as long
as the total delay from each uniform output bit to each ROM
input is the same.

The approach used here is to scale generators up using
a two-level structure, where the overall generator is formed
from a grid of smaller sub-generators. Each sub-generator
uses the relatively placed design shown in Fig. 6, with the
maximum path being FF-LUT-FF. Each sub-generator grid is
then packaged as a single component, with registers on all the
inputs. Fig. 7 shows this architecture for n = 9 with 3 × 3
sub-generators.

This two-level decomposition has three key advantages
when generating large vectors. First, it allows the majority of
the logic to be relatively placed, while still providing freedom
to the placer to adapt to the specific device. Second, all the

2198 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 7. Two-level pipelined decomposition of generator for large n.

connections between sub-generators are direct FF-to-FF paths,
providing more slack to the place-and-route tools. Finally, the
fan-out of the uniform generator is reduced to the number of
sub-generators, rather than the number of elements.

Using this approach, any generator with wt = 16 and
n ≤ 64 that occupies 90% or less of a Virtex-5 device’s logic
resources provides 550-MHz performance (from post place-
and-route timing analysis, using highest speed grade part).
This holds true for all device sizes tried, up to and including
the xc5vlx330 device.

In the largest devices, the limiting factor is the 550-MHz
global clock limits, not the generator itself; for smaller devices
which support 710-MHz global clocks, the generator logic
becomes the limit. In the xc5vlx85 observed reported clock
rates exceeded 600 MHz when using a 550-MHz target con-
straint. However, 550 MHz is the useful maximum clock rate,
as it is extremely unlikely that any circuit which is receiving
the random vectors will be able to operate above 550 MHz.

D. Run-Time Loading of Tables

The proposed structure uses RAMs to store the tables, but so
far contains no explicit means of modifying the tables at run-
time. In a Monte Carlo simulation, each distinct correlation
matrix will be used for many millions or billions of cycles,
so it is important to make sure that very few resources are
dedicated just to changing matrices.

One method with zero resource overhead is to use bit-
stream manipulation to modify the contents of the tables
directly, simplifying the circuit, and reducing resources. As the
covariance matrix is entirely specified by the table contents,
the only part that needs to be modified is the contents of the
LUTs containing the tables, with no changes to routing or
other more complex parts of the architecture. Modifying LUT
values is simply a case of directly changing bits within the
bit-stream before FPGA configuration, and is very fast, much
quicker than the actual reconfiguration.

When bit-stream modification is unacceptable, there are two
simple possibilities for modifying the covariance matrix using
on-chip circuitry. One option in the Virtex-5 family is to
configure the table LUTs as SRL32 primitives. This allows
the table data to be shifted in serially with no extra logic per
cell, but has the disadvantage of reducing the effective table

width to k = 64 (as the SRL32 can only act as a 32 entry
table). If data is fed into the table one table entry (i.e., w-bits)
per cycle, then it requires at least n2k cycles. For example,
with n = 16, k = 64, and a clock rate of 550 MHz, this
would require 0.03 ms.

A better option, which is appropriate for Altera architectures
and also allows full use of all 64 elements of the LUT-RAMs
in Xilinx architectures, is to treat the LUTs as RAMs, and
explicitly write to each address in turn. However, great care
must be taken to ensure that the resource cost of the O(n2) part
of the grid remains unchanged, by re-using existing resources
within each grid cell.

Fig. 8 demonstrates one technique for achieving this without
requiring any extra resources per cell. Part (a) shows the
modified architecture - the only additions to the basic cells are:

1) a data-path from the output of the accumulator to the
input of the RAM;

2) a new synchronous clear signal for the output register
of the RAM, shared among all cells;

3) a new write enable signal for the RAM, shared among
all cells.

These new signal paths utilize existing inputs of the logic,
and the shared control signals can be controlled with a single
state machine shared for the whole array. The control signals
must fan-out to n2k locations, but can be pipelined with
a single one-bit register per island of Fig. 7 for very little
overhead, or in modern architectures can often use the spare
registers present in each CLB.

Given these additional paths, the matrix can be loaded over
k phases, with each phase loading one table entry across the
entire grid. Within each phase 1 ≤ z ≤ n, the steps are:

1) assert the reset signal of the RAM output register,
forcing it to zero [Fig. 8(b)]. Now any data passed along
the accumulator chain will remain unchanged, forming
a shift-register through the accumulators;

2) the tables entries Gi,n [z], Gi,n−1[z], . . . , Gi,1 are fed
into the chain on successive cycles [Fig. 8(c)].

3) once all entries are in the correct accumulator register,
the address z is fed in through the ui input, and all
table entries for the z index are written [Fig. 8(d)]. This
exploits the fact that LUT-opt generators already contain
a shift register used for state initialization, and so can
be used to present any pattern u1, . . . , un at the RAM
address inputs.

After all entries have been loaded, the two control signals are
both set to zero, and each cell reverts to the standard generation
mode [Fig. 8(e)].

At a minimum each phase requires n cycles, with a band-
width of wn bits per cycle, for a total loading time of nk
cycles. However, the table entries must be sourced from
external IO or an off-chip RAM, so it is more practical to
stream the data one w-bit word per cycle, resulting in a
minimum configuration time of n2k cycles, the same as the
serial loading technique. In the implementation developed for
this paper, there is a small over-head between phases, resulting
in a minimum loading time of (n2 + 3)k cycles, and an
overhead of approximately 25 LUTs to implement the state
machine.

THOMAS AND LUK: MULTIVARIATE GAUSSIAN RANDOM NUMBER GENERATION IN FPGAs 2199

(a) (b) (c) (d) (e)

Fig. 8. Direct loading matrices of matrices into LUT-RAMs. (a) Uninitialised. (b) Begin loading entry 2. (c) Finish loading entry 2. (d) Write entry 2.
(e) Generate numbers.

V. FINITE-PRECISION EFFECTS

The generation algorithm described in Section III is asymp-
totically correct, but the architecture described in Section IV
introduces limits due to the constraints of real hardware. The
first problem is that, in practice, tables must be relatively
small (k ≤ 216), which affects the accuracy of the Gaussian
approximation provided by 7. The second problem is that
the tables must be stored in a finite-width fixed-point format,
which will also affect the accuracy of the approximation. This
section shows how to control the effects of these practical
limitations by modifying the table contents–no changes to the
hardware architecture are required.

A. Correction of Table Moments

The inversion method for generating table-based Gaussian
approximations (7) is simple, but in practice is not very good.
As k →∞ this approximation converges on the normal distri-
bution, but for practical values of k, the approximation is rather
bad. In particular, the second and fourth central moments
(variance and kurtosis) are too small, as the approximation
does not extend very far into the tails.

The SD (i.e.,
√

variance) in particular is very important, as
the marginal SD of each element of the multivariate output is
derived from the sum of the SDs of the components used to
build it. It is important to realize that although the central
limit theorem (CLT) states that the sum of increasing IID
variates converges to some Gaussian distribution, it does not
necessarily converge on the specific parametrization of the
Gaussian hoped for by the user. To ensure the marginal SD of
each element is correct, the marginal SD of each table element
must be as precise as possible.

The raw central moments of a table can be calculated as

μ1(L) = 1

k

k∑

i=1

L[i] (10)

μd(L) = 1

k

k∑

i=1

(L[i] − μ1(L))d . (11)

If the table is symmetric and k is divisible by two, as in the
optimization suggested in Section IV-A, then L[i] = −L[n +
1 − i]. This means that all the odd moments, from mean,
skewness, and up, reduce to zero. With a mean of zero, the
even moments reduce to

μd (L) = 1

k

k∑

i=1

L[i]d . (12)

Transforming the table to give a SD of 1 can be achieved by
scaling all table elements by some linear factor c1 to produce
a new table L ′

1 = μ2(L ′) = 1

k

k∑

i=1

(c1L[i])2 = c2
1

k

k∑

i=1

L[i]2. (13)

If the sum of powers of the original table is defined as a
constant scalar value

L(d) =
k∑

i=1

L[i]d (14)

this results in

k = c2
1 L(2) c1 =

√
k

L(2)
. (15)

This gives a simple linear correction for correcting the SD of
a given table.

However, it is better to transform the table into a new table
L ′, such that the new table matches both the variance and
kurtosis of the standard (unit SD) normal

μ1(L ′) = 0 μ2(L ′) = 1 μ3(L ′) = 0 μ4(L ′) = 3. (16)

Correcting the kurtosis is desirable because many properties
of convergence in simulations rely on the accuracy of the
moments. In addition, correcting the kurtosis of the tables
provides a measurable improvement to the accuracy of the
marginal PDFs at the outputs, as shown later in Section VI.

The table can be transformed by applying a cubic polyno-
mial stretch to the entries, using only odd powers to preserve
symmetry

L ′[i] = c1L[i] + c3 L[i]3. (17)

2200 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

To match the moments of the transformed table, the following
two constraints must be satisfied:

1 = μ2(L ′) = 1

k

k∑

i=1

(
c1L[i] + c3 L[i]3

)2
(18)

3 = μ4(L ′) = 1

k

k∑

i=1

(
c1 L[i] + c3L[i]3

)4
. (19)

Expanding and rearranging 18 gives

k =
k∑

i=1

(
c2

1 L[i]2 + 2c1c3L[i]4 + c3 L[i]6
)2

(20)

= c2
1

k∑

i=1

L[i]2 + 2c1c3

k∑

i=1

L[i]4 + c2
3

k∑

i=1

L[i]6. (21)

Equation 19 can be similarly decomposed into terms contain-
ing independent sums of powers.

The solution (c1, c3) can then be found as the roots of a
polynomial system with two unknowns

k = c2
1 L(2) + 2c1c3L(4) + c2

3 L(6) (22)

3k = c4
1 L(4)+ 4c3

1c3 L(6)+ 6c2
1c2

3 L(8)

+4c1c3
3 L(10)+ c4

3 L(12). (23)

Such systems can be solved with automated root finders, for
example the algsys function supplied with Maxima [9]. If the
chosen root finder can only achieve a close approximation (for
example, for this problem, the algsys method only achieves a
relative error of around 10−8), then the problem is relatively
well-behaved near the roots, so Newton–Raphson polishing
can reduce the error level to any degree desired.

Table I shows the cubic corrections for binary-power sized
tables from eight up to 65 536, with the uncorrected entries
calculated according to 7. The full procedure for calculating
G′, the cubic corrected tables, is:

1) identify the relevant (c1, c3) from Table I;
2) form the uncorrected set of tables G, using 8;
3) create G′ using the cubic transform

G′i, j [z] = c1Gi, j [z] + c3Gi, j [z]3,
i, j ∈ 1, . . . , n, z ∈ 1, . . . , k.

The given corrections all result in a relative error for both SD
and kurtosis of less than 10−13.7, assuming double precision
calculations. The typical error is closer to 10−15, but values
around k = 8192 caused Maxima’s Newton–Raphson polisher
to fail. A rational approximation was used to interpolate
between accurate values for c1 and c3 on either side, but
resulted in slightly lower accuracy for this point.

Although it is possible to create tables with nonbinary power
sized tables, there is no real need, as it is too expensive
to generate random indices to index such tables. For table
sizes below eight, the suggested correction method does not
converge, but arguably a table size of eight is the minimum
one might use–the vast majority of FPGAs use four-LUTs or
higher, so 16 is likely to be the smallest table size used in
practice.

TABLE I

CONSTANTS FOR CORRECTING VARIANCE AND KURTOSIS OF GAUSSIAN

LUTS WITH DIFFERENT SIZES

k c1 c3 Err(m6) Err(m8)

8 0.5537484093 2.777255135e−1 10−1.1234 10−0.4005

16 0.8554643151 8.028744579e−2 10−1.5606 10−0.6602

32 0.9348314060 3.311529112e−2 10−1.9499 10−0.9244

64 0.9669892318 1.567406031e−2 10−2.3248 10−1.1981

128 0.9823454399 7.954369226e−3 10−2.7023 10−1.4875

256 0.9903017451 4.193257348e−3 10−3.0909 10−1.7969

512 0.9946065355 2.256665408e−3 10−3.4954 10−2.1286

1024 0.9969885562 1.227048219e−3 10−3.9180 10−2.4835

2048 0.9983200415 6.698532817e−4 10−4.3593 10−2.8618

4096 0.9990662611 3.657104498e−4 10−4.8193 10−3.2625

8192 0.9994836866 1.992237068e−4 10−5.2970 10−3.6844

16 384 0.9997161525 1.081550890e−4 10−5.7911 10−4.1260

32 768 0.9998448719 5.847915319e−5 10−6.3002 10−4.5853

65 536 0.9999157029 3.148687468e−5 10−6.8229 10−5.0608

It would be better if higher even moments above kurtosis
were correct, but we were unable to find a simple and
computationally tractable method of solving for a higher order
correction that could also correct the sixth moment. However,
the behavior of the higher even moments should have a lesser
effect on most simulations, as the sampling distributions of
the higher moments have very high variance.

B. Conversion to Fixed-Point

The cubic table correction can be used to match the first four
moments of the Gaussian distribution to very high precision,
but only if the elements of the table are also stored with
high precision. In principle, the tables could be stored in
hardware in double-precision, but in practice this would be
wildly inefficient, requiring n2 double precision adders. For
efficiencies’ sake, the tables must be held in fixed-point, both
to reduce storage requirements and to allow efficient addition.

A straightforward approach is to simply round each table
element to the nearest fixed-point number, but this could distort
the moments of the table: if a large majority of the elements
happen to be rounded up to the next representable value then
both the SD and kurtosis will become too large. The table-
based multivariate RNG is particularly sensitive to the SD of
each component table, as this directly affects the quality of
the resulting correlation matrix, so a more effective rounding
method is needed.

This section proposes a simple and direct approach to
rounding, which gives good results while taking time linear
in the number of table elements. The process starts with the
naively rounded table, then visits each table element from
largest to smallest, flipping the rounding choice whenever it
will reduce the error in the SD. Note that the symmetry of the
table must be preserved to keep the mean of the table at zero
and avoid skewness.

Algorithm 1 provides pseudo-code for the process. The
inputs to the algorithm are L, a symmetric table of k elements,
and the target SD σ . The rounding of individual elements is

THOMAS AND LUK: MULTIVARIATE GAUSSIAN RANDOM NUMBER GENERATION IN FPGAs 2201

Algorithm 1 Round Table to Fixed-Point
s ← 0, A← 0k

for i = 1, . . . , k do
(L[i], A[i])← round(L[i]) {Closest is L[i], alt. is A[i]}
s ← s + L[i]2 {Update sum of squares}

end for
for i = 1, . . . , k/2 do {Loop over one half from big to
small}

s′ ← s − 2L[i]2 + 2A[i]2 {Sum of sqr. if elt is flipped}
if |s′/k − σ | < |s/k − σ | then {More accurate?}

L[i] ← A[i]
L[k − i + 1] ← −A[i] {Ensure symmetry}
s ← s′ {Update sum of squares}

end if
end for

0.0001

0.001

0.01

0.1

1

10

Ti
m

e
(m

s)

Table Entries (k)

Fig. 9. Time to generate and correct one k-element table.

handled by the function round, which rounds elements to a
pair: the first element is the closest representable value, and
the second is the next closest value.

In the first loop, the algorithm rounds the table L in-place,
while building up a table of alternates A. In the second loop,
the algorithm examines the elements from largest to smallest
magnitude. For each element, the choice between keeping Li

or swapping to Ai is examined: if swapping reduces the error
in the SD then the element is changed (making sure to preserve
symmetry), and the sum of squares is updated. By iterating
from large to small elements, the algorithm has a chance to
correct larger errors at the start, then polishes the SD with
later smaller values.

Both the cubic correction and fixed-point correction times
are O(k), making the total time to generate tables O(n2k).
There is little variation in execution time due to w, so Fig. 9
shows the change in LUT generation time for increasing
k on a 3.4-GHz desktop PC. As expected, the time taken
increases linearly with k, meaning that even very large tables
are practical.

To provide an overall view of the time taken to change
a matrix, Fig. 10 measures the time taken to generate and
load a new matrix onto the FPGA for k = 128. It is
clear that generating the tables is the dominant factor, so if
necessary the table generation process could be parallelized,

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 5 10 15

Ti
m

e
(m

s)

Matrix size (n)

Total Time

Gen Time

Load Time

Fig. 10. Time taken to configure generator with a new correlation matrix,
with break-down for table generation time and loading time.

as generated each table can be treated as an independent task.
However, even with a nonparallel method, very large tables
can still be generated and loaded in ten milliseconds or less.

VI. STATISTICAL EVALUATION

The use of small LUTs to approximate Gaussian distrib-
utions raises some important questions about the quality of
the distribution that the generator actually produces. The three
main questions are as follows.

1) How accurate are the moments of the fixed-point cubic-
corrected Gaussian LUT for limited precision tables?

2) How close is the marginal distribution of each vector
element to the Gaussian distribution?

3) Does the correlation structure of the generator match the
original target correlation matrix?

This section investigates these questions, using analytical
methods where possible and empirical methods if required.

The first question is whether the methods described in
the previous section are actually effective for producing low-
resolution tables that accurately match a given Gaussian dis-
tribution. This is tested using a table with two integer bits,
and from zero to 16 fractional bits. This allows values in the
range [0, 4), and so can accommodate a unit-SD Gaussian
table for k ≤ 214, as the largest sample in the table is
L[k] = �−1(k/(k+1)), which after cubic correction is 3.847.

The effect of different numbers of fractional bits is tested by
starting with an SD of one, then mapping Gaussian distribu-
tions with progressively smaller SDs into the same table. Each
time the SD is reduced by half, it is equivalent to reducing
the number of fractional bits by one, so this gives information
about both the change in moment accuracy for different SDs,
and the change in accuracy for reduced precision tables.

Fig. 11 shows the change in SD relative error as the target
SD is reduced, using three different methods to produce a
table with k = 128: none (7), linear (15), and cubic (17).
The uncorrected table has an intrinsically inaccurate SD even
before rounding, but both linear and cubic methods achieve
a good relative error, degrading smoothly with decreasing
number of fractional bits, so Algorithm 1 does a good job
of preserving the target SD.

Fig. 12 shows the relative error in the kurtosis as the SD is
varied. Now the limitations of the linear correction are clear, as

2202 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

Fig. 11. Relative error of SD as number of fractional bits is reduced.

Fig. 12. Relative error of kurtosis as number of fractional bits is reduced.

it produces levels of error very similar to the uncorrected case.
However, the cubic corrected table shows the same smooth
increase in error as the number of effective fractional bits is
reduced, allowing the relationship between table precision and
the accuracy of the moments to be easily predicted.

The next question is whether the marginal distribution of the
vector elements has the Gaussian distribution; the CLT guaran-
tees that as more tables are accumulated (i.e., vector dimension
increases), then the outputs will become ever closer to the true
Gaussian distribution. However, the known theoretical bounds
on convergence are extremely conservative, so it is necessary
to determine what occurs in practice.

The marginal PDF of each vector element can be calculated
through convolution: each table describes a PDF on a discrete
range with k spikes of 1/k (assuming all table elements hold
distinct values), so the PDF of the sum of two tables is
determined by the convolution of the two table’s PDFs. This
convolution can be efficiently performed using a fast Fourier
transform (FFT), so an exact FFT using the NTL arbitrary pre-
cision library [10] was developed, allowing the exact marginal
PDF of each element to be determined analytically.

The tests used a table with k = 128 and a precision
wt = 14. More precision (i.e., wt > 14) can only result
in greater accuracy, but is not examined as the convolutions
become extremely slow, as each extra bit of precision doubles
the time taken to perform the convolutions. Vector sizes of
n = 1, . . . , 16 are considered, producing a unit SD marginal,
with each input factor contributing equal weight. As before,
tests are performed for the three different table correction
methods.

Fig. 13. Relative error of SD and kurtosis for differing vector dimension
and table correction methods.

Fig. 14. Maximum CDF error and implied sample size before failure of
Kolmogorov–Smirnov test for differing dimension and correction methods.

The exact SD and kurtosis can be extracted from the
PDF of the marginal distribution, allowing the error to be
calculated even for very high dimension generators. Fig. 13
shows the change in relative SD and kurtosis error as the vector
dimension is increased. As before, the SD of the uncorrected
method is poor, and remains poor as the dimension increases,
while the linear and cubic corrected method maintain good
accuracy independent of the dimension. The kurtosis of the
linear and uncorrected methods starts off poorly, but gradually
improves as the dimension increases, due to the CLT. The
cubic method provides a much more accurate initial kurtosis,
but then improves at a slower rate.

Another way of looking at the marginal distribution is to
consider the worst CDF error. The exact CDF can be extracted
from the PDF as a running sum, which defines the discrete
CDF at each representable fixed-point value. The discrete CDF
can then be compared with the target Gaussian CDF to find
the worst discrepancy between the two. Fig. 14 shows the
maximum CDF error as the dimension increases. The CLT
predicts inverse quadratic convergence to the true Gaussian
CDF as n→∞, but the observed convergence differs for each
correction method. For very small n, the uncorrected method is

THOMAS AND LUK: MULTIVARIATE GAUSSIAN RANDOM NUMBER GENERATION IN FPGAs 2203

actually more accurate, but for n > 3 the cubic method quickly
provides much better results, demonstrating the effectiveness
of correcting the kurtosis.

The maximum CDF error also provides a conservative
means of estimating the practical quality of the marginal PDF,
through the Kolmogorov–Smirnov (KS) test. Usually the KS
test is used to combine the worst error in the empirical CDF
and the sample size to provide a p-value (significance level).
However, this process can be inverted, using the known CDF
error and a p-value of 0.5 to estimate the number of samples
before KS test failure–this technique abuses the theory of the
KS test, and only gives a rough guide to the order of sample-
size that might cause failure; it does not predict a precise
failure point. This predicted sample size is shown on the right
axis of Fig. 14, but note that this is a pessimistic lower-bound
on sample size.

The final question is whether the correlation structure of the
generator matches the target correlation structure, or equiva-
lently: does the covariance matrix of the generator match the
target covariance matrix? In principle, the covariance matrix
of the generator could be recovered simply by calculating the
exact SD of each table in G after conversion to fixed-point.
However, this would only hold if the tables were very close to
Gaussian–in practice each individual table is a relatively poor
approximation to the Gaussian distribution, so it is possible
that the actual covariance matrix differs from that predicted
by the marginal SDs of the tables.

One option for extracting the exact covariance matrix is
Brute-force enumeration, but even for a moderate number of
dimensions this is computationally infeasible, so empirical
methods are required. Two metrics for empirical evaluation
of the correlation matrix proposed in previous work can be
used for the evaluation of multivariate Gaussian generators.

In [4], Fisher’s Z transform is used to examine the hypoth-
esis that each element of the empirical correlation matrix has
the same correlation as the target matrix. This results in an
n × n matrix of p-values–p-values should appear as uniformly
distributed values between 0 and 1, with values very close to
0 or 1 suggesting failure. The matrix of p-values can then be
reduced down to a single p-value using the Anderson–Darling
method. The advantage of this method is that it has a direct
statistical interpretation, and takes into account the number of
samples examined. The disadvantage is that it cannot be used
for comparison purposes, as it gives no absolute measure of
quality or accuracy.

An alternative approach is used in [5], where the correlation
matrix quality is measured using the mean squared error
(MSE) between the empirical matrix and the target matrix.
This metric has the advantage of simplicity, and provides
an absolute metric which can be used to compare different
generators. However, it has no statistical basis, and may assign
a poor generator a good score–two generators might produce
the same MSE, but one might spread the error over all matrix
elements, while the other concentrates it in just one. From a
statistical point of view, the former is much better than the
latter, but the MSE is not able to distinguish between the two.

Fig. 15 shows the results of both approaches, using n = 10
and a randomly generated matrix (for easier comparison with

Fig. 15. Empirical measurement of correlation quality for a ten-element
matrix as sample size is increased, showing mean square error of the empir-
ical correlation matrix and p-values for Anderson–Darling test of empirical
covariance matrix.

the results in [5]), with sample sizes from 210 vectors up
to 231. The left axis shows the empirical MSE, with a steady
decrease in MSE as the sample size is increased. Eventually it
appears to stabilize at an error of about 10−9, suggesting that
the average correlation error is 3× 10−4.

The points on vertical stalks show the p-values associated
with the sample size at which they were calculated, so
for easier interpretation the connected line shows the sorted
p-values. If the p-values are truly uniformly distributed, they
should form a roughly straight line when sorted. The results
of this test do not show any clear evidence for the hypothesis
that the empirical and target correlation matrices are different,
but the final p-value of 0.99 for a sample size of 231 is very
close to significance. The fact that the MSE also levels out
suggests that a critical sample size has been reached.

These tests suggest that inaccuracies in both the generator’s
correlation matrix and in its marginal PDFs become detectable
at around 231 samples. However, this does not mean that it
cannot be used for long-running simulations using much larger
numbers of vectors. These tests are designed specifically to be
sensitive to flaws, and most Monte Carlo simulations will not
be biased until a much larger sample size is reached.

VII. COMPARISON WITH RELATED WORK

Including this paper, there are three main approaches
to sampling from the multivariate Gaussian distribution in
FPGAs.

1) DSP-based [4]: Use DSPs to perform the dot product of
one column of A with r per cycle, requiring n cycles to
form the entire output vector x = Ar.

2) Custom-logic [5]: The covariance matrix A is analyzed
to create an architecture with optimized structure and
precision, which can be placed-and-routed to give a cir-
cuit specialized on the matrix that can generate samples
for every n cycles.

3) Table-based [This Paper]: Use lookup-tables and adders
to create a general-purpose structure, which takes one

2204 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 12, DECEMBER 2013

TABLE II

CHARACTERISTICS OF THREE ALTERNATIVE METHODS FOR GENERATING MULTIVARIATE GAUSSIAN SAMPLES IN FPGAs

Clock Cycles/ Config. External MVec/ KVec/ Correlation
Part Rate Vector Method RNG LUTs DSPs sec LUT/sec MSE

DSP [4] Virtex 5 550 MHz n Dedicated logic (1–10 ms) Gaussian 717 10 55 76.7 1.0× 10−4

Custom [5] Stratix 3 411 MHz n Place-and-route (10 mins+) Gaussian 1250 0 41 32.9 2.5× 10−4

Table Virtex 5 550 MHz 1
Bitstream manip (1–5 s)

none
3270

0 550
168.2

1.4× 10−5
Direct loading (1–10 ms) 3302 166.5

cycle to calculate x = Ar, and can support different
matrices by modifying the table entries.

This section considers the alternative methods in more detail,
and compares them to the method proposed here.

The earliest and simplest approach is the multiplier-based
approach used in [4]. This uses a set of n DSP blocks
(multiply-accumulate units), and splits the generation into two
stages. In the first stage, a scalar Gaussian generator is used
to generate the vector r of independent variates over n cycles,
shifting each generated sample down a shift register. In the
second stage, the vector r is retrieved in parallel from the
shift register, then over the next n cycles each element xi of
the output is calculated using 3.

The implementation can be optimized to take advantage of
dedicated accumulation chains, such as those found in the
Virtex-4 DSP48, and the matrix-vector multiplication takes
very few resources. The original paper focused on large
matrices, up to n = 512, but the implementation becomes
much simpler when operating in the range discussed in this
paper, where n ≤ 64. In particular, the n block-RAMs required
in the original can be placed in LUT-based RAMs, and
all accumulation can be routed through the internal DSP48
adders, removing the need for expensive pipelined adders. For
the results given here, a modified implementation has been
developed using these optimizations for smaller vector sizes,
and for Virtex-5 rather than the original Virtex-4 primitives.
The design is only limited by the DSP components, resulting
in a clock rate of 550 MHz.

The approach taken in [5] is to build a custom circuit for
each covariance matrix A. This allows the circuit to be heavily
optimized, taking advantage of word-length optimization to
reduce resource usage, while maintaining the accuracy of the
generator’s correlation matrix. Multiple possible implementa-
tions are also produced, by using a library of building blocks
to create multiple candidate generators, then constructing a
Pareto frontier of correlation accuracy versus resource usage.
In more recent work, the same approach is used to generate
a circuit, which is able to select between a set of fixed
correlation matrices for each generated vector, exploiting any
similarities between them [11], but that solves a different
problem to the single correlation matrix problem addressed
here.

Generating a custom circuit for each covariance matrix
provides many optimization possibilities, but also has the
disadvantage that each new matrix incurs a full synthesis and
place-and-route cycle. The authors reported a total time of
11 min to generate, synthesize, and place-and-route a generator
with n = 50, but this only considers a single generator, which

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

0 10 20 30 40 50
V

ec
to

rs
 /

se
co

nd

Matrix size (n)

FPGA (n)
FPGA (1)
CUDA
Quad CPU

Fig. 16. Performance of different platforms for vector generation.

does not occupy very much of the device. In practice, the
random generator will be only one component of a larger
simulation engine, which will then be replicated within the
FPGA to use as many resources as possible, so these place-
and-route times are likely to be a very optimistic lower bound.
However, in applications where correlation matrices do not
change frequently this compilation overhead can be tolerated.

The two existing methods are compared with the table-
based method in Table II, comparing both the performance
and resource utilization for generators of ten-element vec-
tors (as this was the size for the results from [5]). When
comparing performance in generated vectors/second, the table-
based method operates at a similar clock-rate to both existing
methods, but because it generates a new vector for every cycle
it actually offers ten times the performance. When resources
are considered, the table-based method requires 2.6 times the
resources of the customized generator, but due to the increased
performance still offers 5 times the performance per resource.

The table-based method is also the only stand-alone method,
as the uniform random number is included in the resource cost.
The other methods require an external scalar Gaussian RNG,
which increases the practical resource cost, and will require
either DSPs, block-RAMs, or both.

Fig. 16 provides a performance comparison between
a Virtex-5 FPGA, a Quad-core CPU, and a GPU, for
n = 4, . . . , 50. Because an MVGRNG does not do anything
by itself, the test actually measures how many vectors can be
generated and accumulated per second, to ensure that outputs
are not optimized out by the compilers. All measurements are
measured over at least ten seconds to ensure accurate times.

THOMAS AND LUK: MULTIVARIATE GAUSSIAN RANDOM NUMBER GENERATION IN FPGAs 2205

The FPGA used is an xc5vlx330, clocked at 400 MHz
(a deliberately conservative target), using wt = 24. This large
output width was chosen in order to provide a fair comparison
to the single-precision format of the CPU and GPU, but it
should be noted that in many Monte Carlo simulations it is
possible to significantly reduce the precision without impairing
accuracy.

“FPGA(1)” shows the performance of a single generator
instance, while “FPGA(n)” shows the performance of an
entire FPGA when enough instances are replicated to fill the
device to 90%. The GPU results are derived from a CUDA
implementation, which is optimized to use memory coalescing,
specialized functions, and shared memory, executed on an
NVidia Tesla C1060 running at 1.25 GHz. The implementation
uses a proprietary routine rather than the CUDA BLAS library,
as it allowed merging of random number generation and matrix
multiplication, and persistent storage of the matrix in shared
memory, reducing memory traffic, and increasing performance
when compared to using the CUDA BLAS. The CPU results
are chosen from the fastest of a C++ implementation tem-
platized on vector size and the MVGRNG supplied by the
AMD SIMD-optimized ACML library (as for small vectors
the plain C++ is faster), executed on all four cores of an
AMD Phenom 9650 2.2-GHz quad-core processor. Note that
the relatively small difference between CPU and GPU speeds
is indicative of a CPU being used well, rather than the GPU
being used poorly.

Devoting the whole FPGA to MVGRNG provides at least
ten times the performance of the GPU, and one hundred times
that of the CPU–even a single generator instance provides
higher performance for vectors of size four and above.

VIII. CONCLUSION

This paper presented a method for multivariate Gaussian
random number generation in FPGAs, which decomposes the
generation into a series of table-lookups and additions. This
method is ideal for use in numerical Monte Carlo simulations,
as it only uses LUTs and FFs, and so all DSP and block-RAM
resources can be used in the simulation core that the generator
is driving.

When compared to previous methods for MVGRNG, the
table-based method offers greatly improved performance, gen-
erating a new random vector for every cycle, rather than gen-
erating vectors serially over multiple cycles. When generating
length ten vectors, the table-based method provided ten times
the performance of the fastest DSP-based method.

The performance per resource was also five times that of a
generator constructed and compiled for a specific correlation
matrix, while still supporting loading of arbitrary correlation
matrices.

REFERENCES

[1] D. B. Thomas and W. Luk, “Credit risk modelling using hardware accel-
erated monte-carlo simulation,” in Proc. ACM Symp. FPGAs Custom
Comput. Mach., 2008, pp. 229–238.

[2] N. Woods and T. VanCourt, “FPGA acceleration of Quasi-Monte Carlo
in finance,” in Proc. Int. Conf. Field Programm. Logic Appl., 2008,
pp. 335–340.

[3] A. Kaganov, P. Chow, and A. Lakhany, “FPGA acceleration of Monte-
Carlo based credit derivative pricing,” in Proc. Int. Conf. Field Pro-
gramm. Logic Appl., 2008, pp. 329–334.

[4] D. B. Thomas and W. Luk, “Multivariate Gaussian random number gen-
eration targeting reconfigurable hardware,” ACM Trans. Recon. Technol.
Syst., vol. 1, no. 12, pp. 22–26, 2008.

[5] C. Saiprasert, C.-S. Bouganis, and G. A. Constantinides, “Word-length
optimization and error analysis of a multivariate gaussian random
number generator,” in Proc. Int. Conf. Appl. Reconf. Comput., 2009,
pp. 231–242.

[6] D. B. Thomas and W. Luk, “An FPGA-specific algorithm for direct
generation of multi-variate gaussian random numbers,” in Proc. IEEE
Int. Conf. Appl. Specif. Syst., Archit. Process., Jun. 2010, pp. 208–215.

[7] N. J. Higham, “Computing the nearest correlation matrix—a problem
from finance,” IMA J. Num. Anal., vol. 22, pp. 329–343, Oct. 2002.

[8] D. B. Thomas and W. Luk, “High quality uniform random number
generation using LUT optimised state-transition matrices,” J. Very Large
Scale Integr. Signal Process., vol. 47, no. 1, pp. 77–92, 2007.

[9] Maxima, a Computer Algebra System. (2009) [Online]. Available:
http://maxima.sourceforge.net/

[10] V. Shoup. (2005). “NTL: A library for doing number theory,” [Online].
Available: http://www.shoup.net/ntl/

[11] C. Saiprasert, C.-S. Bouganis, and G. Constantinides, “Mapping multiple
multivariate gaussian random number generators on an FPGA,” in Proc.
Int. Conf. Field Programm. Logic Appl., 2010, pp. 89–94.

David B. Thomas (M’06) received the M.Eng. and Ph.D. degrees in computer
science from Imperial College London, London, U.K., in 2001 and 2006,
respectively.

He has been a Lecturer with the Electrical and Electronic Engineering
Department, Imperial College London, since 2010. His current research
interests include hardware-accelerated cluster computing, FPGA-based Monte
Carlo simulation, algorithms and architectures for random number generation,
and financial computing.

Wayne Luk (F’09) received the M.A., M.Sc., and D.Phil. degrees in engi-
neering and computing science from the University of Oxford, Oxford, U.K.

He is currently a Professor of computer engineering with Imperial College
London, U.K., and a Visiting Professor with Stanford University, Stanford,
CA, and Queens University Belfast, Belfast, U.K. His current research
interests include theory and practice of customizing hardware and software
for specific application domains, such as multimedia, networking, and finance.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

