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ABSTRACT

Hawkes processes are point processes that can be used to
build probabilistic models to capture occurrence patterns
of random events. They are widely used in high-frequency
trading, seismic analysis and neuroscience. A critical calcu-
lation in Hawkes process models is intensity evaluation. The
intensity of a point process represents the instantaneous rate
of occurrence of events, but it is computationally expensive
and challenging to calculate efficiently in order to make pre-
dictions using Hawkes process models. To accelerate the
computation, we analyse data dependency in the intensity
evaluation routine, and present a strategy to enable multi-
ple intensities to be computed with a single pass through
the data. We then design and optimise a pipelined hard-
ware engine based on our strategy. In our experiments, an
FPGA-based implementation of the proposed engine is eval-
uated by four case studies. This implementation achieves up
to 94 times speedup over an optimised CPU implementation
with one core, and 12 times speedup over a CPU with eight
cores.

1. INTRODUCTION

Hawkes processes [5] are point processes that can be used
to build probabilistic models to capture occurrence patterns
of random events. The study of Hawkes process models
is attracting the attention of researchers and practitioners
from various areas including high-frequency trading [1, 2, 3],
seismology [8, 10] and neuroscience [4, 7].

For instance, Hawkes processes have been widely used in
financial modelling. They can generate accurate predictions
of order flow [3, 11] but have a heavy computational load.
Since predictions are usually made at high frequencies and
in real time, efficient implementations are key to success in
practice.

A critical calculation in Hawkes process models is inten-
sity evaluation. The intensity of a point process taken at a
fixed point in time, ¢, is the instantaneous rate at time ¢ with
which events occur. The calculation of the intensity of the
underlying Hawkes process is necessary for parameter esti-
mation, simulation and prediction. The feature, however,
that makes the Hawkes process useful for making predic-
tions and modelling correlated data is that its intensity is
stochastic, changes in time and depends on the history of
all dimensions of the process. This makes the evaluation of
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the intensity a computationally demanding task. In prac-
tice, this has limited real-time applications of the Hawkes
process to the Markovian case where the intensity may be
updated sequentially.

For the purpose of obtaining predictions, intensity evalu-
ation must be performed as fast as possible. This efficiency
problem has become increasingly serious in recent years be-
cause the length and dimension of real-world data sets have
been growing swiftly. For instance, financial markets’ order
placement frequencies have increased in orders of magni-
tude over the last several years and so has the scale of the
models used to describe this activity. The conflict between
data size and computational efficiency is especially serious
in time critical problems such as high-frequency trading and
optimal order execution.

While data analysis systems can often benefit from the
speed, simplicity and power efficiency of hardware imple-
mentations, hardware acceleration of point processes is not
well-studied. To the best of our knowledge, our work is the
first to cover hardware acceleration of algorithms related to
point processes. Our key contributions are as follows.

e Analysis of the data dependence pattern of the inten-
sity computation. Using the result of the analysis, we
develop a computing strategy where the intensities of
multiple dimensions can be computed with a single
pass of the data.

e Identification of the computationally intensive part of
our strategy and a hardware dataflow architecture to
handle this part. We also optimise the hardware by ex-
ploiting data parallelism to make full use of the mem-
ory bandwidth.

e Evaluation of an implementation of our proposed data-
flow engine with four case studies and various data
sizes, and providing possible explanations to both ex-
pected and unexpected experimental observations.

The rest of the paper is organised as follows. Section 2
briefly describes point processes, Hawkes processes and the
intensity evaluation problem. Section 3 presents an analy-
sis of the data dependence pattern, and describes a strategy
that can be used to compute the intensities of multiple di-
mensions with a single pass through the data. Section 4
describes a hardware design that maps our strategy to a
pipelined hardware engine, and a method to exploit data
parallelism. Section 5 provides experimental results about
an implementation of our hardware design in four case stud-
ies, and explains experimental observations. Section 6 pro-
vides a brief conclusion, and describes possible future work.
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2. BACKGROUND

In this section, we provide a short introduction to Hawkes
processes. We first illustrate the related concepts including
point processes and counting processes, and then briefly dis-
cuss the intensity evaluation problem.

2.1 Point Processes

A sequence of random variables, {t;} = (t1, t2, t3, ...), is
a univariate point process if and only if t; > 0 and ¢; < t;41
for all i € N*. A univariate point process is typically used
to describe the occurrences of a random sequence of events.
Each entry of the process is the occurrence time of the event.

The counting process C(t) of a point process {t;} is defined
by

ct)=> lu« (1)

ieNTt

In other words, the value of the counting process C(t) is the
number of elements in {¢;} that are less than or equal to t.
The intensity process A(t) of a point process {t;} is defined
by
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where E; denotes the conditional expectation given observa-
tions at time ¢; P(A) is the probability of random event A.
The intensity A(t) represents the probability per unit time of
the occurrence of the next event, given the history of events
observed during [0, ¢]. It is thus a key quantity which needs
to be evaluated at each stage of an estimation or forecasting
algorithm.

A multivariate point process with M dimensions is a col-
lection of M univariate point processes. Such a process can
be expressed in the form

p(M) = {{t:}1, {ti}2, ...
where {ti}1,{ti}2,...

, {ti}l\/l} (4)

,{t:} m are univariate point processes.

2.2 Hawkes Processes

A multivariate point process {{ti}l, {ti}a,-.-, {ti}M} isa
multivariate Hawkes process if for all dimensions m € 1..M
the intensity process Am (-) of {t;}m satisfies

nl®) =2+ 3 /O b e (£ — 0)dC () (5)

m/=1

where A% is a constant parameter; Cp () is the counting
process of {t; }n and k(-) is a response function which needs
to be integrable and positive. In this study, we focus on the
exponential response function defined by

km,m’ (u) = am,m’e_u'ﬁm’m/ (6)

where o, s and S, ,,,/ are constant parameters. Although
we only focus on the above response function, we do not
take advantage of its Markov property that intensities can be
computed by sequentially updating. Therefore the methods
proposed in this study can be adapted to work with other
response functions regardless whether the function has the
Markov property.
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A parameter set for an M dimensional Hawkes process
with an exponential response function is a triplet in the form

P=(\",AB) (7)
where
M= A AT (8)
1,1 Q12 a1,M
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A= . . ) (9)
apma1 Qapm2 o QMM
/61,1 61,2 e ﬁl,]\/[
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B=| . o . (10)
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where the decay parameters B can be reduced to an M
dimensional vector by assuming that all rows are identical.

Let H(m,t) be the set of points that occur before ¢ in the
m-th dimension. In other words,

H(m,t) = {t' :t' € {t;}m and t' < t} (11)

A sample or a data set of a Hawkes process up to time t,
denoted by D(t), is a set defined by

D(t)={H(1,t),H(2,t),..., H(M,t)} (12)

Intensity evaluation is the computation of the intensities of
all dimensions, \1(t), A2(t), ..., Am(t), given a parameter
set P, a time point ¢, and a data set D(t).

The intensity of the Hawkes process is, in general, a func-
tion of the whole history of the process: in high-frequency or
real-time applications such as the modeling and prediction
of high-frequency financial time series involving thousands
of data points, this makes the repeated evaluation of the
intensity computationally challenging.

3. STRATEGY OF ACCELERATION

In this section, we first describe the data representation
scheme adopted in this study, and then analyse the data
dependence pattern in the intensity evaluation problem. We
finally develop a computing strategy to calculate multiple
intensities in parallel with a single data pass.

3.1 Data Representation

There are two major data representation schemes for point
process data. The first is to store the points in all different
dimensions in a single sequence. In this scheme, each point
is recorded in the form (¢;,1;) where ¢; is the occurrence time
and [; is the corresponding dimension label.

The second data representation scheme is to store the
points in different dimensions into separate sequences. Specif-
ically, for an M dimensional point process, M sequences are
created. Each sequence contains all points in a single di-
mension. With this scheme, dimension labels for the points
are not required. In other words, the i-th event in the m-th
dimension is denoted by its occurrence time ¢, ;.

We select the second data representation scheme because
it is more suitable for hardware design than the first one.
Not only does the absence of dimension labels reduce the
memory space requirement but it avoids redundant mem-
ory bandwidth consumption in data access. Furthermore,
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it brings simplicity to hardware design and saves reconfig-
urable computing resources.

3.2 Straightforward Computing Strategy

By Equation 5 and 6, the intensity process can be written
in a computable form

Am(t) = A’ﬂ;], + Z Z km,m’(t - tl)

m/=1t'€H(m’,t)

M
S+ S a0 (1)

m/=1t'€H(m’,t)

At a given time t, it is straightforward to compute the
intensities A1 (t), A2(t), ..., Am(¢) individually using Equa-
tion 13. However, we consider such a strategy inefficient
from the perspective of reconfigurable computing.
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Figure 1: Data Dependence Pattern of the Straightforward
Intensity Evaluation Strategy

We can appreciate this efficiency problem by analysing
the data dependence pattern which is shown in Figure 1. In
this figure, an edge from a vertex x to vertex y describes the
fact that x is a necessary element to compute y. If y can be
computed with a single access to x, then the edge is labelled
with ‘1’ otherwise it is labelled with a star.

This data dependence pattern suggests that if we directly
perform the computation following the definition, we may
only obtain one intensive value after passing through the
whole data set. Then it is unavoidable to access the whole
data set for M times to compute all the M intensities.

In this study we aim to design a hardware architecture to
accelerate intensity evaluation. The bandwidth between the
memory and the computational unit is limited. Therefore we
consider it memory-inefficient in obtaining only one intensity
with a data pass.

3.3 Computing Multiple Intensities with a Sin-
gle Data Pass

With regard to the memory-efficiency problem discussed

in the previous subsection, we study the possibility and

methods of calculating multiple intensities simultaneously

with a single data pass. Let Am, (t), Ams (L), - -y Am.(t) be
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a group of ¢ intensities at time t. By Equation 13,

Ama (£) iy

Amz (t) )\TJ;Q

)\m.C (t) )\TJ;LC

where
- s-(t—t'
ZtleH(m/.t) Qny ,m/ € Brny o ( )
M E , 7 O /67ﬂ771r2,7r,,/ (t—t")
s(t) = Z t'€H(m' t) 2,',,1 -
m/=1

Brng,m! (t=t")

Zt’GH(m’,t) QAme,m/ €

To compute these intensities, one only needs to compute
the M dimensional column vector s(t). We decompose this
vector as

s(t) = Y UV (t) (16)

m/=1

where U,/ is a ¢ X ¢ diagonal matrix defined by

Gyt 000
0" e 00
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and v,,/(t) is a ¢ dimensional column vector defined by
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The diagonal matrix U, is irrelevant to the data. All the
elements needed to construct U,, can be directly extracted
from the m/-th column of the model parameter A (Equation
9). The vector v,/ (t) is the crucial part of the computa-
tion. Once v,/ (t) for all m’ € 1..M are obtained, A\, (),
Ams (£), - .oy Am, (t) can be computed effectively using Equa-
tion 14, 16, 17 and 18. However, the value of this vector de-
pends on all past events. Therefore the computation of this
part becomes the efficiency bottleneck when the number of
points in the data set is large.

Note that the data dependence underlying our proposed
computation strategy shown in Figure 2 is different from
that of the straightforward method shown in Figure 1. In
particular, with our proposed strategy, the data set is only
accessed once to compute all the ¢ intensities.

We consider this property valuable for developing hard-
ware acceleration solutions. In reconfigurable computing
systems, it is usually the memory access time, rather than
the logical resources, that limits the performance and scala-
bility of the hardware. Obtaining multiple results with one
data pass improves the memory efficiency. This is especially
beneficial when the number of dimensions is large.

4. HARDWARE DESIGN

As we have discussed in the previous section, calculating
Vo (+) is the most computationally expensive process. In
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Figure 2: Data Dependence Pattern of our Proposed Eval-
uation Strategy

this section, we accelerate this part by designing and opti-
mising a pipelined hardware architecture. We first propose a
basic architecture and explain its core component, the glove.
We then propose a method to combine multiple gloves to
promote data parallelism.

4.1 Basic Architecture

We propose an architecture, which is shown in Figure 3,
to compute v,/ () following Equation 18. The major com-
putational part of the architecture, which we call a glove, is
enclosed in a large rounded square in the figure. For ease
of discussion, we refer to a component in charge of accu-
mulating the statistical information for a single dimension
as a finger. It is necessary to deploy c fingers in a glove to
compute c intensities in a single data pass.

Data
Stream

Figure 3: Basic Architecture with a Single Glove

The output of the i-th finger is accumulated using an
adder and a chain of buffer registers. When a data in-
stance in the m’-th dimension is streamed into the engine,
the contribution of this data point towards all the ¢ com-
ponents in v,,/(t) is computed and accumulated in parallel.
When all the data instances in the m/-th dimension have
been streamed into the engine, the entries in vector v,/ (t)
can be harvested from buffer chain r1, r2, ..., 7. When
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all the data are processed, v,,/(t) for all m’ € 1..M are ob-
tained. The host computer then calculates Am, (£), Am, (),
.+ Am. (t) using Equation 14, 16, 17 and 18.

4.2 Data Parallelism

The ideal situation for the single-glove architecture is that
the number of fingers c is a factor of the number of dimen-
sions M. In this situation, all the M intensities can be
computed with exactly M/c data passes. No finger in the
architecture is idle during the computation. As a result, the
maximum performance can be achieved. If ¢ is not a factor
of M, we need [M/c]| data passes to finish the computation
of all intensities, and in some data passes, certain fingers of
the glove are not active. Therefore, the maximum perfor-
mance cannot be obtained. Practically, we may maximise
¢ with respect to the limitation of hardware resources on a
particular platform to allow the demonstration of maximum
performance. However, we also expect to reduce ¢ to avoid
or reduce idleness.

Note that (i) the memory bandwidth requirement of the
single-glove architecture is both small and constant; and
(ii) there is no particular computational order in the sum-
mation operation in Equation 18. These two facts suggest
that we may take advantage of data parallelism to maximise
resource usage without increasing the number of fingers c.

We propose to deploy a group of g gloves in the way shown
in Figure 4 to exploit the data parallelism. More specifically,
we break the data stream into g segments with identical or
similar length and stream them into g gloves in parallel.
Then we add up the outputs of the i-th fingers of all gloves
and accumulate the results.

[Finger 1
Data Glove 1 [Finger 2 —
Stream 1 .
|Finger c 4
|Finger 1}~
Data Glove 2 [Finger 2+
Stream 2 .
[Finger ¢ 5
[Finger 1+
Data [Finger 2}
I
Stream g —>Gloveg .
[Finger CQ—

Figure 4: Exploiting Data Parallelism by Combining g
Gloves

5. EXPERIMENTAL EVALUATION

We implement our proposed architecture in an FPGA-
based acceleration device and evaluate it by four case stud-
ies. In this section, we first present the general experimental
settings and then present and discuss experimental results.

5.1 Experimental Settings

We implement our hardware design using a Maxeler MAX3
acceleration system in a fully-pipelined manner. This sys-
tem is equipped with a Xilinx Virtex-6 SX475T FPGA. It
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Table 1: Case Studies

No. Area of study M
1 Order Book Reconstruction (1 Stock) [3] 4
2 Earthquake analysis (10 Geological Areas) [10] 10
3 Stock Trading Behaviour Modelling (10 Stocks) [6] 20
4 Neurone Activity Modelling (32 Neurones) [4] 32

communicates with the host computer via a PCI-Express
interface. The hardware is described in the MaxJ language
and compiled with Maxeler MaxCompiler.

The focus of this paper is to develop our parallelisation
strategy and the corresponding hardware design rather than
to exploit the performance or resource efficiency of a partic-
ular implementation. In the experimental system, we deploy
4 gloves, each containing 32 fingers. The clock frequency of
the FPGA is set to 100MHz for fast compilation.

We also build an implementation that runs exclusively
on the CPU platform using the OpenMP library. To make
a fair comparison, we perform a series of optimisations on
this implementation, including avoiding redundant memory
access and selecting the best parallelisation scheme.

Both the host code for the FPGA implementation and
the pure CPU implementation are written in the C pro-
gramming language and compiled with the Intel C compiler
with the highest compilation optimisation. The IEEE single
precision floating point numbers are used in both hardware
and software systems in our experiments. Both systems are
invoked in a server with an Intel Xeon X5650 CPU running
at 2.67GHz and 48GB DDR3 memory.

The general information of the case studies is listed in
Table 1. For each problem, we generate test data sets with
different sizes L from 10* to 10°-°, using the thinning proce-
dure [9]. A data set is loaded in the main memory of the host
computer before the computation begins. The data are then
transmitted to the acceleration system via the PCI-Express
interface in real time during the computation. The perfor-
mance is measured by the execution time of computing all
the M intensities.

5.2 Results and Discussion

Experimental results are shown in Figure 5. Each column
of the figures corresponds to a case study in Table 1. The
first two rows of figures record the performance of the FPGA
and CPU implementations respectively. We record the data
size in log scale with base 10 in these figures. To reflect the
trend of the increment of the execution time, we also record
the execution time in log scale. Note that a small difference
along the vertical axis in each figure means a huge difference
in execution time due to the properties of the logarithm
function. The third row of the figures shows the speedup
of the FPGA implementation over one core and eight cores.
We do not take the logarithms of these numbers.

The CPU implementation works well on eight cores. It is
around 7.5 times faster than a single core in all tested cases.
The speedup of the FPGA implementation over the CPU
implementation increases as the size of data set grows. The
maximum speedup we observe across all the case studies
is in Case 4 when the data size reaches 10°°. The FPGA
implementation is up to 94 times, and 12 times faster than
the CPU implementation on a single core and eight cores
respectively.

The execution times of the CPU implementation increase
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linearly as the data size grows. However, the growth pattern
of the FPGA implementation appears irregular. In all cases
except Case 1, there are huge leaps when the data size rises
from 10* to 10°. We are unsure about the reason behind
these leaps, but they are likely to be caused by the hard-
ware platform rather than the design. After this leap, the
increment follows a convex function. Note that a convex
increment pattern suggests a better performance than a lin-
ear one. It means that when the size of the data grows by
h times, the execution time grows less than h times. This
is because, while the execution time spent on the pipeline
grows linearly with the size of the data set, the overhead,
including hardware initialisation time and post-processing
time of the host computer, does not increase.

The execution time for a fixed data size is similar across
the four case studies regardless of the number of dimensions.
This is not surprising because the numbers of dimensions in
all cases are less than or equal to the number of fingers ¢ in
each glove. Therefore, the engine is capable of handling a
data set with one pass through the data. As a result, the
time spent on the pipeline processing for different data sets
are identical, and the small difference in the total execution
times is caused by the difference in post-processing time in
the host computer.

6. CONCLUSION

This paper presents a hardware architecture that acceler-
ates intensity evaluation for multivariate Hawkes point pro-
cesses. To the best of our knowledge, our work is the first to
design hardware acceleration solution for point processes.

Rather than directly mapping the definition of the inten-
sities to a hardware architecture, we analyse the data depen-
dence pattern in the computation, and present a strategy of
acceleration to enable multiple intensities to be computed
with a single pass through the data. We then propose a
dataflow architecture based on our strategy, and optimise
it by taking advantage of the data parallelism. Our exper-
imental system implemented in a Virtex-6 FPGA achieves
up to 94 times and 12 times speedup over a single CPU core
and eight cores respectively.

This work shows the potential of reconfigurable comput-
ing for accelerating point processes. Possible future work of
this study includes (i) integrating the intensity evaluation
engine with real-time predictive systems to forecast future
occurrences of events in situations such as high-frequency
trading; (ii) building performance models for the engine to
predict the performance for different parameter settings or
hardware platforms; (iii) estimating and measuring the en-
ergy efficiency of the proposed solutions.
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