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Abstract: This paper presents a parallel search parallel move approach telsgaeighbourhood
search algorithms on many-core platforms. In this approach, a langber of searches are run
concurrently and coordinated periodically. Iteratively, each seazokmtes and evaluates multiple
moves in parallel. The proposed approach can fully utilise the computapdiy of many-core
platforms under various platform specific constraints. A parallel simdilatmealing algorithm for
solving the Traveling Salesman Problem is developed using the paraliehseaallel move scheme
and implemented on an NVIDIA Tesla C2050 GPU platform. We evaluate ¢nnmance of
our approach against a multi-threaded CPU implementation on a sentairéng two Intel Xeon
X5650 CPUs (12 cores in total). The experimental results of 20 benghpnablems show that the
GPU implementation achieves 99 times speedup on average in solutiorespémetion speed. In
term of effectiveness, the GPU implementation is capable of finding gaotians 39.5 times faster
or with 21.7% solution quality improvement given the same searching time.
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1 Introduction solution increases faster than exponentially as the pmoble
size increased. Examples of such problems are vehicle route
d)lanning, job scheduling, task assignment, cargo placemen

Neighbourhood Search algorithms have been widely used t and digital circuit optimisation. An neighbourhood search

solve many NP-complete problems where the time of finding
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algorithm starts with a feasible solution and attempts to processors (Cohoon et al., 1991; Whitley et al., 1991,
improve it by searching its neighbours. These neighbouringMatsumura et al., 1997).

solutions can be reached directly from the current solution  The main constraints of using distributed systems or
by an operation called move This process is repeated until multi-threading techniques for multi-core microprocesso

a local optimum or the termination condition is reached. systems are the communication overhead and thread
Due to the NP-completeness nature of such problems, thewitching cost. Recent many-core architectures, such as
search process is often tedious and time-consuming. \@riouthose employed in Graphics Processing Units (GPUs),
parallel approaches using distributed systems or multi-have different architectures designed for massively feral
threaded techniques have been proposed to enhance solutiapplications. The characteristics include a close to zesad
quality or to reduce search time. switching cost; a lower inter-core communication overhead

One strategy is to explore data level parallelism and a Iarg_er number of parallel p_rocessing cores. With the
where a problem instance is divided into multiple subsets2dvances in many-core technologies, exploration of prall
for parallel processing in multiple processors. When the neighborhood search on many-core platforms becomes more
search terminates, each processor generates a subssolutic®nd more popular. Many of these approaches employ a
In the final stage, all sub-solutions are combined and Parallel move strategy (Choi and Liu, 2010; Choong et al.,
transformed into a feasible solution. For example, in a 2010; Luong et al., 2010; Han et al., 2011; Fujimoto and
parallel placement algorithm for field programmable gate TSUtsul, 2011). In particular, a parallel Tabu search (lgion

array technology (Ababei, 2009), a large netlist is pantitid et al., 2010) uses three different neighbourhood functtons
into a number of small sub-netlists. Independent simulatedd€nerate the neighbours simultaneously. Each neighbodrho

annealing process is applied to each sub-netlist to producdunction generates a number of neighbours which are
a partial placement solution. Upon termination, all the evaluated in different cores in an NVIDIA GTX 280 GPU. In

partial solutions are combined to form a complete and these many-core based implementations, the host computer
feasible placement solution. A distributed implementatio is often used to run a master search thread which iteratively

of simulated annealing for solving the Traveling Salesman distributes potential moves to the many-core platform for
Problem (TSP) (Allwright and Carpenter, 1989) is also solution evaluation, collects the results and selects & n

proposed. After the entire path is divided into many sub- Move (Choi and Liu, 2010; Han et al,, 2011). Genetic
paths, multiple processors are used to work on the sub-2lgorithms are also explored on many-core platforms as

paths in parallel where a number of trial city exchanges areShown in (Wong and Wong, 2006; Li et al., 2007). The

performed on each processor. However, the drawback of thi?finciple is to utilise the large number of processing cores
approach is that the result quality depends strongly on the®" the many-core platform to evaluate more individuals in
solution space and the associated partition of it. Thus tia fi ~Parallel.

solution by combining sub-solutions is likely to be worse  Although the above approaches have shown promise,

than that of the traditional equential search methods (&bab there is scope for significant improvement in parallelism.
20009). In this work, a many-core based parallel search parallel

A d hi | el . move (PSPM) approach is proposed to improve the
second approach Is to employ parallel move Str"’lteg'es’neighborhood search algorithms. The purposes are to

n Wh'Ch multiple moves are generated in each SearChincrease the computational parallelism and to minimise the
|terat|or1 and evgluated in parallel on a number of procsssor synchronisation overhead. The parallelism is achieved by
Study in (Krawt; apd Rutenbar, 1987) tgckles place”_“antemploying both parallel search and parallel move strasegie
problem Dby assigning the cost calculations of multiple in a single design. In the PSPM scheme, a number of parallel

Iplac:amentﬁolutlons Lo_mulnple p;()fCGSEOf_T_. A qgrallsezli-o searches are run and coordinated periodically. Each search
ocal search approach IS propose or the Traveling Sa S"nagenerates and evaluates multiple moves in parallel in each
Problem in (Mavroidis et al., 2007). Parallel moves, as swvap iteration. The main contributions of this work are:

of cities, are evaluated on distinct processors. Similarly
(Gallego et al., 1997) proposed a parallel simulated amgeal

solution for the problem of power transmission network * A generic PSPM approach for parallelising

neighbourhood search algorithms on many-core

expansion. platforms is proposed. We focus on maximising

A third strategy is parallel search, where each processor the achievable parallelism when mapping the
performs independent sequential searches on the complete neighbourhood search algorithm on the target hardware
problem and processors are coordinated periodically. platform. This approach can be used to improve
In (Crainic et al., 1995), each processor runs a sequential the performance of generic neighbourhood search
Tabu search for a number of iterations independently and algorithms (Section 3).

then broadcast the local best result to all the other process
The global best solution is then chosen as the new starting e Using the PSPM approach, a simulated annealing

point of all searches. Parallel simulated annealing allgas process for solving the TSP is parallelised and
using this approach are also proposed to solve routing implemented on a GPU platform. In this case study,
problems (Ram et al., 1996; Czech and Czarnas, 2002). we achieve significant improvement over a multi-core
Instead of synchronising solutions globally, an alteneti CPU design by applying application and platform

implementation is to exchange solutions with neighbouring specific optimisations (Section 4).
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o, Algorithm 1: Standard simulated annealing.
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Figure 1 NVIDIA CUDA platform architecture. 7 while T > Tyermination d0

bestCost < prevCost;

8 newSol < generateNewSol(prevSol);

e The results of a TSP benchmark suit are measuredyg

and evaluated to illustrate the effectiveness of the
proposed techniques. The impacts of various runtime

configurations and scalability of each platform are also "

analysed (Section 5). 12

13 prevSol <= newSol;

The rest of this paper is organised as follows: Section 2,,
introduces the GPU architecture and the simulated anmealin

algorithm. Section 3 presents the proposed parallel search’

parallel move approach. Section 4 presents details of thé®

application and platform specific optimisation technigaed 17

newCost < getCost(newSol);

p <= exp((prevCost — newCost)/T);
rand < random(0,1);

if rand < pthen

prevCost <= newCost;

if newCost < bestCost then
bestSol <= newSol,
bestCost <= newCost;

the GPU-based implementation. The measured results ang end if
evaluations are given in Section 5. Finally, Section 6 draws19 end if
conclusions and future work.

20 T < aT;

21 end while

2 Background 22

end

2.1 GPU architecture
any allocated per-block resources, resides staticaligiertbe

The GPU platform recently becomes one of the most streaming multiprocessor until all threads inside the ke
popular many-core platforms for general purpose computingterminated. Thus the total number of active blocks are &hit
applications. In this work, we carry out the many-core by the resource requirements of the blocks. Non-activeksloc
experiments on an NVIDIA GPU card. Figure 1 illustrates are kept waiting in a queue managed by the device.
an abstract structure of the NVIDIA graphics processork wit Within a block, every 32 threads are grouped into an
the Fermi architecture (NVIDIA, 2009). A group of 8 to 32 atomic structure call earp. Threads in a block are scheduled
floating point units (FPUs) and a shared control unit form for execution in warps. Different warps are scheduled in
a basic computing core called a streaming multiprocessornon-deterministic order and executed independently.ddge
Associated with each streaming processor is a multi-bankwithin a warp are designed to execute in parallel in instounct
static memory partitioned into L1 cache and user-managedevel for maximum performance. When threads within a warp
shared memory. Based on a single instruction in the controlbranch into different execution paths, the warp scheduler
unit, multiple data can be read, processed or written inwill sequentially go through the divergent paths one by one
parallel. Depends on the die size, there may be 1 to 30until all paths merge at a single point. That means every
streaming multiprocessors on a single GPU chip. The sizetime the diverged warp is scheduled, threads in the current
of on-chip shared memory on each streaming multiprocessoipaths are executed while the remaining threads are disabled
is in range of 16KB to 64KB and larger data structure must As a result, minimising intra-warp divergence is criticat f
be stored in off-chip global memory which presents a unified performance optimisation.
address space to all threads in all streaming multiprocgsso
The shared memory provides a much higher bandwidth than2,2  Standard Simulated Annealing
the global memory with less access conflicts. For simplicity
some components such as special function units and texturé&leighbourhood search starts with a feasible solution and
memory are not shown in the figure. attempts to improve it by searching its neighbours through
The CUDA (NVIDIA, 2011) driver groups and manages the moveoperation. A move generates a new solution by
threads intahread blocksAll threads within a thread block  modifying the previous solution. This process is repeated
view the same address space in the shared memory whiclintil a local optimum or the termination condition is reathe
is inaccessible by threads in any other thread blocks. ASimulated annealing is one of the popular neighbourhood
thread block is assigned and distributed to a single stregmi search techniques, we employ it to verify the proposed
multiprocessor during run time. This thread block, as well a techniques in this work. In simulated annealing, the preces
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accepts not only neighbours with improved solutions, but
also those with increased cost based on certain design
parameters. The acceptance probability determined using

the Metropolis criterion:

)

[ eleostv)=cost())/Ti if cost(c) > cost(b),
p= {1 otherwise

whereb is the previous solution ands the new solution. One

can see that a better solution will always be accepted. For a

worse solution, the acceptance probability will be higter i

the cost is closer to the previous solution. It is given thas

the temperature in thé” iteration and is updated as follows:

T‘i+1 = O[Ti (2)

where « is the cooling constant with typical value in
the range of 0.9 to 0.99. Algorithm 1 shows the steps
of a standard simulated annealing process. A feasible
solution is initially generated. Then a neighbourhood fiorc
(generateNewSol) is chosen to generate a new solution
(newSol) which is accepted and used as a new starting point
of the search if the Metropolis criterion is satisfied (Line
12). The probability of accepting worse solutions decrease

many-core platform. For example, the standard
simulated annealing approach needs to keep track of
both the previous solutionpfevSol) and the new
solution QewSol). Since the memory resources on
GPUs, in particular the fast shared memory, are limited,
storing two solutions for each search constrains the
number of parallel threads deployed on a GPU device.

In each iteration of the neighbourhood search
algorithm, solutions may be updated and the next
iteration will start from the updated solutions.
For example, in simulated annealing algorithm, the
previous solution ifrevSol) is updated based on
the Metropolis criterion (Line 13 of Algorithm 1).
Furthermore, the global best solutiohe£tSol) is
updated when the new solution has a lower cost
than that of the previous best solution (Line 16 of
Algorithm 1). Frequent updates to both local and global
solutions generate huge amount of memory access
traffic. As a result, the memory bandwidth of many-
core platforms becomes a bottleneck which again limits
the parallelism of the neighbourhood search algorithm.

Previous study (Cope et al., 2010) has shown that mapping

with the temperature. Once a solution having lower cost thany,q originally sequential algorithm to a parallel architee

that of the best solutionbéstSol) is found, this solution is

requires attention to both the characteristics of the ptaté

recorded (Line 15 to 18). The search process is repeatedinq the operations in the algorithms. Due to the low

iteratively until the termination condition is fulfilled sh as

arithmetic operation to memory access ratio, we believe tha

the minimum temperature or maximum search iteration is yhe optimisation of memory access is essential for achievin

reached.

high performance on the many-core platform. This will be

discussed in Section 4.1.

3 Methodology

3.1 The challenges of algorithm mapping

3.2 Maximising parallelism with PSPM

A parallel search parallel move (PSPM) approach is proposed

_ to fully utilise the computing capability of many-core
Many-core platforms, such as GPU cards, are widely pjatforms. It has three features, as shown in Figure 2.

used as accelerators to enable fast implementations in
many applications. It is expected that using many-core
platforms can improve the run time of neighbourhood
search algorithms. Thus, finding the solutions for bigger
problems can be more practical. Furthermore, the many-
core technologies should benefit the neighbourhood search
algorithms in solution quality. Since massively parallel
computing capability can be employed to explore the
solution space more thoroughly, the probability of captyri
good solutions is thus increased. However, there are some
challenges to parallelise neighbourhood search algosiitim

a many-core platform:

e Neighbourhood search algorithms are sequential
searches in their original form. Operations in later
iterations depend on the results of the previous one. So
later iterations cannot start until the previous iteration
is finished. This sequential nature makes it difficult
to fully utilise the parallel many-core architecture.
Although parallel search based neighbourhood search
algorithms are proposed where a number of searches
are performed in parallel, the achievable parallelism
is limited by the memory hierarchy of the underlying

e Multiple searches, each iteratively generates and

evaluate moves, run in parallel. The processing units
in a many-core platform can be grouped into multiple
blocks, such that each block of processing units
supports one search. During the search process, each
search must keep a set of intermediate solutions. If
a many-core platform provides user-managed on-chip
memory, this set of solutions can be stored in the on-
chip memory to improve performance, by avoiding
overhead in time and power consumption when going
off-chip. As the required memory size is proportional
to the number of searches, running a large number
of searches requires a significant amount of on-chip
memory. On a platform with limited on-chip memory,
the number of parallel searches will be restricted. On
the other hand, storing solutions on the main memory
can increase the number of parallel searches albeit at
the cost of reduced performance.

In each iteration of a search, multiple moves are
generated and evaluated in parallel; each processing
unit in a block covers one move and its evaluation.
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results in a faster converging speed. On the other hand, the
parallel search process can compensate the lost of diversit
and avoid trapping in local optimums. Performing inter-
e l search global synchronisations refocuses more computing
power on a better solution from time to time. Reducing the
AR synchronisation frequency to a single move will effectvel
best solution transform the process to a single search parallel move

H approach. The advantage of the PSPM approach is that the
parallel II

{parallel search}

N iteration

achievable parallelism for the search process and for ttvemo
process can be adapted for various platform constraints. Tw
cases are as follows.

(N+1)" iteration

e If the on-chip memory size of a many-core platform

generate generate . generate '/ :.
T e AA constrains the achievable parallelism for the parallel
evaluate  evaluate | evaluate parale (N+K)" iteration search process, our approach can still increase
move move move . . .
) move parallelism by increasing the amount of parallel moves.
e R — e If the achievable parallelism is bounded by register

best solution count, the amount of parallel moves can be limited.
A Our approach can then increase the amount of parallel

5 1

parallel I

move

searches which is bounded by the solution storage
requirement.
Figure 2 The proposed parallel search parallel move approach.
Global best solution is chosen periodically for evéry
iterations.

parallel move

(N+k+1)™" iteration

As a result, the proposed PSPM approach allows more
solutions to be explored by utilising the parallel compgtin
resources of many-core architectures.

3.3 Application to solving TSP

?Ithct)_ugh mluItT)r]le moves .tahrethgelnerat?d mt ON€ |1y this work, the PSPM approach is applied to parallelise
lieration, on yh e move ;N' € hov_‘lfﬁs cost can 5 simulated annealing algorithm for solving the Traveling
s:cjrv;]\{e In eac dlteratlgn ora :;earc - 1he accepftanhCQSalesman Problem (TSP). It is a typical model for vehicle
gm:)kl)?/e(rjnonv;ghsgjr?]oz doge;rsh paallg;?)rrri]tehtrirss&ht aesrouting, circuit design and networking applications.

oo ) . ’ In the TSP model, a list of cities and their positions are
Metropolis (f:rlte;rlqn f‘?f S|muliatedfannealr|]ng. In theory, given. The task is to find the shortest route to visit all sitie
ohne cop;l/. ot S0 utlor:jls rleciuwed or ef'?c move. Usmg and each city is visited once and once only. Our design runs a
t eh app |cat|or:1 anc pSat orm Zpem Ic optln(;lsatlor;] number of simulated annealing based parallel searcheson th
techniques, snown in fectlolr; | » We can rr]e uce tfeGPU device. Each search generates multiple TSP solutions
mef,“"?’ rethw_rement 0 pan':} el move to the si)ze Of in parallel in each iteration, where each solution is predic
?nc?\llr(]a% %::surt]'g{‘i'n?rsesséetshuet’m'gggfs'rgg uri]:Jenr]neer:t (f)orby randomly relocating a city to another position in the eout
storing solutions. The number of movgs isqthus limited The path lengths of all generated TSP solutions are then
by th 9 b f X hich I q calculated in parallel and the solution with the shortesgth
sz):eeloncl;rlnvaerri;bkraesgIisr:'ceerrsr,n\:av dilgte?/;elun;srrgicy used 10 is chosen to test against the Metropolis criterion.

' et In our algorithm, each search records a local best solution
The concurrent searches are coordinated periodically.WhiCh is the best solution this segrch can find. The local best
For every k iterations wherek is a fixed number ~ Solution may be up(_jated according to the path length of the
(Figure 2), the best solution among all concurrent Newly chosen solution. As a result, there are a number of
searches is chosen and used as a new startingocal _best solutions in this parallel algorithm. Periqdzl'y;ahe
point of all searches in the next iteration, and this algorithm checks all the local best solutions to find the one
process is repeated until the algorithm terminates, e.g.With the shortest Iength {:md use it as the new starting point
the termination temperature is reached in simulatedof the sub_squent iterations of all th_e concurrent searches
annealing. The frequency of global synchronisation UPOn termination, the best TSP solution among all searches

depends on a number of factors such as run timelS reported as the final solution of the algorithm.
performance and solution quality. The impact of

synchronisation frequency is highly problem specific. o N o
4 Application and platform specific optimisations

In the PSPM approach, the parallel move process has a
higher probability for capturing a better solution due te th To organise the parallelism of the parallel search parallel
increased sampling rate in the neighbouring solution spacemove approach for the GPU platform, a parallel search is
This approach makes the search algorithm more greedy andnapped to a block of threads and each move in the search
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Algorithm 2: The proposed light weight simulated
annealing (LWSA).

1 begin [ select best move,}}

evaluate acceptanc
2 T <= Tinitial;
3 curSol < feasible_initial _solution;
4 curCost < getCost(curSol); generate  generate  generate
move move move
5 bestSol < curSol; N iteration
6 bestCost < curCost, evaluate evaluate ~ evaluate
; while T > Thormination d0 move move move
8 (relocate_in fo,newCost) < \&/
tryNewSol(curSol); [ select best move,]a
9 p <= exp((curCost — newCost)/T),; evaluate acceptanc
10 rand < random(0,1);
11 if (rand < p) then generate  generate  generate
12 if (curCost < bestCost) and m(ive - m(ive (N+1)1 iteration
(newCost > curCost) then evaluate evaluate ~  evaluate
13 bestSol < curSol, move move move
14 bestCost < curCost;
15 end if select best move,
16 commitSol(curSol, relocate_in fo); ( evaluate acceptan(;
17 curCost < newCost; .
18 end if
19 T < oT: Figure 3 A single search parallel move approach.
20 end while

21 end

is mapped to an individual thread within the block. Since a (relocate_in fo) of the new solution and the corresponding
distinct copy of the solution is required for each search, th cost qewCost). This newCost is checked against the
parallelism of parallel search is affected by memory sterag Metropolis criterion in Line 11. Based on the recorded
size and memory access efficiency. The parallelism of @rall relocate_info, a new solution can be generated and stored
move is limited by the complexity of move process which into thecurSol by executing the functionommitSol if the
affects the performance of running simultaneous threads. A Metropolis criterion is satisfied (Line 16 of Algorithm 2).

a result, the achievable parallelism of parallel searchlfedr

move is determined by the combination of the number of In contrast to the standard simulated annealing approach
blocks and the number of threads per block. Since the globafhat generates and updates a new solution in every iteration
best solution is used as the starting point of all searches(Line 8 of Algorithm 1), the LWSA algorithm only stores
periodically, thread synchronisation is required to updatd the relocation information which can be used to reconstruct
fetch the global best solution. It is modelled as a configierab the new solution (Line 8 of Algorithm 2). The solution
parameter in the proposed PSPM approach and adjuste!f not updated unless the Metropolis criterion is satisfied.

based on empirical feedbacks. As a result, the number of solution updates in a search
is reduced. In addition, the standard simulated annealing
4.1 Memory optimisations approach updates the local best solution immediately once

a new solution with a lower cost is found. However, the
To address the size limitation of the shared memory andlocal best solution is not updated immediately in the LWSA
reduce memory access traffic, a light weight simulated approach. TheurSol, instead of the local best solution, is
annealing (LWSA) is proposed (Algorithm 2). Instead of updated if a better solution is found. The local best sotutio
storing two solutions in the standard simulated annealingis updated only when the next move will accept a worse
approach, the new LWSA algorithm only stores one solution solution and thecurSol is better than the stored local best
(curSol). Compared with the standard simulated annealing solution (Line 12 of Algorithm 2). The idea is to skip the
approach where a new solution is generated at the startlof eacwrite operations to the local best solution in a sequence of
iteration (Line 8 of Algorithm 1), the functiotry N ewSol better moves until a worse move is being accepted. By doing
in LWSA does not generate a complete solution (Line 8 of so, the frequency of memory updates, and thus the memory
Algorithm 2). It only records the city relocation informeti bandwidth requirement, is significantly reduced.
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Table 1 A summary of notations.

287

symbol description

adopted value

Ny number of nodes in the TSP instance 100 to 493

P, number of parallel moves in the CPU SSPM implementation 12

P, number of parallel searches in the CPU PSSM implementation 2 1

Se number of temperature steps between best solution exchange 100

Ss total number of temperature steps performed in a completeise

Sp number of sweeps to reduce temperature 10 (Schneider arikpatfick, 2006)

T simulated annealing temperature

T, starting temperature 10000 (Schneider and s. Kirkpatrick, 2006)
T, termination temperature 0.1 (Schneider and s. Kirkpatrick, 2006)
«@ cooling constant 0.99

Ngpm number of streaming processors on GPU 14

M shared memory size of a GPU streaming processor 48KBs

TB number of thread blocks in GPU implementation 98

TPB number of threads per block in GPU implementation 12

4.2 GPU implementation details

iteration++;

}

}
The following pseudo code segment shows the GPU}

implementation of the parallel simulated annealing athaoni
for solving the TSP:

mai n() {
read node coordi nates;
while (!termnate) {
| aunch Tb*Tpb t hreads;
find the gl obal best solution anong all threads bl ocks;
copy the global best solution to all threads bl ocks;

}
kernel _function {

while (step < Se) {
generate relocation information of a new solution
fromthe thread bl ock’s shared sol ution;

if (thread_id == 0) {
find the thread in the bl ock contains
m ni mum cost sol ution;

}

if (thread_id == mininumcost_thread) {
generate a random nunber;
cal cul ate the acceptance probability;
if (new solution is accepted) {
if (block’s shared solution is better than the
best solution of the thread bl ock && new
solution is wrse than bl ock’s shared sol ution) {

store block’s shared solution to the best solution
of the thread bl ock;

}

commit the thread block’s shared sol ution

using the relocation information;

}

if (iteration % (Nd * Sp) == 0) {
st ep++;
T =T » ALPHA

}

The main function is responsible for parameter setting,
launching the simulated annealing kernel and collectirgg th
global best solutions. It iteratively launch&sB x TPB
threads which are divided intd'B thread blocks and each
block containsI’ P B threads. Each thread block implements
a single search parallel move (Figure 3) simulated anngalin
process and each thread implements a LWSA. As a result, the
TB x TPB threads implement & B searche§d” P B moves
(Figure 2) simulated annealing. All the launched threads ru
for S. temperature steps where a temperature step is the
temperature being decreased once. After the kernel call is
finished, the global best solution among all thread blocks is
selected. In the next iteration, all thread blocks contithes
search from this selected solution. Iteratively, eachatiia a
block generates the relocation information of a new sotutio
and calculates the path length. The thread that generates th
best solution within each block is selected. This threadast
used to evaluate the acceptance of the solution and update
the local best solution accordingly. Note that the tempeeat
is not decreased in each iteration. It is decreased oncg ever
Ng x S, iterations whereV, is the number of nodes in the
TSP instance and), is the number of sweeps to reduce
temperature (Schneider and s. Kirkpatrick, 2006). In this
implementation, each thread block keeps a copy of the node
coordinates and the current solution in the shared memory
since they are accessed frequently. All threads in the block
use these shared information to generate and evaluate new
solutions. Each thread block updates the current solutibn o
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when it is accepted. Putting the current solution and theX5650 CPUs at 2.67GHz. With 6 processing cores per
coordinates in the shared memory can reduce memory accesSPU chip, the system has 12 physical CPU cores. Thus
latency by utilising the high bandwidth of the shared memory 12 parallel threads are created in the CPU-based reference

In this work, the TSP solution is stored in the form of a implementation for generating and evaluating the solgtion
double link listimplemented in 1-D array structure. Anodgei The Intel C compiler is used to compile the multi-threaded
represented as a pair of array indigeisev andnext , of the programs with all optimisation options enabled. With préva
previous and the next node in the path. Usinggher t type state memory, the random number generator provided in
for the array index, each node occupies 4 bytes of memorythe Intel Maths Kernel Library is more suitable for parallel
A complete solution thus requiresV, bytes whereN, is design. It is used in our implementation instead of the
the number of nodes. Since each node requires two 32-bistandard random number generator from the GNU C library.
floating point numbers to store the coordin&®d); bytes are ~ Experiments are performed on 20 problem instances from
needed to store the coordinates for all nodes. As a resalt, th the TSPLIB benchmark suit (Reinelt, 1991) with 100 to 493
maximum number of thread blocksB can be mapped on a cities.

GPU is determined as follows: From the CUDA compiler message, the kernel function
M consumes 40 registers and 6206 bytes of shared memory.

TB — (—SW X Ngm () The number of concurrent thread blocks is bounded by the
ANg + 8Ny +r shared memory size but not the register count. Determined by

Equation 3, the number of thread blocks created in the target
GPU is 98 ' B = 98). The application and platform specific
parameters used in the experiments are shown in Table 1.

where M, is the size of shared memory in a streaming
multiprocessor andN,,, is the number of streaming
multiprocessors in a single GPU. Parametisrthe number of
bytes in shared memory for variables such as the path length
of all moves in one iteration. A summary of all these notagion
is given in Table 1.

%.2 Solution space exploration speed comparison

To compare the efficiency of the multi-threaded CPU
implementation and the GPU-based PSPM implementation in
solving the TSP, a solution space exploration speed (SSES) i

To evaluate the performance of our PSPM implementationmtmdumad and defined as:

4.3 Multi-core CPU-based multi-threaded designs

on GPU, two reference multi-threaded designs for multi- WTIOﬂ X Ny x 8, x TB x TPB

core CPU are implemented. For a fair comparison, these SSES = = T (4)
CPU-based implementations also use the proposed LWSA "

approach. whereT,. is the run time of a complete search. TREES

merit measures the number of moves a particular approach
e CPU SSPM Since it is inefficient to run a massive can explore per second. A solution error coefficient (SEC) is
number of threads in the multi-core CPU, this multi- used to measure the quality of the achieved TSP solution by
threaded CPU design is a single search parallel movea particular approach. It is defined as:
approach (SSPM) as shown in Figure 3. Within a single
search,P’,,, moves are generated and then evaluated in g — PL — PLopy % 100% (5)
parallel by individual CPU threads. PLopt

e CPU PSSM This implementation is a traditional WherePLis the pathlength of the final TSP solution obtained
parallel search single move (PSSM) scheme whereby a particular approach an&L,,; is the path length of
each processing core performs an independent Searcﬁhe Optlmal solution. A smaller SEC value means that the
and only one move is generated in each step. All path length of the achieved solution is closer to the optimal
processing cores are coordinated periodically to fetch solution and the approach performs better in term of salutio

the global best solution and use it as a new starting guality.
point of the search. Table 2 shows theSSES and SEC values of the

GPU-based and the CPU-based implementations where
both are run from temperatur€0000 to 0.1 (Schneider
and s. Kirkpatrick, 2006). To reduce the effect of system
fluctuations, each result in Table 2 is obtained by averaging
the measured values for 10 independent runs of the same
experiment. The optimal length for each TSP is provided by
The proposed PSPM simulated annealing design for many-he TSPLIB benchmark suit. THeS 25 speedup of the GPU
core platform is tested on an NVIDIA Tesla C2050 GPU Implementation is calculated as:
system. This GPU has 448 FPUs which are grouped SSESqpy
into 14 streaming multiprocessors. There are 48K bytes GPU SSES speedup = SSESh
of shared memory and 32K registers in each streaming ory
multiprocessor (NVIDIA, 2009). The reference CPU-based  As shown in the results, the GPU-based implementation
implementation is tested on a server with two Intel Xeon outperforms both CPU-based implementations for all TSP

5 Experimental results

5.1 Test environment

(6)
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Table 2 Performance comparisons between CPU-based and GPU-basethangtions. The SSES results are in unit of

10° solutions/second and the SEC results are in forf¥ of

TSP instance CPUSSPM | CPUPSSM | GPUPSPM | SSES speedup of GPUSSES speedup of GPU
SSES SECH SSES SEC| SSES SEC| over CPUSSPM over CPU PSSM
rd100 46 24| 194 31.2| 456.8 0.14 99.7 23.6
eil101 43 38| 196 19.4| 447.8 0.49 105.1 22.9
bier127 36 40| 17.6 23.4| 466.4 0.92 130.0 26.4
ch150 55 29| 16.2 35.9| 4594 1.19 83.3 28.3
kroA150 42 51| 161 39.5| 4615 1.08 109.2 28.6
pri52 46 19| 16.1 75.8| 466.6 0.17 102.2 29.0
ulbs9 4.6 43| 154 40.7| 463.8 1.00 99.9 30.1
rat195 43 6.2 139 37.0| 446.2 250 104.5 32.1
ts225 56 55| 11.9 28.4| 468.7 1.06 83.5 39.4
tsp225 54 46| 12.1 35.2| 4479 2.37 82.2 36.9
gil262 40 6.1| 11.3 50.7| 447.0 2.19 110.4 39.7
pr264 48 11.2| 11.3 116.0| 462.1 4.20 96.7 40.7
a280 46 59| 111 53.2| 4439 275 95.6 40.0
pr299 56 57| 10.7 48.7| 463.2 1.81 82.2 43.5
lin318 45 91| 104 63.6| 465.8 3.63 103.3 44.7
rd400 48 7.5 9.1 40.5| 453.0 3.62 93.9 49.9
fla17 44 6.6 8.8 116.2| 449.6 1.41 102.7 51.3
pr439 47 105 8.6 72.1| 462.2 5.16 98.8 53.9
pcb442 45 75 8.4 43.5| 458.2 3.81 101.0 54.3
d493 47 6.7 7.7 47.0] 452.0 4.30 96.7 58.9
average 47 59| 128 50.9| 4571 2.2 99.0 38.7

instances. When compared to the CPU-based SSPM, thand the CPU-based implementations, two sets of experiments
GPU-based PSPM achieves speedups f02r times to130 are conducted.

times without quality degradation. The speedup variat®on i
due to the differences in the problem size, the nature of the
solution space, and solution update frequency. On aveeage,
speedup ob9 times is obtained over the CPU-based SSPM.
When compared to the CPU-based PSSM, the achieved
speedups are ranged fra?f.6 times t058.9 times with an
average oB38.7 times. This is lower than that in the SSPM
case since the PSSM approach has a lower communication
overhead. Despite having a bett€s F'S performance, the
CPU-based PSSM produces worse solutions. The average
error coefficient of the CPU-based PSSM 9%, which is
almost9 times higher than the CPU-based SSPM.

5.3 Exploration effectiveness comparison

Exploring more solutions per unit time in the GPU-based
PSPM design is only half of the story. A superior approach
should find a solution not only quicker but also better. To
compare the effectiveness of the GPU-based PSPM design

e throughput experimentdhis experiment measures the
effectiveness of a particular implementation in finding
a good enough solution. Shorter search time enables an
approach to solve more TSP instances. For each TSP
instance, we locate the shortest path length achieved
by the CPU-based SSPM implementation in the
experiments in Section 5.2. This shortest path length is
used as the threshold length in this experiment. We then
re-run the experiments for different implementations.
The elapsed search time of each approach is recorded
once it can find a solution with a path length shorter
than the threshold. The average run time of 10
independent trials RT,,,, is used to calculate the
throughput coefficient (TC) as:

1

TC =
RTaq)g

@)



290 Y.M. Lam et al.

Table 3 Effectiveness comparisons between CPU-based and GPU-badediiemations. The TC results are in unitlof 2
solutions/second and the SEC results are in forf¥hoThe convergence improvements are shown as the SEC differeinves o
particular implementations. (The TC results of CPU-based PSSM areaitatde due to excess search time.)

Throughput (TC) Convergence (SEC)
TSP instance CPU  GPU GPU | CPU CPU  GPU| GPU improvement GPU improvement
SSPM  PSPM| speedup| SSPM PSSM PSPM over CPU SSPM over CPU PSSM
rd100 0.99 4831 48.8 35 23.3 0.3 3.2 23.0
eil101 457 35.34 7.7 3.8 17.9 0.5 3.3 17.4
bier127 8.85 66.67 7.5 7.4 22.2 15 5.9 20.7
ch150 0.45 32.36 72.3| 13.9 35.3 0.8 13.1 34.5
kroA150 1.97 43.67 22.1 7.5 35.6 0.9 6.6 34.7
prl52 0.26 29.85| 1154 1.9 64.5 0.6 1.3 63.9
ul59 0.50 37.31 75.1 4.4 35.3 1.2 3.2 34.0
rat195 1.69 21.98 13.0| 59.7 36.8 1.6 58.1 35.2
ts225 227 4484 19.7| 573 30.4 11 56.2 29.3
tsp225 0.09 19.80| 223.2| 420 33.9 2.8 39.2 31.1
gil262 158 16.13 10.2| 545 45.6 2.8 51.7 42.8
pr264 0.93 24.04 259 | 414 104.6 6.1 35.3 98.5
a280 1.01 15.13 150| 864 56.9 25 83.9 54.4
pr299 0.31 16.26 53.0 7.1 49.2 2.7 4.3 46.5
[in318 0.69 18.52 26.7 15.1 64.0 4.1 11.0 59.8
rd400 121 12.14 10.0| 229 54.9 4.2 18.7 50.7
fla17 0.93 9.43 10.1 6.9 112.0 1.8 5.0 110.2
pr439 266 16.42 6.2 30.8 77.6 5.0 25.8 72.6
pcb442 1.39 13.02 9.4 8.9 41.8 4.2 4.7 37.5
d493 0.49 9.09 18.4 7.2 46.7 4.4 2.8 42.3
average 1.64 26.52 39.5 24.1 54.9 2.5 21.7 47.0

e convergence experiment3his experiment analyses solutions. The convergence experiments also show that this
the effectiveness of a particular implementation to approach produce8 times larger solution error than that
improve the solution quality. For each TSP instance, of the CPU-based SSPM implementation. As a result, the
the averaged GPU search time for reaching the analysis in this work will focus on the GPU-based PSPM and
threshold length in the throughput experiments is the CPU-based SSPM approaches.
used as the maximum allowed search time. All
implementations are run for this allowed time

beforg they are stopped. The path lengths of the The throughput measurements show that the GPU-
res“'“f‘g solutions are measured. THEC values based PSPM can achieve 34.5 times average speedup.
of 10 independent runs are averaged to measure theA maximum speedup of223.2 times is obtained for
convergence of solution error. the tsp225 instance. Moreover, the proposed GPU-based
PSPM approach is more effective in improving the solution
Table 3 shows the exploration effectiveness of the CPU quality. The convergence experiments show that the GPU
and GPU implementations. Throughput results of the CPU-implementation achieves quality improvement2af7% on
based PSSM design are not reported as this approach cannaverage over the CPU-based SSPM design. The fluctuations
reach the threshold length after spendimgimes longer  in throughput and solution quality are due to the random
search time than the CPU-based SSPM design. This indicatefactors in the neighbourhood search algorithm and the
that the CPU-based PSSM is less capable of finding goodvariations of solution space in different TSP instances.
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20 — ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ it also drops significantly whefPB > 32. It is because
6l % orureM x| all threads in the same block can be grouped in a warp
(Section 2.1) wherl"PB is less than 32. Hence all threads
" il x7 | in a block are executed in parallel and the execution time
I(J/J) 4 ] of a block is equal to that of a warp. Wh&hPB > 32, the
n 12t 1 threads have to be grouped into two or more warps which
B ! i are executed in sequential order. As a result, the expected
S sl Ea | execution time is increased B90% whenT PB = 48. Since
o ; >< the number of threads processing data is also increased from
32 to 48 (which i$50% increment), the expected performance
4r >(/*/4/\\’ 1 degradation i25%. The experimental results show that the
2r ‘ ‘ ‘ ‘ ‘ ‘ ‘ ] degradation in GPU SSES18.3%, which matches the above

5 10 15 20 25 30 35 40 45 50 analysis. A maximum speedup 869.5 times is achieved at

Pm,TPB TPB = 32.
Figure 4 Scalability comparison between the CPU-based SSPM

and the GPU-based PSPM implementations. The SSES . .

coefficients of GPU implementation is divided by 50to ~ ©-9 Comparison of different approaches

have a better illustration of the trend, the CPU SSES

coefficients are absolute values from Table 4. Table 5 compares the achievements of our work with previous

efforts on mapping neighborhood search algorithms on GPU

platforms. The proposed GPU-based PSPM approach, with

Table 4 Scalability comparison between the CPU-based SSPM  application and platform specific optimisations, achieves

and the GPU-based PSPM implementations. The SSES the highest speedup by the knowledge of the authors. The

results are in unit of0° solutions/second and the SEC ~ comparison is fair since both the CPU and GPU platforms

used in the experiments are up-to-date and commonly
available.

The theoretical peak performance of the GPU and CPU

results are in form of%.

P, | CPUSSPM | GPUPSPM | SSES speedup  ysed in this work are 1.03T FLOPS (NVIDIA, 2010) and
TPB | SSES SEC| SSES SEC of GPU 128G FLOPS respectively. The two Intel X5650 CPUs
contain 12 cores running 867G H z. Each core can perform
4 2.9 90| 1548 2.2 55.2 4 concurrent single-precision floating point operations pe
8 3.8 6.5 | 30565 2.1 82.1 clock cycle (Barker et al., 2008). The theoretical peak CPU
12 47 59 | 4571 2.2 99.0 performance of our dual-socket serveris 12 x 2.67G =
128G FLOPS. A direct comparison suggests that the GPU
24 | 54 42 )756.8 15 142.6 platform should bel.03T/128G = 8 times faster than the
32 25 4.0 | 909.7 1.4 369.5 CPU platform. However, the measured results show that the
GPU-based PSPM design achieves much higher speedup.
48 2.0 36]6522 11 320.6 This indicates that the proposed GPU-based PSPM scheme
can improve the performance of the neighbourhood search
algorithms beyond the difference of raw processing powers
5.4 Scalability of the hardware platforms.

The scalability of the GPU-based PSPM implementation
and the CPU-based SSPM implementation is compared in6 Conclusions
Table 4. In the experiments;,, andT'PB are varied from
4 to 48. Figure 4 illustrates the scalability trend of both A generic parallel search parallel move (PSPM) approach
implementations where the SSES coefficients of the GPUfor parallelising neighbourhood search algorithms opgedi
implementation are divided B30 to have a better illustration  for many-core platforms is presented. A simulated anngalin
and the CPU SSES coefficients are absolute values fromprocess is parallelised using this approach and implerdente
Table 4. Figure 4 shows that the solution exploration speedon a GPU platform for solving the Traveling Salesman
of the CPU-based SSPM implementation does not changeProblem. Using the proposed PSPM approach with
linearly with the number of parallel thread%n. The SSES  application and platform specific optimisations, the GPU
of the CPU implementation drops significantly when the implementation is able to find better solutions quicker than
number of threads exceed 24. This is because the number ahe multi-threaded CPU design. Experimental results show
active threads is larger than that of the hardware supportedhat the GPU implementation can explore the solution space
simultaneous threads. This excess of threads introduces9 times faster. The GPU design is very effective since it
frequent context switching in the CPU and thus degrades thecan find good solutiong9.5 times quicker or improve the
exploration speed. solution quality by21.7% under the same time limit. Current
The exploration speed of the GPU implementation and future work include extending the proposed approach
increases linearly witi' PB when TPB < 32. However, to cover larger TSP instances, applying the techniques to
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Table 5 Comparing results from different approaches of mapping neiglomar search algorithms on GPU platforms.

approach algorithm application CPU platform GPU platform Speed-up
(Choong et al., 2010) simulated annealing  placement Intel Core 2 QuadGeForce GTX 280 25.3
(Choi and Liu, 2010) simulated annealing  floorplanning Intel Core 2 Due Quadro FX5600 15.7
(Han et al., 2011) simulated annealing  floorplanning Intel Core 2 Quad eFofge GTS 250 160
(Luong et al., 2010) Tabu search quadratic assignment Intel Coree2 GeForce 8600M GT 6.1
(Luong et al., 2010) Tabu search permuted perceptron Intel CDrge2 GeForce GTX 280 25.8
(Fujimoto and Tsutsui, 2011) genetic algorithm TSP Intel Core 2 Due @eRaT X 285 24.2
this work simulated annealing TSP Two X5650 (12 cores) Tesla C2050 99

different neighbourhood search algorithms, and providing Reconfigurable Logic: A Case StudyEEE Transactions
automated neighbourhood search algorithm mapping for on Computers 5@), 433-448.
many-core platforms. .
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