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Abstract: This paper presents a parallel search parallel move approach to parallelise neighbourhood
search algorithms on many-core platforms. In this approach, a large number of searches are run
concurrently and coordinated periodically. Iteratively, each search generates and evaluates multiple
moves in parallel. The proposed approach can fully utilise the computing capability of many-core
platforms under various platform specific constraints. A parallel simulated annealing algorithm for
solving the Traveling Salesman Problem is developed using the parallel search parallel move scheme
and implemented on an NVIDIA Tesla C2050 GPU platform. We evaluate the performance of
our approach against a multi-threaded CPU implementation on a server containing two Intel Xeon
X5650 CPUs (12 cores in total). The experimental results of 20 benchmark problems show that the
GPU implementation achieves 99 times speedup on average in solution spaceexploration speed. In
term of effectiveness, the GPU implementation is capable of finding good solutions 39.5 times faster
or with 21.7% solution quality improvement given the same searching time.
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1 Introduction

Neighbourhood Search algorithms have been widely used to
solve many NP-complete problems where the time of finding

solution increases faster than exponentially as the problem
size increased. Examples of such problems are vehicle route
planning, job scheduling, task assignment, cargo placement,
and digital circuit optimisation. An neighbourhood search
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algorithm starts with a feasible solution and attempts to
improve it by searching its neighbours. These neighbouring
solutions can be reached directly from the current solution
by an operation called amove. This process is repeated until
a local optimum or the termination condition is reached.
Due to the NP-completeness nature of such problems, the
search process is often tedious and time-consuming. Various
parallel approaches using distributed systems or multi-
threaded techniques have been proposed to enhance solution
quality or to reduce search time.

One strategy is to explore data level parallelism
where a problem instance is divided into multiple subsets
for parallel processing in multiple processors. When the
search terminates, each processor generates a sub-solution.
In the final stage, all sub-solutions are combined and
transformed into a feasible solution. For example, in a
parallel placement algorithm for field programmable gate
array technology (Ababei, 2009), a large netlist is partitioned
into a number of small sub-netlists. Independent simulated
annealing process is applied to each sub-netlist to produce
a partial placement solution. Upon termination, all the
partial solutions are combined to form a complete and
feasible placement solution. A distributed implementation
of simulated annealing for solving the Traveling Salesman
Problem (TSP) (Allwright and Carpenter, 1989) is also
proposed. After the entire path is divided into many sub-
paths, multiple processors are used to work on the sub-
paths in parallel where a number of trial city exchanges are
performed on each processor. However, the drawback of this
approach is that the result quality depends strongly on the
solution space and the associated partition of it. Thus the final
solution by combining sub-solutions is likely to be worse
than that of the traditional equential search methods (Ababei,
2009).

A second approach is to employ parallel move strategies,
in which multiple moves are generated in each search
iteration and evaluated in parallel on a number of processors.
Study in (Kravitz and Rutenbar, 1987) tackles placement
problem by assigning the cost calculations of multiple
placement solutions to multiple processors. A parallel 2-Opt
local search approach is proposed for the Traveling Salesman
Problem in (Mavroidis et al., 2007). Parallel moves, as swaps
of cities, are evaluated on distinct processors. Similarly,
(Gallego et al., 1997) proposed a parallel simulated annealing
solution for the problem of power transmission network
expansion.

A third strategy is parallel search, where each processor
performs independent sequential searches on the complete
problem and processors are coordinated periodically.
In (Crainic et al., 1995), each processor runs a sequential
Tabu search for a number of iterations independently and
then broadcast the local best result to all the other processors.
The global best solution is then chosen as the new starting
point of all searches. Parallel simulated annealing algorithms
using this approach are also proposed to solve routing
problems (Ram et al., 1996; Czech and Czarnas, 2002).
Instead of synchronising solutions globally, an alternative
implementation is to exchange solutions with neighbouring

processors (Cohoon et al., 1991; Whitley et al., 1991;
Matsumura et al., 1997).

The main constraints of using distributed systems or
multi-threading techniques for multi-core microprocessor
systems are the communication overhead and thread
switching cost. Recent many-core architectures, such as
those employed in Graphics Processing Units (GPUs),
have different architectures designed for massively parallel
applications. The characteristics include a close to zero thread
switching cost; a lower inter-core communication overhead;
and a larger number of parallel processing cores. With the
advances in many-core technologies, exploration of parallel
neighborhood search on many-core platforms becomes more
and more popular. Many of these approaches employ a
parallel move strategy (Choi and Liu, 2010; Choong et al.,
2010; Luong et al., 2010; Han et al., 2011; Fujimoto and
Tsutsui, 2011). In particular, a parallel Tabu search (Luong
et al., 2010) uses three different neighbourhood functionsto
generate the neighbours simultaneously. Each neighbourhood
function generates a number of neighbours which are
evaluated in different cores in an NVIDIA GTX 280 GPU. In
these many-core based implementations, the host computer
is often used to run a master search thread which iteratively
distributes potential moves to the many-core platform for
solution evaluation, collects the results and selects the next
move (Choi and Liu, 2010; Han et al., 2011). Genetic
algorithms are also explored on many-core platforms as
shown in (Wong and Wong, 2006; Li et al., 2007). The
principle is to utilise the large number of processing cores
on the many-core platform to evaluate more individuals in
parallel.

Although the above approaches have shown promise,
there is scope for significant improvement in parallelism.
In this work, a many-core based parallel search parallel
move (PSPM) approach is proposed to improve the
neighborhood search algorithms. The purposes are to
increase the computational parallelism and to minimise the
synchronisation overhead. The parallelism is achieved by
employing both parallel search and parallel move strategies
in a single design. In the PSPM scheme, a number of parallel
searches are run and coordinated periodically. Each search
generates and evaluates multiple moves in parallel in each
iteration. The main contributions of this work are:

• A generic PSPM approach for parallelising
neighbourhood search algorithms on many-core
platforms is proposed. We focus on maximising
the achievable parallelism when mapping the
neighbourhood search algorithm on the target hardware
platform. This approach can be used to improve
the performance of generic neighbourhood search
algorithms (Section 3).

• Using the PSPM approach, a simulated annealing
process for solving the TSP is parallelised and
implemented on a GPU platform. In this case study,
we achieve significant improvement over a multi-core
CPU design by applying application and platform
specific optimisations (Section 4).
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Figure 1 NVIDIA CUDA platform architecture.

• The results of a TSP benchmark suit are measured
and evaluated to illustrate the effectiveness of the
proposed techniques. The impacts of various runtime
configurations and scalability of each platform are also
analysed (Section 5).

The rest of this paper is organised as follows: Section 2
introduces the GPU architecture and the simulated annealing
algorithm. Section 3 presents the proposed parallel search
parallel move approach. Section 4 presents details of the
application and platform specific optimisation techniquesand
the GPU-based implementation. The measured results and
evaluations are given in Section 5. Finally, Section 6 draws
conclusions and future work.

2 Background

2.1 GPU architecture

The GPU platform recently becomes one of the most
popular many-core platforms for general purpose computing
applications. In this work, we carry out the many-core
experiments on an NVIDIA GPU card. Figure 1 illustrates
an abstract structure of the NVIDIA graphics processors with
the Fermi architecture (NVIDIA, 2009). A group of 8 to 32
floating point units (FPUs) and a shared control unit form
a basic computing core called a streaming multiprocessor.
Associated with each streaming processor is a multi-bank
static memory partitioned into L1 cache and user-managed
shared memory. Based on a single instruction in the control
unit, multiple data can be read, processed or written in
parallel. Depends on the die size, there may be 1 to 30
streaming multiprocessors on a single GPU chip. The size
of on-chip shared memory on each streaming multiprocessor
is in range of 16KB to 64KB and larger data structure must
be stored in off-chip global memory which presents a unified
address space to all threads in all streaming multiprocessors.
The shared memory provides a much higher bandwidth than
the global memory with less access conflicts. For simplicity,
some components such as special function units and texture
memory are not shown in the figure.

The CUDA (NVIDIA, 2011) driver groups and manages
threads intothread blocks. All threads within a thread block
view the same address space in the shared memory which
is inaccessible by threads in any other thread blocks. A
thread block is assigned and distributed to a single streaming
multiprocessor during run time. This thread block, as well as

Algorithm 1: Standard simulated annealing.

1 begin

2 T ⇐ Tinitial;

3 prevSol ⇐ feasible initial solution;

4 prevCost ⇐ getCost(prevSol);

5 bestSol ⇐ prevSol;

6 bestCost ⇐ prevCost;

7 while T > Ttermination do

8 newSol ⇐ generateNewSol(prevSol);

9 newCost ⇐ getCost(newSol);

10 p ⇐ exp((prevCost− newCost)/T );

11 rand ⇐ random(0, 1);

12 if rand < p then

13 prevSol ⇐ newSol;

14 prevCost ⇐ newCost;

15 if newCost < bestCost then

16 bestSol ⇐ newSol;

17 bestCost ⇐ newCost;

18 end if

19 end if

20 T ⇐ αT ;

21 end while

22 end

any allocated per-block resources, resides statically inside the
streaming multiprocessor until all threads inside the block are
terminated. Thus the total number of active blocks are limited
by the resource requirements of the blocks. Non-active blocks
are kept waiting in a queue managed by the device.

Within a block, every 32 threads are grouped into an
atomic structure call awarp. Threads in a block are scheduled
for execution in warps. Different warps are scheduled in
non-deterministic order and executed independently. Threads
within a warp are designed to execute in parallel in instruction
level for maximum performance. When threads within a warp
branch into different execution paths, the warp scheduler
will sequentially go through the divergent paths one by one
until all paths merge at a single point. That means every
time the diverged warp is scheduled, threads in the current
paths are executed while the remaining threads are disabled.
As a result, minimising intra-warp divergence is critical for
performance optimisation.

2.2 Standard Simulated Annealing

Neighbourhood search starts with a feasible solution and
attempts to improve it by searching its neighbours through
the moveoperation. A move generates a new solution by
modifying the previous solution. This process is repeated
until a local optimum or the termination condition is reached.
Simulated annealing is one of the popular neighbourhood
search techniques, we employ it to verify the proposed
techniques in this work. In simulated annealing, the process
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accepts not only neighbours with improved solutions, but
also those with increased cost based on certain design
parameters. The acceptance probabilityp is determined using
the Metropolis criterion:

p =

{

e(cost(b)−cost(c))/Ti if cost(c) > cost(b),
1 otherwise

(1)

whereb is the previous solution andc is the new solution. One
can see that a better solution will always be accepted. For a
worse solution, the acceptance probability will be higher if
the cost is closer to the previous solution. It is given thatTi is
the temperature in theith iteration and is updated as follows:

Ti+1 = αTi (2)

where α is the cooling constant with typical value in
the range of 0.9 to 0.99. Algorithm 1 shows the steps
of a standard simulated annealing process. A feasible
solution is initially generated. Then a neighbourhood function
(generateNewSol) is chosen to generate a new solution
(newSol) which is accepted and used as a new starting point
of the search if the Metropolis criterion is satisfied (Line
12). The probability of accepting worse solutions decreases
with the temperature. Once a solution having lower cost than
that of the best solution (bestSol) is found, this solution is
recorded (Line 15 to 18). The search process is repeated
iteratively until the termination condition is fulfilled such as
the minimum temperature or maximum search iteration is
reached.

3 Methodology

3.1 The challenges of algorithm mapping

Many-core platforms, such as GPU cards, are widely
used as accelerators to enable fast implementations in
many applications. It is expected that using many-core
platforms can improve the run time of neighbourhood
search algorithms. Thus, finding the solutions for bigger
problems can be more practical. Furthermore, the many-
core technologies should benefit the neighbourhood search
algorithms in solution quality. Since massively parallel
computing capability can be employed to explore the
solution space more thoroughly, the probability of capturing
good solutions is thus increased. However, there are some
challenges to parallelise neighbourhood search algorithms on
a many-core platform:

• Neighbourhood search algorithms are sequential
searches in their original form. Operations in later
iterations depend on the results of the previous one. So
later iterations cannot start until the previous iteration
is finished. This sequential nature makes it difficult
to fully utilise the parallel many-core architecture.
Although parallel search based neighbourhood search
algorithms are proposed where a number of searches
are performed in parallel, the achievable parallelism
is limited by the memory hierarchy of the underlying

many-core platform. For example, the standard
simulated annealing approach needs to keep track of
both the previous solution (prevSol) and the new
solution (newSol). Since the memory resources on
GPUs, in particular the fast shared memory, are limited,
storing two solutions for each search constrains the
number of parallel threads deployed on a GPU device.

• In each iteration of the neighbourhood search
algorithm, solutions may be updated and the next
iteration will start from the updated solutions.
For example, in simulated annealing algorithm, the
previous solution (prevSol) is updated based on
the Metropolis criterion (Line 13 of Algorithm 1).
Furthermore, the global best solution (bestSol) is
updated when the new solution has a lower cost
than that of the previous best solution (Line 16 of
Algorithm 1). Frequent updates to both local and global
solutions generate huge amount of memory access
traffic. As a result, the memory bandwidth of many-
core platforms becomes a bottleneck which again limits
the parallelism of the neighbourhood search algorithm.

Previous study (Cope et al., 2010) has shown that mapping
the originally sequential algorithm to a parallel architecture
requires attention to both the characteristics of the platforms
and the operations in the algorithms. Due to the low
arithmetic operation to memory access ratio, we believe that
the optimisation of memory access is essential for achieving
high performance on the many-core platform. This will be
discussed in Section 4.1.

3.2 Maximising parallelism with PSPM

A parallel search parallel move (PSPM) approach is proposed
to fully utilise the computing capability of many-core
platforms. It has three features, as shown in Figure 2.

• Multiple searches, each iteratively generates and
evaluate moves, run in parallel. The processing units
in a many-core platform can be grouped into multiple
blocks, such that each block of processing units
supports one search. During the search process, each
search must keep a set of intermediate solutions. If
a many-core platform provides user-managed on-chip
memory, this set of solutions can be stored in the on-
chip memory to improve performance, by avoiding
overhead in time and power consumption when going
off-chip. As the required memory size is proportional
to the number of searches, running a large number
of searches requires a significant amount of on-chip
memory. On a platform with limited on-chip memory,
the number of parallel searches will be restricted. On
the other hand, storing solutions on the main memory
can increase the number of parallel searches albeit at
the cost of reduced performance.

• In each iteration of a search, multiple moves are
generated and evaluated in parallel; each processing
unit in a block covers one move and its evaluation.
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Figure 2 The proposed parallel search parallel move approach.
Global best solution is chosen periodically for everyk
iterations.

Although multiple moves are generated in one
iteration, only the move with the lowest cost can
survive in each iteration of a search. The acceptance
of this move depends on the parameters of the
employed neighbourhood search algorithm, such as
Metropolis criterion for simulated annealing. In theory,
one copy of solution is required for each move. Using
the application and platform specific optimisation
techniques, shown in Section 4, we can reduce the
memory requirement of parallel move to the size of
a single solution. As a result, increasing number of
moves does not increase the memory requirement for
storing solutions. The number of moves is thus limited
by the number of registers, which are normally used to
store local variables, intermediate values, etc.

• The concurrent searches are coordinated periodically.
For every k iterations wherek is a fixed number
(Figure 2), the best solution among all concurrent
searches is chosen and used as a new starting
point of all searches in the next iteration, and this
process is repeated until the algorithm terminates, e.g.
the termination temperature is reached in simulated
annealing. The frequency of global synchronisation
depends on a number of factors such as run time
performance and solution quality. The impact of
synchronisation frequency is highly problem specific.

In the PSPM approach, the parallel move process has a
higher probability for capturing a better solution due to the
increased sampling rate in the neighbouring solution space.
This approach makes the search algorithm more greedy and

results in a faster converging speed. On the other hand, the
parallel search process can compensate the lost of diversity
and avoid trapping in local optimums. Performing inter-
search global synchronisations refocuses more computing
power on a better solution from time to time. Reducing the
synchronisation frequency to a single move will effectively
transform the process to a single search parallel move
approach. The advantage of the PSPM approach is that the
achievable parallelism for the search process and for the move
process can be adapted for various platform constraints. Two
cases are as follows.

• If the on-chip memory size of a many-core platform
constrains the achievable parallelism for the parallel
search process, our approach can still increase
parallelism by increasing the amount of parallel moves.

• If the achievable parallelism is bounded by register
count, the amount of parallel moves can be limited.
Our approach can then increase the amount of parallel
searches which is bounded by the solution storage
requirement.

As a result, the proposed PSPM approach allows more
solutions to be explored by utilising the parallel computing
resources of many-core architectures.

3.3 Application to solving TSP

In this work, the PSPM approach is applied to parallelise
a simulated annealing algorithm for solving the Traveling
Salesman Problem (TSP). It is a typical model for vehicle
routing, circuit design and networking applications.

In the TSP model, a list of cities and their positions are
given. The task is to find the shortest route to visit all cities
and each city is visited once and once only. Our design runs a
number of simulated annealing based parallel searches on the
GPU device. Each search generates multiple TSP solutions
in parallel in each iteration, where each solution is produced
by randomly relocating a city to another position in the route.
The path lengths of all generated TSP solutions are then
calculated in parallel and the solution with the shortest length
is chosen to test against the Metropolis criterion.

In our algorithm, each search records a local best solution
which is the best solution this search can find. The local best
solution may be updated according to the path length of the
newly chosen solution. As a result, there are a number of
local best solutions in this parallel algorithm. Periodically, the
algorithm checks all the local best solutions to find the one
with the shortest length and use it as the new starting point
of the subsequent iterations of all the concurrent searches.
Upon termination, the best TSP solution among all searches
is reported as the final solution of the algorithm.

4 Application and platform specific optimisations

To organise the parallelism of the parallel search parallel
move approach for the GPU platform, a parallel search is
mapped to a block of threads and each move in the search
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Algorithm 2: The proposed light weight simulated

annealing (LWSA).

1 begin

2 T ⇐ Tinitial;

3 curSol ⇐ feasible initial solution;

4 curCost ⇐ getCost(curSol);

5 bestSol ⇐ curSol;

6 bestCost ⇐ curCost;

7 while T > Ttermination do

8 (relocate info, newCost) ⇐

tryNewSol(curSol);

9 p ⇐ exp((curCost− newCost)/T );

10 rand ⇐ random(0, 1);

11 if (rand < p) then

12 if (curCost < bestCost) and

(newCost > curCost) then

13 bestSol ⇐ curSol;

14 bestCost ⇐ curCost;

15 end if

16 commitSol(curSol, relocate info);

17 curCost ⇐ newCost;

18 end if

19 T ⇐ αT ;

20 end while

21 end

is mapped to an individual thread within the block. Since a
distinct copy of the solution is required for each search, the
parallelism of parallel search is affected by memory storage
size and memory access efficiency. The parallelism of parallel
move is limited by the complexity of move process which
affects the performance of running simultaneous threads. As
a result, the achievable parallelism of parallel search parallel
move is determined by the combination of the number of
blocks and the number of threads per block. Since the global
best solution is used as the starting point of all searches
periodically, thread synchronisation is required to update and
fetch the global best solution. It is modelled as a configurable
parameter in the proposed PSPM approach and adjusted
based on empirical feedbacks.

4.1 Memory optimisations

To address the size limitation of the shared memory and
reduce memory access traffic, a light weight simulated
annealing (LWSA) is proposed (Algorithm 2). Instead of
storing two solutions in the standard simulated annealing
approach, the new LWSA algorithm only stores one solution
(curSol). Compared with the standard simulated annealing
approach where a new solution is generated at the start of each
iteration (Line 8 of Algorithm 1), the functiontryNewSol
in LWSA does not generate a complete solution (Line 8 of
Algorithm 2). It only records the city relocation information
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Figure 3 A single search parallel move approach.

(relocate info) of the new solution and the corresponding
cost (newCost). This newCost is checked against the
Metropolis criterion in Line 11. Based on the recorded
relocate info, a new solution can be generated and stored
into thecurSol by executing the functioncommitSol if the
Metropolis criterion is satisfied (Line 16 of Algorithm 2).

In contrast to the standard simulated annealing approach
that generates and updates a new solution in every iteration
(Line 8 of Algorithm 1), the LWSA algorithm only stores
the relocation information which can be used to reconstruct
the new solution (Line 8 of Algorithm 2). The solution
is not updated unless the Metropolis criterion is satisfied.
As a result, the number of solution updates in a search
is reduced. In addition, the standard simulated annealing
approach updates the local best solution immediately once
a new solution with a lower cost is found. However, the
local best solution is not updated immediately in the LWSA
approach. ThecurSol, instead of the local best solution, is
updated if a better solution is found. The local best solution
is updated only when the next move will accept a worse
solution and thecurSol is better than the stored local best
solution (Line 12 of Algorithm 2). The idea is to skip the
write operations to the local best solution in a sequence of
better moves until a worse move is being accepted. By doing
so, the frequency of memory updates, and thus the memory
bandwidth requirement, is significantly reduced.
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Table 1 A summary of notations.

symbol description adopted value

Nd number of nodes in the TSP instance 100 to 493

Pm number of parallel moves in the CPU SSPM implementation 12

Ps number of parallel searches in the CPU PSSM implementation 12

Se number of temperature steps between best solution exchanges 100

Ss total number of temperature steps performed in a complete search

Sp number of sweeps to reduce temperature 10 (Schneider and s. Kirkpatrick, 2006)

T simulated annealing temperature

Ts starting temperature 10000 (Schneider and s. Kirkpatrick, 2006)

Te termination temperature 0.1 (Schneider and s. Kirkpatrick, 2006)

α cooling constant 0.99

Nsm number of streaming processors on GPU 14

Ms shared memory size of a GPU streaming processor 48KBs

TB number of thread blocks in GPU implementation 98

TPB number of threads per block in GPU implementation 12

4.2 GPU implementation details

The following pseudo code segment shows the GPU
implementation of the parallel simulated annealing algorithm
for solving the TSP:

main() {
read node coordinates;
while (!terminate) {
launch Tb*Tpb threads;
find the global best solution among all threads blocks;
copy the global best solution to all threads blocks;

}
}

kernel_function {

while (step < Se) {
generate relocation information of a new solution
from the thread block’s shared solution;

if (thread_id == 0) {
find the thread in the block contains
minimum cost solution;

}

if (thread_id == minimum_cost_thread) {
generate a random number;
calculate the acceptance probability;
if (new solution is accepted) {
if (block’s shared solution is better than the

best solution of the thread block && new
solution is worse than block’s shared solution) {

store block’s shared solution to the best solution
of the thread block;

}
commit the thread block’s shared solution
using the relocation information;

}

if (iteration % (Nd * Sp) == 0) {
step++;
T = T * ALPHA;

}

iteration++;
}

}
}

The main function is responsible for parameter setting,
launching the simulated annealing kernel and collecting the
global best solutions. It iteratively launchesTB × TPB
threads which are divided intoTB thread blocks and each
block containsTPB threads. Each thread block implements
a single search parallel move (Figure 3) simulated annealing
process and each thread implements a LWSA. As a result, the
TB × TPB threads implement aTB searchesTPB moves
(Figure 2) simulated annealing. All the launched threads run
for Se temperature steps where a temperature step is the
temperature being decreased once. After the kernel call is
finished, the global best solution among all thread blocks is
selected. In the next iteration, all thread blocks continuethe
search from this selected solution. Iteratively, each thread in a
block generates the relocation information of a new solution
and calculates the path length. The thread that generates the
best solution within each block is selected. This thread is then
used to evaluate the acceptance of the solution and update
the local best solution accordingly. Note that the temperature
is not decreased in each iteration. It is decreased once every
Nd × Sp iterations whereNd is the number of nodes in the
TSP instance andSp is the number of sweeps to reduce
temperature (Schneider and s. Kirkpatrick, 2006). In this
implementation, each thread block keeps a copy of the node
coordinates and the current solution in the shared memory
since they are accessed frequently. All threads in the block
use these shared information to generate and evaluate new
solutions. Each thread block updates the current solution only
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when it is accepted. Putting the current solution and the
coordinates in the shared memory can reduce memory access
latency by utilising the high bandwidth of the shared memory.

In this work, the TSP solution is stored in the form of a
double link list implemented in 1-D array structure. A node is
represented as a pair of array indices,prev andnext, of the
previous and the next node in the path. Using theshort type
for the array index, each node occupies 4 bytes of memory.
A complete solution thus requires4Nd bytes whereNd is
the number of nodes. Since each node requires two 32-bit
floating point numbers to store the coordinate,8Nd bytes are
needed to store the coordinates for all nodes. As a result, the
maximum number of thread blocksTB can be mapped on a
GPU is determined as follows:

TB = ⌈
Ms

4Nd + 8Nd + r
⌉ ×Nsm (3)

where Ms is the size of shared memory in a streaming
multiprocessor andNsm is the number of streaming
multiprocessors in a single GPU. Parameterr is the number of
bytes in shared memory for variables such as the path lengths
of all moves in one iteration. A summary of all these notations
is given in Table 1.

4.3 Multi-core CPU-based multi-threaded designs

To evaluate the performance of our PSPM implementation
on GPU, two reference multi-threaded designs for multi-
core CPU are implemented. For a fair comparison, these
CPU-based implementations also use the proposed LWSA
approach.

• CPU SSPM: Since it is inefficient to run a massive
number of threads in the multi-core CPU, this multi-
threaded CPU design is a single search parallel move
approach (SSPM) as shown in Figure 3. Within a single
search,Pm moves are generated and then evaluated in
parallel by individual CPU threads.

• CPU PSSM: This implementation is a traditional
parallel search single move (PSSM) scheme where
each processing core performs an independent search
and only one move is generated in each step. All
processing cores are coordinated periodically to fetch
the global best solution and use it as a new starting
point of the search.

5 Experimental results

5.1 Test environment

The proposed PSPM simulated annealing design for many-
core platform is tested on an NVIDIA Tesla C2050 GPU
system. This GPU has 448 FPUs which are grouped
into 14 streaming multiprocessors. There are 48K bytes
of shared memory and 32K registers in each streaming
multiprocessor (NVIDIA, 2009). The reference CPU-based
implementation is tested on a server with two Intel Xeon

X5650 CPUs at 2.67GHz. With 6 processing cores per
CPU chip, the system has 12 physical CPU cores. Thus
12 parallel threads are created in the CPU-based reference
implementation for generating and evaluating the solutions.
The Intel C compiler is used to compile the multi-threaded
programs with all optimisation options enabled. With private
state memory, the random number generator provided in
the Intel Maths Kernel Library is more suitable for parallel
design. It is used in our implementation instead of the
standard random number generator from the GNU C library.
Experiments are performed on 20 problem instances from
the TSPLIB benchmark suit (Reinelt, 1991) with 100 to 493
cities.

From the CUDA compiler message, the kernel function
consumes 40 registers and 6206 bytes of shared memory.
The number of concurrent thread blocks is bounded by the
shared memory size but not the register count. Determined by
Equation 3, the number of thread blocks created in the target
GPU is 98 (TB = 98). The application and platform specific
parameters used in the experiments are shown in Table 1.

5.2 Solution space exploration speed comparison

To compare the efficiency of the multi-threaded CPU
implementation and the GPU-based PSPM implementation in
solving the TSP, a solution space exploration speed (SSES) is
introduced and defined as:

SSES =

logTe−logTs

logα ×Nd × Sp × TB × TPB

Tr
(4)

whereTr is the run time of a complete search. TheSSES
merit measures the number of moves a particular approach
can explore per second. A solution error coefficient (SEC) is
used to measure the quality of the achieved TSP solution by
a particular approach. It is defined as:

SEC =
PL− PLopt

PLopt
× 100% (5)

wherePL is the path length of the final TSP solution obtained
by a particular approach andPLopt is the path length of
the optimal solution. A smaller SEC value means that the
path length of the achieved solution is closer to the optimal
solution and the approach performs better in term of solution
quality.

Table 2 shows theSSES and SEC values of the
GPU-based and the CPU-based implementations where
both are run from temperature10000 to 0.1 (Schneider
and s. Kirkpatrick, 2006). To reduce the effect of system
fluctuations, each result in Table 2 is obtained by averaging
the measured values for 10 independent runs of the same
experiment. The optimal length for each TSP is provided by
the TSPLIB benchmark suit. TheSSES speedup of the GPU
implementation is calculated as:

GPU SSES speedup =
SSESGPU

SSESCPU
(6)

As shown in the results, the GPU-based implementation
outperforms both CPU-based implementations for all TSP
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Table 2 Performance comparisons between CPU-based and GPU-based implementations. The SSES results are in unit of

106 solutions/second and the SEC results are in form of%.

TSP instance
CPU SSPM CPU PSSM GPU PSPM SSES speedup of GPUSSES speedup of GPU

SSES SEC SSES SEC SSES SEC over CPU SSPM over CPU PSSM

rd100 4.6 2.4 19.4 31.2 456.8 0.14 99.7 23.6

eil101 4.3 3.8 19.6 19.4 447.8 0.49 105.1 22.9

bier127 3.6 4.0 17.6 23.4 466.4 0.92 130.0 26.4

ch150 5.5 2.9 16.2 35.9 459.4 1.19 83.3 28.3

kroA150 4.2 5.1 16.1 39.5 461.5 1.08 109.2 28.6

pr152 4.6 1.9 16.1 75.8 466.6 0.17 102.2 29.0

u159 4.6 4.3 15.4 40.7 463.8 1.00 99.9 30.1

rat195 4.3 6.2 13.9 37.0 446.2 2.50 104.5 32.1

ts225 5.6 5.5 11.9 28.4 468.7 1.06 83.5 39.4

tsp225 5.4 4.6 12.1 35.2 447.9 2.37 82.2 36.9

gil262 4.0 6.1 11.3 50.7 447.0 2.19 110.4 39.7

pr264 4.8 11.2 11.3 116.0 462.1 4.20 96.7 40.7

a280 4.6 5.9 11.1 53.2 443.9 2.75 95.6 40.0

pr299 5.6 5.7 10.7 48.7 463.2 1.81 82.2 43.5

lin318 4.5 9.1 10.4 63.6 465.8 3.63 103.3 44.7

rd400 4.8 7.5 9.1 40.5 453.0 3.62 93.9 49.9

fl417 4.4 6.6 8.8 116.2 449.6 1.41 102.7 51.3

pr439 4.7 10.5 8.6 72.1 462.2 5.16 98.8 53.9

pcb442 4.5 7.5 8.4 43.5 458.2 3.81 101.0 54.3

d493 4.7 6.7 7.7 47.0 452.0 4.30 96.7 58.9

average 4.7 5.9 12.8 50.9 457.1 2.2 99.0 38.7

instances. When compared to the CPU-based SSPM, the
GPU-based PSPM achieves speedups from82.2 times to130
times without quality degradation. The speedup variation is
due to the differences in the problem size, the nature of the
solution space, and solution update frequency. On average,a
speedup of99 times is obtained over the CPU-based SSPM.
When compared to the CPU-based PSSM, the achieved
speedups are ranged from23.6 times to58.9 times with an
average of38.7 times. This is lower than that in the SSPM
case since the PSSM approach has a lower communication
overhead. Despite having a betterSSES performance, the
CPU-based PSSM produces worse solutions. The average
error coefficient of the CPU-based PSSM is50.9%, which is
almost9 times higher than the CPU-based SSPM.

5.3 Exploration effectiveness comparison

Exploring more solutions per unit time in the GPU-based
PSPM design is only half of the story. A superior approach
should find a solution not only quicker but also better. To
compare the effectiveness of the GPU-based PSPM design

and the CPU-based implementations, two sets of experiments
are conducted.

• throughput experiments:This experiment measures the
effectiveness of a particular implementation in finding
a good enough solution. Shorter search time enables an
approach to solve more TSP instances. For each TSP
instance, we locate the shortest path length achieved
by the CPU-based SSPM implementation in the
experiments in Section 5.2. This shortest path length is
used as the threshold length in this experiment. We then
re-run the experiments for different implementations.
The elapsed search time of each approach is recorded
once it can find a solution with a path length shorter
than the threshold. The average run time of 10
independent trials,RTavg, is used to calculate the
throughput coefficient (TC) as:

TC =
1

RTavg
(7)



290 Y.M. Lam et al.

Table 3 Effectiveness comparisons between CPU-based and GPU-based implementations. The TC results are in unit of10−2

solutions/second and the SEC results are in form of%. The convergence improvements are shown as the SEC differences of two

particular implementations. (The TC results of CPU-based PSSM are not available due to excess search time.)

TSP instance

Throughput (TC) Convergence (SEC)

CPU GPU GPU CPU CPU GPU GPU improvement GPU improvement

SSPM PSPM speedup SSPM PSSM PSPM over CPU SSPM over CPU PSSM

rd100 0.99 48.31 48.8 3.5 23.3 0.3 3.2 23.0

eil101 4.57 35.34 7.7 3.8 17.9 0.5 3.3 17.4

bier127 8.85 66.67 7.5 7.4 22.2 1.5 5.9 20.7

ch150 0.45 32.36 72.3 13.9 35.3 0.8 13.1 34.5

kroA150 1.97 43.67 22.1 7.5 35.6 0.9 6.6 34.7

pr152 0.26 29.85 115.4 1.9 64.5 0.6 1.3 63.9

u159 0.50 37.31 75.1 4.4 35.3 1.2 3.2 34.0

rat195 1.69 21.98 13.0 59.7 36.8 1.6 58.1 35.2

ts225 2.27 44.84 19.7 57.3 30.4 1.1 56.2 29.3

tsp225 0.09 19.80 223.2 42.0 33.9 2.8 39.2 31.1

gil262 1.58 16.13 10.2 54.5 45.6 2.8 51.7 42.8

pr264 0.93 24.04 25.9 41.4 104.6 6.1 35.3 98.5

a280 1.01 15.13 15.0 86.4 56.9 2.5 83.9 54.4

pr299 0.31 16.26 53.0 7.1 49.2 2.7 4.3 46.5

lin318 0.69 18.52 26.7 15.1 64.0 4.1 11.0 59.8

rd400 1.21 12.14 10.0 22.9 54.9 4.2 18.7 50.7

fl417 0.93 9.43 10.1 6.9 112.0 1.8 5.0 110.2

pr439 2.66 16.42 6.2 30.8 77.6 5.0 25.8 72.6

pcb442 1.39 13.02 9.4 8.9 41.8 4.2 4.7 37.5

d493 0.49 9.09 18.4 7.2 46.7 4.4 2.8 42.3

average 1.64 26.52 39.5 24.1 54.9 2.5 21.7 47.0

• convergence experiments:This experiment analyses
the effectiveness of a particular implementation to
improve the solution quality. For each TSP instance,
the averaged GPU search time for reaching the
threshold length in the throughput experiments is
used as the maximum allowed search time. All
implementations are run for this allowed time
before they are stopped. The path lengths of the
resulting solutions are measured. TheSEC values
of 10 independent runs are averaged to measure the
convergence of solution error.

Table 3 shows the exploration effectiveness of the CPU
and GPU implementations. Throughput results of the CPU-
based PSSM design are not reported as this approach cannot
reach the threshold length after spending5 times longer
search time than the CPU-based SSPM design. This indicates
that the CPU-based PSSM is less capable of finding good

solutions. The convergence experiments also show that this
approach produces2 times larger solution error than that
of the CPU-based SSPM implementation. As a result, the
analysis in this work will focus on the GPU-based PSPM and
the CPU-based SSPM approaches.

The throughput measurements show that the GPU-
based PSPM can achieve a39.5 times average speedup.
A maximum speedup of223.2 times is obtained for
the tsp225 instance. Moreover, the proposed GPU-based
PSPM approach is more effective in improving the solution
quality. The convergence experiments show that the GPU
implementation achieves quality improvement of21.7% on
average over the CPU-based SSPM design. The fluctuations
in throughput and solution quality are due to the random
factors in the neighbourhood search algorithm and the
variations of solution space in different TSP instances.
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Figure 4 Scalability comparison between the CPU-based SSPM
and the GPU-based PSPM implementations. The SSES
coefficients of GPU implementation is divided by 50 to
have a better illustration of the trend, the CPU SSES
coefficients are absolute values from Table 4.

Table 4 Scalability comparison between the CPU-based SSPM

and the GPU-based PSPM implementations. The SSES

results are in unit of106 solutions/second and the SEC

results are in form of%.

Pm, CPU SSPM GPU PSPM SSES speedup

TPB SSES SEC SSES SEC of GPU

4 2.9 9.0 154.8 2.2 55.2

8 3.8 6.5 305.5 2.1 82.1

12 4.7 5.9 457.1 2.2 99.0

24 5.4 4.2 756.8 1.5 142.6

32 2.5 4.0 909.7 1.4 369.5

48 2.0 3.6 652.2 1.1 320.6

5.4 Scalability

The scalability of the GPU-based PSPM implementation
and the CPU-based SSPM implementation is compared in
Table 4. In the experiments,Pm andTPB are varied from
4 to 48. Figure 4 illustrates the scalability trend of both
implementations where the SSES coefficients of the GPU
implementation are divided by50 to have a better illustration
and the CPU SSES coefficients are absolute values from
Table 4. Figure 4 shows that the solution exploration speed
of the CPU-based SSPM implementation does not change
linearly with the number of parallel threadsPm. The SSES
of the CPU implementation drops significantly when the
number of threads exceed 24. This is because the number of
active threads is larger than that of the hardware supported
simultaneous threads. This excess of threads introduces
frequent context switching in the CPU and thus degrades the
exploration speed.

The exploration speed of the GPU implementation
increases linearly withTPB when TPB ≤ 32. However,

it also drops significantly whenTPB > 32. It is because
all threads in the same block can be grouped in a warp
(Section 2.1) whenTPB is less than 32. Hence all threads
in a block are executed in parallel and the execution time
of a block is equal to that of a warp. WhenTPB > 32, the
threads have to be grouped into two or more warps which
are executed in sequential order. As a result, the expected
execution time is increased by200% whenTPB = 48. Since
the number of threads processing data is also increased from
32 to 48 (which is50% increment), the expected performance
degradation is25%. The experimental results show that the
degradation in GPU SSES is28.3%, which matches the above
analysis. A maximum speedup of369.5 times is achieved at
TPB = 32.

5.5 Comparison of different approaches

Table 5 compares the achievements of our work with previous
efforts on mapping neighborhood search algorithms on GPU
platforms. The proposed GPU-based PSPM approach, with
application and platform specific optimisations, achieves
the highest speedup by the knowledge of the authors. The
comparison is fair since both the CPU and GPU platforms
used in the experiments are up-to-date and commonly
available.

The theoretical peak performance of the GPU and CPU
used in this work are 1.03T FLOPS (NVIDIA, 2010) and
128G FLOPS respectively. The two Intel X5650 CPUs
contain 12 cores running at2.67GHz. Each core can perform
4 concurrent single-precision floating point operations per
clock cycle (Barker et al., 2008). The theoretical peak CPU
performance of our dual-socket server is4× 12× 2.67G =
128G FLOPS. A direct comparison suggests that the GPU
platform should be1.03T/128G = 8 times faster than the
CPU platform. However, the measured results show that the
GPU-based PSPM design achieves much higher speedup.
This indicates that the proposed GPU-based PSPM scheme
can improve the performance of the neighbourhood search
algorithms beyond the difference of raw processing powers
of the hardware platforms.

6 Conclusions

A generic parallel search parallel move (PSPM) approach
for parallelising neighbourhood search algorithms optimised
for many-core platforms is presented. A simulated annealing
process is parallelised using this approach and implemented
on a GPU platform for solving the Traveling Salesman
Problem. Using the proposed PSPM approach with
application and platform specific optimisations, the GPU
implementation is able to find better solutions quicker than
the multi-threaded CPU design. Experimental results show
that the GPU implementation can explore the solution space
99 times faster. The GPU design is very effective since it
can find good solutions39.5 times quicker or improve the
solution quality by21.7% under the same time limit. Current
and future work include extending the proposed approach
to cover larger TSP instances, applying the techniques to
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Table 5 Comparing results from different approaches of mapping neighbourhood search algorithms on GPU platforms.

approach algorithm application CPU platform GPU platform Speed-up

(Choong et al., 2010) simulated annealing placement Intel Core 2 QuadGeForce GTX 280 25.3

(Choi and Liu, 2010) simulated annealing floorplanning Intel Core 2 Due Quadro FX5600 15.7

(Han et al., 2011) simulated annealing floorplanning Intel Core 2 Quad GeForce GTS 250 160

(Luong et al., 2010) Tabu search quadratic assignment Intel Core 2Due GeForce 8600M GT 6.1

(Luong et al., 2010) Tabu search permuted perceptron Intel Core 2Due GeForce GTX 280 25.8

(Fujimoto and Tsutsui, 2011) genetic algorithm TSP Intel Core 2 Due GeForce GTX 285 24.2

this work simulated annealing TSP Two X5650 (12 cores) Tesla C2050 99

different neighbourhood search algorithms, and providing
automated neighbourhood search algorithm mapping for
many-core platforms.

Acknowledgement The support of Macao Science and
Technology Development Fund (Grant No. 058/2010/A) and
UK Engineering and Physical Sciences Research Council is
gratefully acknowledged.

References

Ababei, C. (2009). Speeding Up FPGA Placement via
Partitioning and Multithreading.International Journal of
Reconfigurable Computing 2009.

Allwright, J. R. A. and D. B. Carpenter (1989). A Distributed
Implementation of Simulated Annealing for the Traveling
Salesman Problem.Parallel Computing 10(3), 335–338.

Barker, K. J., K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. C. Sancho (2008). A Performance
Evaluation of the Nehalem Quad-core Processor for
Scientific Computing.Parallel Processing Letters 18(4),
453–469.

Choi, W. H. and X. Liu (2010). Case Study: GPU-based
Implementation of Sequence Pair Based Floorplanning
Using CUDA. In Proceedings of the International
Symposium on Circuits and Systems, pp. 917–920.

Choong, A., R. Beidas, and J. Zhu (2010). Parallelizing
Simulated Annealing-Based Placement using GPGPU. In
Proceedings of the International Conference on Field
Programmable Logic and Applications, pp. 31–34.

Cohoon, J. P., W. N. Martin, and D. S. Richards (1991).
Genetic Algorithms and Punctuated Equilibra in VLSI.
Parallel Problem Solving from Nature, Lecture Notes in
Computer Science 496, 134–144.

Cope, B., P. Cheung, W. Luk, and L. Howes (2010).
Performance Comparison of Graphics Processors to

Reconfigurable Logic: A Case Study.IEEE Transactions
on Computers 59(4), 433–448.

Crainic, T. G., M. Toulouse, and M. Gendreau (1995).
Synchronous Tabu Search Parallelization Strategies for
Multicommodity Location-Allocation with Balancing
Requirements.OR Spectrum 17(2-3), 113–123.

Czech, Z. J. and P. Czarnas (2002). Parallel Simulated
Annealing for the Vehicle Routing Problem with Time
Windows. InProceedings of the Euromicro Workshop on
Parallel, Distributed and Network-based Processing, pp.
376–383.

Fujimoto, N. and S. Tsutsui (2011). A Highly-Parallel
TSP Solver for a GPU Computing Platform.Numerical
Methods and Applications, Lecture Notes in Computer
Science 6046, 264–271.

Gallego, R. A., A. B. Alves, A. Monticelli, and R. Romero
(1997). Parallel Simulated Annealing Applied to Long
Term Transmission Network Expansion Planning.IEEE
Transactions on Power Systems 12(1), 181–188.

Han, Y., S. Roy, and K. Chakraborty (2011). Optimizing
Simulated Annealing on GPU: A Case Study with IC
Floorplanning. In Proceedings of the International
Symposium on Quality Electronic Design, pp. 1–7.

Kravitz, S. A. and R. A. Rutenbar (1987). Placement
by Simulated Annealing on a Multiprocessor.IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems 6(4), 534–549.

Li, J. M., X. J. Wang, R. S. He, and Z. X. Chi (2007). An
Efficient Fine-grained Parallel Genetic Algorithm Based
on Gpu-accelerated. InProceedings of the Network and
Parallel Computing Workshops, pp. 855–862.

Luong, T. V., L. Loukil, N. Melab, and E.-G. Talbi (2010). A
GPU-based Iterated Tabu Search for Solving the Quadratic
3-dimensional Assignment Problem. InProceedings of
the International Conference on Computer Systems and
Applications, pp. 1–8.



Parallel neighbourhood search on many-core platforms 293

Luong, T. V., N. Melab, and E.-G. Talbi (2010). Large
Neighborhood Local Search Optimization on Graphics
Processing Units. InProceedings of the IEEE International
Symposium on Parallel and Distrubuted Processing, pp. 1–
8.

Matsumura, T., M. Nakamura, D. Miyazato, K. Onaga, and
J. Okech (1997). Effects of Chromosome Migration
on a Parallel and Distributed Genetic Algorithm. In
Proceedings of the IEEE International Symposium on
Parallel Architectures, Algorithms, and Networks, pp. 357–
361.

Mavroidis, I., I. Papaefstathiou, and D. Pnevmatikatos
(2007). Hardware Implementation of 2-Opt Local Search
Algorithm for the Traveling Salesman Problem. In
Proceedings of the IEEE/IFIP International Workshop on
Rapid System Prototyping, pp. 41–47.

NVIDIA (2009). NVIDIA’s Next Generation CUDA
Compute Architecture: Fermi v1.1. Technical report,
NVIDIA.

NVIDIA (2010). TESLA C2050/C2070 GPU Computing
Processor Supercomputing At 1/10 the Cost. Technical
report, NVIDIA.

NVIDIA (2011). NVIDIA CUDA Programming Guide v4.1.

Ram, D. J., T. H. Sreenivas, and K. G. Subramaniam (1996).
Parallel Simulated Annealing Algorithms. Journal of
Parallel and Distributed Computing 37, 207–212.

Reinelt, G. (1991). TSPLIB: A Traveling Salesman Problem
Library. ORSA Journal on Computing 3, 376–384.

Schneider, J. J. and s. Kirkpatrick (2006).Stochastic
Optimization. Springer-Verlag Berlin Heidelberg.

Whitley, D., S. Rana, and R. B. Heckendorn (1991).
Optimization Using Distributed Genetic Algorithms.
Parallel Problem Solving from Nature, Lecture Notes in
Computer Science 496, 176–185.

Wong, T. T. and M. L. Wong (2006). Parallel Evolutionary
Algorithms on Consumer-level Graphics Processing Unit.
Parallel Evolutionary Computations 22, 133–155.


