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Abstract—Heteroskedasticity and autocorrelation consistent
(HAC) covariance matrix estimation, or HAC estimation in short,
is one of the most important techniques in time series analysis and
forecasting. It serves as a powerful analytical tool for hypothesis
testing and model verification. However, HAC estimation for long
and high-dimensional time series is computationally expensive.
This paper describes a novel pipeline-friendly HAC estimation
algorithm derived from a mathematical specification, by applying
transformations to eliminate conditionals, to parallelise arith-
metic, and to promote data reuse in computation. We then develop
a fully-pipelined hardware architecture based on the proposed
algorithm. This architecture is shown to be efficient and scalable
from both theoretical and empirical perspectives. Experimental
results show that an FPGA-based implementation of the proposed
architecture is up to 111 times faster than an optimised CPU
implementation with one core, and 14 times faster than a CPU
with eight cores.

I. INTRODUCTION

The study of time series is attracting the attention of
researchers from various application areas such as financial
risk management, statistical biology and seismology. One of
the most important techniques in the study of time series
is heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimation, or HAC estimation in short. This
technique produces an estimation of the long-run covariance
matrix for a multivariate time series, which provides a way
to describe and quantify the relationship among different data
components. To some extent, the long-run covariance matrix
plays a similar role as the ordinary covariance matrix of non-
temporal multivariate data. However, HAC estimation involv-
ing a long-run covariance matrix is different from estimation
involving an ordinary covariance matrix from non-temporal
data, since HAC estimation considers the unique features of
time series data such as serial correlation.

Today, HAC estimation becomes one of the standard meth-
ods in the study of time series to extract statistical patterns or to
verify the reliability of hypotheses. For instance, in research
about stock markets [1] [2] [3], HAC estimation is used to
quantify the risks of trading strategies.

One drawback of HAC estimation technique is the compu-
tational cost. This drawback has become increasingly serious in
recent years because the lengths and dimensions of real-world
time series have been growing continuously. Data analysts
take samples at increasingly short time interval to capture
subtle microscopic patterns. They also analyse multiple long

time series simultaneously to discover causal relationships.
However, it is usually necessary to compute HAC estimation
as fast as possible in order to seize trading opportunities or
to improve medical diagnosis. The conflict between data size
and computational efficiency is especially serious in time-
critical problems such as high-frequency trading and real-time
electroencephalography analysis.

This paper presents a highly efficient solution to HAC
estimation. A highlight of our solution is that we do not design
hardware based on existing software-based HAC estimation
algorithms. Instead, we derive a novel pipeline-friendly algo-
rithm from a mathematical specification. We then map our
algorithm to a hardware architecture, making effective use of
on-chip resources without exceeding the limited memory band-
width. This solution is both fast and scalable, and therefore
particularly useful for long and high-dimensional time series
data.

While real-time systems can often benefit from the speed
and simplicity of hardware implementations, hardware accel-
eration of time series processing is not a well-studied topic. To
the best of our knowledge, although there is recent research on
accelerating pattern matching in time series [4] [5], our work
is the first to apply reconfigurable computing to time series
analysis. Our key contributions are as follows.

• We derive a pipeline-friendly HAC estimation algo-
rithm by performing mathematical transformations.
This algorithm exploits the computational power of
the hardware platform with conditional-free logic and
parallelised arithmetic. Moreover, it avoids memory
bottlenecks with a powerful data reuse scheme.

• We map the proposed algorithm to a fully-pipelined
hardware architecture by customising on-chip memory
to be a first-in-first-out buffer. This architecture takes
full advantage of the pipeline-friendly features of our
proposed algorithm in an elegant way.

• We implement our design in a commercial FPGA
acceleration platform. With quantitative analysis and
experimental results, we demonstrate the performance
and scalability of our hardware design, which can be
up to 14 times faster than an 8-core CPU implemen-
tation.

The rest of the paper is organised as follows. Section II
briefly describes HAC estimation problem and review re-



configurable computing solutions for statistical data analysis.
Section III presents our proposed pipeline-friendly HAC esti-
mation algorithm and discusses its hardware-oriented features.
Section IV describes a hardware design that maps our algo-
rithm to a fully-pipelined architecture. Section IV provides
experimental results about an implementation of our hardware
design, and explains experimental observations. Section VI
provides a brief conclusion of our work.

II. BACKGROUND

HAC estimation for long and high-dimensional time series
data is computationally demanding, and reconfigurable com-
puting is a promising solution. In this section, we first provide a
brief introduction to time series and HAC estimation. Then we
review reconfigurable computing solutions to statistical data
analysis and discuss how these studies inspire our research.

A. Time Series

A time series is a sequence of data points sampled from a
data generation process at uniform time intervals. In this study,
we focus on multivariate time series which are sequences in
the form

y = 〈y1 , y2 , . . . , yT 〉 (1)

where T is the length of the time series; each data point yi is
a D-dimensional column vector in the form

yi = [yi,1 yi,2 . . . yi,D]′ (2)

where yi,1 . . . yi,D are components of the data point yi. Note
that a single-variable time series can be treated as a particular
case of multivariate time series where each data point contains
a single component.

Two main research topics about time series are pattern
analysis and forecasting. The former is a subject where math-
ematical and algorithmic methods are applied to time series
data to extract patterns of interest; the latter is about forecasting
future values of a time series using historical values. The HAC
estimation problem studied in this research is important to both
topics.

B. HAC Estimation

Consider a multivariate data generation process which
theoretically satisfies

E[yt] = µ (3)
E[(yt − µ)(yt−h − µ)′] = Ωh (4)

where Ωh is the autocovariance matrix of lag h. Suppose we
have a time series sample yT taken from this process. We can
then estimate µ by taking the sample mean over T time steps

µ̂ = ȳT =
1

T

T∑
t=1

yt (5)

In addition to the mean vector, it is also useful to know how
data in different dimensions are correlated. Describing such a
correlation is not trivial for time series because a data point
may depend on historical states. As a consequence, commonly
used correlation measurements for non-temporal data, like the
ordinary covariance matrix, are not considered informative [6].

One statistically feasible correlation measurement of mul-
tivariate time series is the long-run covariance matrix defined
by

S = lim
T→∞

{T · E[(ȳT − µ)(ȳT − µ)′]} =

∞∑
h=−∞

Ωh (6)

Unfortunately, it is impossible to compute the matrix S using
Equation 6 because the length of the required time series is
infinite.

Heteroskedasticity and autocorrelation consistent (HAC)
estimation is a technique that approximates S using a finite-
length time series. This estimation can be achieved by com-
puting the Newey-West estimator [7] which is defined by

Ŝ = Ω̂0 +

H∑
h=1

k(
h

H + 1
)(Ω̂h + Ω̂′h) (7)

where H is the lag truncation parameter which may be set
according to the length of the time series; k(·) is a real-valued
kernel function; Ω̂h is the estimate of the autocovariance
matrix with lag h which can be computed by

Ω̂h =
1

T

T∑
t=h+1

(yt − µ̂)(yt−h − µ̂)′ (8)

This estimator can be treated as a weighted sum over a
group of estimated autocovariance matrices, where the weights
are determined by a kernel function. Some discussions about
kernel functions can be found in [7] and [8]. Some variances
of the Newey-West estimator can be found in [6] and [8].

C. Hardware Acceleration for Statistical Data Analysis

Hardware acceleration for time series data processing is
not a well studied topic. It is only in recent papers where
acceleration systems based on GPUs and FPGAs are proposed
to process time series data. Sart et. al [4] propose both GPU-
based and FPGA-based solutions to accelerate dynamic time
wrapping (DTW) for sequential data. Wang et al. [5] develop
a hardware engine for DTW-based sequence searching in time
series. However, the aims of these studies are to solve sequence
matching problems, and they do not analyse the underlying
patterns of time series data from a statistical perspective.

Preis et. al [9] use GPUs to accelerate the quantification
of short-time correlations in a univariate time series. The
correlations between components of a multivariate time series
are not addressed by this work. Gembris et. al [10] present a
real-time system to detect correlations among multiple medical
imaging signals using GPUs. Their system is based on a
simple correlation metric in which serial correlations are not
considered. Our work is different from these two papers
because both internal and mutual correlations in a multivariate
time series are considered in HAC estimation.

Although hardware acceleration of statistical time series
analysis has not been well studied, research on accelerating
non-temporal multivariate data analysis has been conducted.
Various data processing engines have been designed by map-
ping existing algorithms into hardware architectures. For ex-
ample, Baker and Prasanna [11] mapped the Apriori algorithm
[12] into an FPGA-based acceleration device for improved



efficiency. Similar to the Apriori engine, hardware accelera-
tion solutions for k-means clustering [13] and decision tree
classification [14] are presented in [15] and [16] respectively.

Sometimes it is impossible or inappropriate to map an
existing statistical analysis algorithm to hardware. This is typ-
ically due to the operating principles and resource limitations
of the hardware platform. In this case, it is necessary to
adapt existing algorithms or design new ones. Traditionally,
hardware adaptations of data processing algorithms achieve
parallelism by committing the same operation on multiple
different data instances simultaneously – a form of single-
instruction-multiple-data (SIMD) parallelism.

The flexibility of reconfigurable devices enables us to
design pipelined data flow engines where different circuits for
different computational stages are deployed. In other words,
parallelism can also be achieved in a multiple-instruction-
multiple-data (MIMD) manner. Data instances are streamed
into the engine and processed in series by the pipeline. There
is recent research where algorithms are designed or adapted
for pipelined data flow engines. For example, Guo et al.
[17] propose an FPGA-based hardware engine to accelerate
the expectation-maximisation (EM) algorithm for Gaussian
mixture models. The authors adapt the original EM algorithm
such that it can be mapped to fully-pipelined hardware. The
hardware based on this adapted algorithm is shown to be very
efficient in their experiments.

III. PIPELINE-FRIENDLY HAC ESTIMATION ALGORITHM

In this section, we propose a pipeline-friendly algorithm,
which is designed with considerations of the features of
reconfigurable hardware. We first explain why we do not map
the existing algorithm to hardware. Then we show how the
expression of Ŝ (Equation 7) can be transformed to eliminate
conditionals, to parallelise arithmetic, and to promote data
reuse. Finally, we present our new estimation algorithm.

A. Analysis of the Straightforward Algorithm

It is not difficult to design an algorithm following Equa-
tion 7 to compute HAC estimation for a time series. This algo-
rithm is shown in Algorithm 1. The subroutine AUTOCOV(h),
the computational steps for a single autocovariance matrix, is
described in Algorithm 2 where µ̂m is the sample mean of
y1,m . . . yT,m. We call this algorithm the straightforward HAC
estimation algorithm hereafter because it is straightforwardly
derived from the definition of the Newey-West estimator. This
algorithm is implemented in many software packages such
as the ‘sandwich’ econometrics package [18] and the GNU
regression, econometrics and time-series library [19].

Algorithm 1 Straightforward HAC Estimation Algorithm

1: Ŝ ← AUTOCOV(0)
2: for h ∈ [1..H] do
3: Ω̂← AUTOCOV(h)
4: Ŝ ← Ŝ + k( h

H+1 )(Ω̂ + Ω̂′)

5: return Ŝ

Taking arithmetic operations as basic operations, the time
complexity of the algorithm is O(D2HT ), which means that

Algorithm 2 AUTOCOV(h)

1: Ω̂← 0D×D
2: for t ∈ [(h+ 1)..T ] do
3: for i ∈ [1..D] do
4: for j ∈ [1..D] do
5: Ω̂i,j ← Ω̂i,j + (yt,i − µ̂i)(yt−h,j − µ̂j)
6: return Ω̂

the execution time is likely to grow linearly with D2, H and T .
Moreover, the lag truncation parameter H should grow with T
in order to keep the results statistically feasible [20]. As a con-
sequence, the algorithm may become extremely computational
demanding with long and high-dimensional time series.

The most time-consuming part of the algorithm is the com-
putation of an autocovariance matrix, shown in Algorithm 2.
Technically, it is straightforward to implement this part in
a reconfigurable device. However, memory efficiency is low
because only one multiplication and one addition are executed
after two data access operations, and we may therefore suffer
from memory bottleneck [21]. So it is critical to find opti-
misations of the algorithm that would avoid such bottleneck.
In order to make a fundamental difference from CPUs in
performance, it is unwise to merely map the straightforward
algorithm to a reconfigurable computing platform.

B. A Novel Derivation for Ŝ

We build the mathematical foundation of our pipeline-
friendly algorithm by deriving a novel expression of Ŝ (Equa-
tion 7). We first simplify Ŝ by centralising the data and merg-
ing Ω0 into the weighted sum. This simplification eliminates
redundant arithmetic operations and complex conditional logic
in the computation. Then we propose an expression of Ŝ
using vector algebra. This expression exposes the parallelism
in arithmetic operations and enables considerable data reuse.

The computation of Ŝ only concerns centralised values
of data points. In other words, for all data points yt, only
the centralised value yt − µ̂ is used in the computation.
As the centralised value may be used multiple times, we
precompute and store them to avoid redundant subtractions.
More specifically, we precompute the centralised time series
u = 〈u1, u2, . . . , uT 〉 by

ut = yt − µ̂ (9)

Let ut be a zero vector if t 6∈ [1..T ]. This is for simplicity
in the presentation and implementation of related algorithms,
which will be illustrated later. By our precomputing scheme,
Equation 8 can be rewritten as

Ω̂h =
1

T

T∑
t=h+1

utu
′
t−h (10)

When h = 0, Ωh is degraded from an autocovariance matrix
to an ordinary covariance matrix which is always symmetric.
Therefore

Ω0 = Ω′0 (11)



To unify the computational pattern in Equation 7, we may
merge Ω0 to the weighted sum by setting

wh =


1
2 if h = 0

k( h
H+1 ) if 0 < h ≤ H

0 otherwise
(12)

These weights can be regarded as a general form of the kernel
function values. They are not related to data and can be
precomputed and stored. From Equation 12, the expression
of Ŝ can be simplified as

Ŝ =

H∑
h=0

wh(Ω̂h + Ω̂′h) (13)

The autocovariance matrix Ωh can be expanded using Equa-
tion 10 and the expression of Ŝ can be rewritten as

Ŝ =
1

T
(Ψ + Ψ′) (14)

where

Ψ =

H∑
h=0

wh

T∑
t=h+1

utu
′
t−h (15)

Therefore once Ψ is obtained, Ŝ can be computed effortlessly.
Now we introduce a parameter c, which is a positive integer
less than or equal to H + 1. We further define a quantity G as

G = dH + 1

c
e − 1 (16)

where dxe is the smallest integer not less than x.

Ψ =

G∑
g=0

gc+c−1∑
h=gc

wh

T∑
t=h+1

utu
′
t−h (17)

The function of the parameter c and the quantity G will be
illustrated later. If c is a factor of (H + 1) then Equation 17
obversely holds. If not, some terms with h > H will be
calculated, but Equation 17 still holds in this case because
wh = 0 for all h > H . The value of a single entry of Ψ can
be computed by

Ψi,j =
G∑
g=0

w̃g,c r̃g,c,i,j (18)

where

w̃g,c = [wgc wgc+1 . . . wgc+c−1] (19)

r̃g,c,i,j =


∑T
t=gc+1 ut,j · ut−gc,i∑T

t=gc+2 ut,j · ut−(gc+1),i

...∑T
t=gc+c ut,j · ut−(gc+c−1),i

 (20)

The vector w̃g,c can be constructed using the weight values
precomputed by Equation 12. We only need to focus on the
computation of r̃g,c,i,j . Aligning the lower bounds of the
summation operators in Equation 20, we have

r̃g,c,i,j =


∑T−gc
k=1 uk+gc,j · uk,i∑T−gc−1

k=1 uk+gc+1,j · uk,i
...∑T−gc−c+1

k=1 uk+gc+c−1,j · uk,i

 (21)

We have defined that ut = 0 when t > T . Hence we can set
the upper bounds of all summation operations in Equation 21
to (T − gc). Then the expression of r̃g,c,i,j can be further
simplified:

r̃g,c,i,j =


∑T−gc
k=1 uk+gc,j · uk,i∑T−gc
k=1 uk+gc+1,j · uk,i

...∑T−gc
k=1 uk+gc+c−1,j · uk,i



=

T−gc∑
k=1

uk,i


uk+gc,j
uk+gc+1,j

...
uk+gc+c−1,j

 (22)

C. Pipeline-Friendly HAC Estimation Algorithm

We shall design a tangible algorithmic strategy to compute
Ŝ using the equations developed in the last subsection. Fol-
lowing a top-down design approach, we first investigate how
Ŝ can be obtained assuming that all r̃g,c,i,j can be computed;
then we discuss the way to compute r̃g,c,i,j .

Suppose we are able to compute the value of r̃g,c,i,j for
all g, c, i and j. We can then compute all entries of Ψ by
Equation 18. Once all entries of Ψ are obtained, Ŝ can be
computed by Equation 13. More specially, the computational
steps are shown in Algorithm 3.

Algorithm 3 is an algorithmic framework which does not
access the data by itself. It queries the value of r̃g,c,i,j by
invoking the subroutine PASS(g, c, i, j) in which r̃g,c,i,j is
computed by passing through data. We design this subroutine
following Equation 22 and the detailed computational steps
are shown in Algorithm 4. In Algorithm 3 and 4, the vari-
ables w̃ and r̃ correspond respectively to w̃g,c and r̃g,c,i,j in
Equation 18.

Algorithm 3 Pipeline-Friendly HAC Estimation
1: for (i, j) ∈ [1..D]× [1..D] do
2: Ψi,j = 0
3: for g ∈ [0..G] do
4: w̃ ← [wgc wgc+1 . . . wgc+c−1]
5: r̃ ← PASS(g, c, i, j)
6: Ψi,j ← Ψi,j + w̃ r̃
7: return 1

T (Ψ + Ψ′)

Algorithm 4 PASS(g, c, i, j)

1: r̃ ← 0D×1
2: for k ∈ [1..(T − gc)] do

3: r̃ ← r̃ + uk,i


uk+gc,j
uk+gc+1,j

...
uk+gc+c−1,j


4: return r̃

We call Algorithm 3 the pipeline-friendly HAC estima-
tion algorithm because we consider its most time-consuming
subroutine, PASS(g, c, i, j), as an excellent candidate to be



mapped to a pipelined hardware architecture. The reasons are
as follows.

First, this subroutine contains absolutely no conditional
statements. We consider it beneficial to avoid such statements
because they may fork the data path and lead to redundant
resource consumption on reconfigurable hardware. The sim-
plicity brought by the conditional-free control logic may also
reduce the workload of implementation.

Second, many arithmetic operations in the algorithm can
be executed in parallel. We can observe from Line 3 in
Algorithm 4 that r̂g,c,i,j is computed by taking the sum of
the results of vector scalar products. As the components in
the vector are independent, the addition and multiplication
operations on all the c components of the vector can take place
in parallel.

Third, there is a considerable data reuse pattern behind the
subroutine. In the computation of r̂g,c,i,j , when k = k0, the
accessed data elements are uk0,i and uk0+gc,j . . .uk0+gc+c−1,j ;
when k = k0 + 1, the accessed data elements are uk0+1,i

and uk0+gc+1,j . . .uk0+gc+c,j . All data elements accessed
when k = k0 + 1, except uk0+1,i and uk0+gc+c,j , have been
previously accessed when k = k0. We shall design a caching
scheme to take advantage of this data reuse pattern. With
a perfect caching scheme, only two data elements need to
be retrieved from the main memory, and the remaining data
elements can be accessed from the cache memory. This is the
essential idea to crack the memory bandwidth bottleneck. We
will discuss this issue in detail in Section IV.

Admittedly, the time complexity of the pipeline-friendly
algorithm is still O(D2HT ) which is not different from
the straightforward algorithm. Moreover, the pipeline-friendly
design may incur redundant computations when c is not a
factor of H + 1. However, the pipeline-friendly properties
enable us to achieve significant acceleration in practice. The
underlying reasons and experimental results will be discussed
in Section IV and in Section V respectively.

IV. HARDWARE DESIGN

In this section, we develop a pipelined architecture for the
subroutine PASS(g, c, i, j) described in the previous section.
We first present the hardware architecture and explain its
interactions with the host computer. Then we propose a simple
theoretical model for its execution time.

A. Hardware Architecture

A simple elementary computational unit, which we call a
bead, is described in Fig. 1. A bead handles the computation
for one component of r̃ in Line 3 in Algorithm 4.

Our proposed architecture is constructed by linking up c
beads in a way shown in Fig. 2. More specifically, we use
a single buffer register to store a single data element from its
input stream. For ease of discussion, we call this buffer register
the broadcasting buffer hereafter. At the end of each cycle, a
data element from the input stream is loaded into the buffer.
This broadcasting buffer serves as one input to all the c beads.

Although the broadcasting buffer has a high fan-out, such
fan-outs can often be removed automatically by hardware

× +

⋯

Fig. 1. The structure of a bead: a bead takes two numbers as its inputs.
It multiplies the two inputs and accumulates the product using a chain of
registers which are shown as boxes in the figure.

compilers. In addition, techniques such as data pipelining [22]
can be used to eliminate fan-outs. The application of such
techniques to optimise our design will be reported in a future
publication.

b
1

b
2

b
3

b
c-1

b
c...

stream

stream

FIFO buffer

broadcasting buffer

...

Fig. 2. The proposed architecture: each bead bi takes one input from the
broadcasting buffer and another input from the FIFO buffer.

We customise on-chip fast memory in the reconfigurable
hardware device, e.g. block RAMs, to become a first-in-first-
out (FIFO) buffer with c storage units. This buffer is used to
store c consecutive data elements of its input stream. At the
end of each cycle, every element of the FIFO buffer accepts
data from its right neighbour. The previous leftmost element
is moved out of the buffer and discarded. The input stream
supplies data to the rightmost element in the FIFO buffer. Each
storage unit in the FIFO buffer contributes another input to a
bead.

Each time when Algorithm 4 is invoked, the data streams
u1,i . . . uT−gc,i and ugc+1,j . . . uT,j are streamed into the
architecture for the computation of r̃. This streaming process
can be divided into the following three stages. (i) Initialisa-
tion stage: all registers in all beads are reset to zero. The
broadcasting buffer is loaded with the first element of the
stream u1,i . . . uT−gc,i. The FIFO buffer is filled with the
first c elements of the stream ugc+1,j . . . uT,j . In other words,
at the end of the initialisation stage, the broadcasting buffer
contains u1,i and the FIFO buffer contains ugc+1,j . . . ugc+c,j .
(ii) Pipeline processing stage: in every cycle, each bead accu-
mulates the product of its inputs. Then both the broadcasting
buffer and the FIFO buffer load the next data element from
their corresponding input stream. This process runs for (T−gc)
cycles before termination. (iii) Result summation stage: each
bead reports its register values to the host computer. The sum
of the register values of the i-th bead is the i-th component of
r̃. The host computer then revise Ψi,j according to r̃.

The hardware design for Algorithm 4 is similar to some



systolic implementations for matrix vector multiplication with
regular word-level and bit-level architectures [23]. While
techniques such as polyhedral analysis, data pipelining and
tiling have been used in deriving such implementations [22],
the focus of this paper is to develop our designs based on
mathematical treatment from first principles rather than making
use of derived results.

We can observe from the hardware design that the pipeline-
friendly features behind our algorithm are fully exploited. The
FIFO buffer provides a perfect caching mechanism to take
advantage of the data reuse pattern discussed in Section III.
In each cycle, only two data elements are fetched from the
input stream, and all the remaining elements are obtained
from the FIFO buffer. In other words, the memory bandwidth
requirement is both small and constant. When more beads are
linked up in the system, the bandwidth requirement remains
unchanged, which suggests that the performance may scale
up well with the amount of on-chip logical resources without
being limited by the memory bottleneck. Furthermore, the ar-
chitecture is highly modularised. The major business modules
of the architecture are the beads and the two buffers. These
modules are structurally uncomplicated and can be tested indi-
vidually, which reduces the potential effort in implementation
and debugging.

B. Performance Estimation

We are interested in processing long time series in this
study, hence the pipeline processing stage would be the
most time-consuming one. To compute each entry of Ψ,
PASS(g, c, i, j) would have to be invoked for (G + 1) times.
The number of cycles spent in the g-th invocation is (T −gc).
Let F be the clock frequency of the reconfigurable device. The
total execution time of this stage in all invocations is

TP =
1

F

G∑
g=0

(T − gc) =
(G+ 1)(2T −Gc)

2F
(23)

For ease of discussion, we will call this time the theoretical
pipeline processing time hereafter. Let Tε be the total execution
time that is not spent on the pipeline processing stage. Then
the total computation time is

T = TP + Tε (24)

We do not attempt to model Tε since we consider its value both
unpredictable and negligible. Tε is related to the configuration
and execution status of the acceleration platform, and this
quantity is unlikely to be significant compared to the pipeline
processing time, especially when the time series is long.

V. EXPERIMENTAL EVALUATION

We run two experiments to evaluate our proposed architec-
ture. The first one examines the performance while the second
one concerns the scalability. In this section, we first present
the general experimental settings and then discuss the two
experiments respectively.

A. General Settings

The mathematical derivation of our hardware design tar-
gets a Maxeler MAX3 acceleration system. The hardware is
described in the MaxJ language and compiled with Maxeler
MaxCompiler. The acceleration system is equipped with a Xil-
inx Virtex-6 FPGA. It communicates with the host computer
via a PCI-Express interface. In our implementation, we deploy
384 beads and set the clock frequency to 100MHz.

We also build a CPU-based system by implementing
the straightforward HAC estimation algorithm on the CPU
platform in a server with an Intel Xeon CPU running at
2.67GHz. The experimental code is written in the C program-
ming language with the OpenMP library, and compiled with
Intel C compiler with the highest compiling optimisation. To
make a fair comparison, the IEEE single precision floating
point numbers are used exclusively in both the hardware and
software implementations.

The computational efforts for all entries of the long-run
covariance matrix are identical. Therefore we describe the
performance in terms of the computation time of a single entry.
Following the experiment scheme in [20], the data sets are
generated using a vector autoregression (VAR) model [6]. The
time series and lag parameters tested in the two experiments
are different, and we will present these settings individually.

B. Experiment on Performance

In this experiment, we study the performance of our
data flow engine. We enable all the 384 beads on the data
flow engine to demonstrate its full power. Time series with
different lengths are tested with different lag truncation param-
eters. More specifically, we use four time series with length
T = 105, 106, 107, 108. Following [20], we use lag truncation
parameters H in the form

H = bγT 1
3 c (25)

where bxc is the smallest integer not larger than x; γ is a
data-dependent positive real number. In order to simulate the
computation of different types of data, for each data set we
select 12 different values of γ in the range 0.25 ≤ γ ≤ 3.00
which is slightly wilder than the range investigated in [20].

Experimental results are shown in Fig. 3. It is clear that the
speedup of the FPGA-based system is significant, especially
for long time series where T = 106, 107, 108. The best speedup
obtained in this experiment is 106 times compared to the CPU-
based system running on a single core, when T = 108 and
H = 1045.

The execution time of all systems increases as the lag
truncation parameter grows. However, the growth pattern of
the FPGA based system is significantly different from that of
CPU-based systems. More specifically, the execution times of
the two CPU-based system grow linearly with different slope.
This linear growth can be explained by the time complexity of
the algorithm. The time of the FPGA-based system increases
like stairs. This is because the FPGA-based system handles
the computation for different lags in batches.

Due to the difference in the growth pattern in execution
time, it is not surprising that the speedup of the FPGA-based
system over the CPU-based one appears an zig-zag pattern
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100 200 300 400 500 600

10

20

30

40

50

60

70

80

90

Lag Truncation Parameter, H

S
p

e
e

d
u

p
 (

ti
m

e
s
)

 

 

Over 1−Core

Over 8−Core

(k) Speedups, T = 107
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Fig. 3. Results on performance: each column of figures corresponds to a time series length. The first two rows of figures are performance results from the
CPU-based system and the FGPA-based system respectively. FPGA(P) is the theoretical pipeline processing time. The third row records the speedup of the
FPGA-based system over the CPU-based system.

in a periodical manner, as shown in Fig. 3(k) and 3(l). We
may also obtain further interesting observations from this
zig-zag pattern. For example, the amplitude of the zig-zag
pattern shrinks as the lag truncation parameter grows, since the
redundant computation time becomes less significant compared
to the total execution time.

C. Experiment on Scalability

As the memory bandwidth requirement of the proposed
architecture is constant, deploying more beads along the
pipeline is a direct way to boost performance. We analyse
how the number of beads influences performance by running
a controlled experiment to demonstrate the scalability of our
system. In this experiment we use the largest problem in the
previous experiment where the series length T = 108 and we
set a large truncation parameter H = 3839. The execution
times of the CPU-based system are 1186.31s and 151.26s on
a single core and eight cores respectively.

We test the performance of the FPGA-based system with
different numbers of beads. The maximum number of beads
that we manage to deploy is 384; as a consequence we only
test the configurations where the number of beads is no more
than 384. The experimental results are plotted in Fig. 4(a)
along with the corresponding theoretical pipeline processing
time. When c, the number of beads, is 384, the execution time
reaches 10.67s, achieving 111 and 14 times speedup over the
CPU-based system on one core and eight cores respectively.

There is a significant trend that the execution time is
shortened as the number of beads c increases. Another trend,
which is not significant in the figure, is that the gap between
the experimental execution time and the theoretical pipeline
processing time becomes narrower as the number of beads c
increases. The gap decreases from 2.2934s when c = 64, to
0.6683s when c = 384. As shown in Fig. 4, the theoretical
pipeline processing time continues to decrease when more
beads are deployed along the pipeline. We can obtain a
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Fig. 4. Results on scalability: FPGA(P) is the theoretical pipeline processing
time. FPGA(E) is the estimated performance of the FPGA-based system in
the extrapolated scenario.

conservative estimate of the performance of a system with
more than 384 beads, by extrapolating the gap value of 0.6683s
for 384 beads as an upper bound for designs with more than
384 beads. The computation time values can then be estimated
by adding this gap value to the corresponding theoretical
pipeline processing time. This estimation suggests that our
proposed architecture scales well with the amount of available
computational resources.

VI. CONCLUSION

This paper presents a reconfigurable computing solution
to heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimation for multivariate time series. To
the best of our knowledge, our approach is the first to apply
FPGAs to statistical analysis of time series.

Rather than providing a hardware design for an existing
HAC estimation algorithm, we derive a novel algorithm which
is designed exclusively for hardware implementation. This al-
gorithm exploits the capabilities of a reconfigurable computing
platform and avoids limitations like the memory bottleneck.
We then propose an efficient and scalable hardware architec-
ture based on our algorithm and analyse its performance using
both theoretical and empirical approaches. Our experimental
system implemented in a Vertex-6 FPGA achieves up to 111
times speedup over a single-core CPU, and up to 14 times
speedup over an 8-core CPU.

This work shows the potential of reconfigurable computing
for time series data processing problems. Future work includes
developing hardware accelerators for other time series process-
ing techniques, such as regression analysis, forecasting and
knowledge discovery.
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