
818 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

Design Exploration of Quadrature Methods
in Option Pricing

Anson H. T. Tse, Student Member, IEEE, David Thomas, Member, IEEE, and Wayne Luk, Fellow, IEEE

Abstract—This paper presents a novel parallel architecture
for accelerating quadrature methods used for pricing complex
multi-dimensional options, such as discrete barrier, Bermudan and
American options. We explore different designs of the quadrature
evaluation core including optimized pipelined hardware designs
in reconfigurable logic and a compute unified device architec-
ture (CUDA)-based graphics processing unit (GPU) design. A
parametrizable automated system is presented for generating
hardware quadrature evaluation cores with an arbitrary number
of dimensions. The performance and energy consumption of
field-programmable gate arrays (FPGAs), GPUs, and central
processing units (CPUs) are compared across different number
of dimensions and precisions. Our evaluation shows that the 100
MHz Virtex-4 xc4vlx160 FPGA design is 4.6 times faster and
25.9 times more energy efficient than a multi-threaded optimized
software implementation running on a Xeon W3504 dual-core
CPU. It is also 2.6 times faster and 25.4 times more energy efficient
than a GPU with comparable silicon process technology.

Index Terms—Compute unified device architecture (CUDA),
field-programmable gate array (FPGA), graphics processing unit
(GPU), multi-dimensional, option pricing, quadrature.

I. INTRODUCTION

F INANCIAL institutions continually invent new ways to
repackage and modify financial products in order to sat-

isfy the needs of different investors. While some basic financial
options can be priced with a closed-form solution, many other
derivatives with knock-out/knock-in features (e.g., accumulator,
decumulator, and barrier options), changing strike prices, or dis-
crete settlement days, have no known closed-form solution.

Numerical techniques have been developed to value these
complex derivative products. These techniques include bino-
mial trees, trinomial trees, finite-difference, Monte Carlo, and
quadrature methods. Quadrature methods have been applied
in different areas including modeling credit risk [1], solving

Manuscript received September 10, 2010; revised January 12, 2011; accepted
February 18, 2011. Date of publication April 19, 2011; date of current version
April 06, 2012. This work was supported in part by the Croucher Foundation,
by UK EPSRC, by the European Union Seventh Framework Programme under
Grant agreement number 248976 and 257906, and by the HiPEAC NoE, by
Alpha Data, by Celoxica, by nVidia, and by Xilinx.

A. H. T. Tse is with the Department of Computing, Imperial College
London, London, London SW7 2AZ, U.K. (e-mail: htt08@doc.ic.ac.uk;
tsehongtak@gmail.com).

D. Thomas is with the Electrical and Electronic Engineering Department, Im-
perial College London, London SW7 2AZ, U.K. (e-mail: dt10@imperial.ac.uk).

W. Luk is with the Department of Computing, Imperial College London,
London SW7 2BZ, U.K. (e-mail: wl@doc.ic.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2011.2128354

electromagnetic problems [2], and calculating photon distribu-
tion [3]. It is a powerful way of pricing path-dependent options
where the path is monitored in discrete time points. A lookback
discrete barrier option priced using quadrature methods is more
than 1000 times faster than using the trinomial method, while
achieving a more accurate result [4].

Using quadrature methods to price a single simple option is
fast and can typically be performed in milliseconds on desktop
computers. However, quadrature methods can become a compu-
tational bottleneck when a huge number of complex options are
being revalued in real-time using live data-feeds. Many finan-
cial derivatives now involve multiple underlying assets instead
of just one. As the computation complexity increases exponen-
tially with the number of underlying assets (i.e., the number of
dimensions), how to accelerate the quadrature option pricing be-
comes a significant problem. Energy consumption of computa-
tion is also a major concern when the computation is performed
24 hours a day, 7 days a week.

This paper explores the acceleration of quadrature computa-
tion using different computational devices including field-pro-
grammable gate arrays (FPGAs) and graphics processing units
(GPUs). The main contributions of this paper are as follows:

• novel parallel hardware architecture for option pricing
based on quadrature methods (see Section IV);

• techniques for multi-dimensional option pricing and a
model of the computational complexity (see Section V);

• approach for generating multi-dimensional quadrature
evaluation cores for FPGA and GPU (see Section VI);

• comparison of performance and energy consumption of
FPGAs, GPUs, and central processing units (CPUs)6p for
quadrature evaluation across different number of dimen-
sions (see Section VII).

II. RELATED WORK

Previous work on hardware acceleration of financial simu-
lation has been focused mainly on Monte Carlo methods. A
pipelined datapath architecture and an on-chip instruction pro-
cessor have been reported for speeding up the Brace, Gatarek,
and Musiela (BGM) interest rate model for pricing interest rate
derivatives [5]. An automated methodology has been developed
which produces optimized pipelined designs with thread-level
parallelism based on high-level mathematical descriptions of fi-
nancial simulation [6]. A stream-oriented FPGA-based acceler-
ator with higher performance than GPUs and Cell processors
has been proposed for evaluating European options [7]. How-
ever, the computational cost of the Monte Carlo approach is
high, because in order to improve the accuracy of the result by
a factor of , the sample size has to be multiplied by times.

1063-8210/$26.00 © 2011 IEEE

TSE et al.: DESIGN EXPLORATION OF QUADRATURE METHODS IN OPTION PRICING 819

A pipelined hardware architecture has been developed for bi-
nomial and trinomial option pricing models [8]. However, lattice
and finite-difference methods contain two main types of errors:
“distribution errors” and “nonlinearity errors” [4]. Distribution
errors occur because a continuous log-normal distribution is ap-
proximated by a discrete distribution. Nonlinearity errors occur
because the lattice or grid cannot cater for nonlinearity in option
price for certain values of the underlying asset. Nonlinearity is
common in pricing exotic options: in a discrete barrier option, at
every barrier there is a nonlinearity in the option price. Quadra-
ture methods overcome these errors and are shown to be effec-
tive in pricing path-dependent options such as discrete moving
barrier options, multiply compounded options, Bermudan op-
tions, and American call options with changing strike price [4].

In earlier work, we described the reconfigurable architecture
of option pricing based on quadrature methods [9]. An FPGA
implementation using Virtex-4 demonstrated a speedup of 32.8
times over a software implementation running on a Pentium-4
3.6 GHz processor. In addition, the theoretical complexity of
quadrature methods for pricing multi-dimensional options is ex-
plored [10]. A 3-D option priced using FPGA is 25 times faster
than using a Pentium-4 processor. This paper provides a uni-
fied view of these studies; describes the proposed FPGA archi-
tecture in greater detail; compares the performance with an op-
timized multi-threaded CPU implementation and GPU imple-
mentations; evaluates the energy consumption with actual mea-
sured dynamic power; and discusses the tradeoff between per-
formance and energy consumption.

III. OPTION PRICING AND QUADRATURE METHODS

To understand option pricing with quadrature methods, we
first consider the Black and Scholes partial differential equation
[11] for an option with an underlying asset following geometric
Brownian motion:

(1)

where is the price of the option, is the value of the un-
derlying asset, is time, is risk-free interest rate, is volatility
of the underlying asset, is exercise price, and is continuous
dividend yield.

The following standard transformations:

give us the solution of as

(2)

where

(3)

(4)

(5)

Fig. 1. Backward iteration process.

Equation (2) contains an integral which cannot be evaluated
analytically. Although for European options they can be con-
verted to the probability density function for the normal distri-
bution, for more complicated options numerical techniques are
required to evaluate the integrals. For the evaluation of other
complicated options such as discrete barrier options and Amer-
ican options, the valuation problem can be arranged to exploit
consecutive time intervals and apply (2) iteratively.

There are many different methods of numerical integral eval-
uation. Two of the most common methods include the trape-
zoidal rule and Simpson’s rule [12]:

Trapezoidal rule: The trapezoidal rule is the simplest
quadrature method but is the slowest to converge. It converges
at a rate of . The approximation equation is

(6)

Simpson’s rule: This is the most popular method for approx-
imating integrals. It converges at a rate of . The approxi-
mation equation is:

(7)

IV. PARALLEL ARCHITECTURE

Using quadrature methods from (6) or (7), the option value
from (2) can be computed as

(8)

The sequence of integration coefficients and the value
of the outer integration coefficient depend on the type of
quadrature method used. For example, the sequence of is

and the value of is for trapezoidal rule.
The major calculation part of is the summation of

times for all . Sim-
ilarly, the values of are computed by the
summation of

820 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

TABLE I
PRICING EQUATIONS FOR VARIOUS TYPES OF OPTIONS

TABLE II
COMPUTATIONAL COMPLEXITY FOR SOME EXAMPLE OPTIONS. � DENOTES THE NUMBER OF

INTEGRATION GRID POINTS AND � DENOTES THE NUMBER OF TIME STEPS

times for all . Therefore, the computation is a backward iter-
ative process from the maturity time. A graphical representation
of the process is illustrated in Fig. 1.

The value of determines the density of the integration.
As the underlying asset follows a lognormal distribution and
the change of price exhibits Brownian motion, the value of
fluctuates proportional to . As a result, we define the grid
density factor from

(9)

Therefore, increasing the value of leads to a smaller value
of and a denser grid.

It is not possible to integrate a function from to nu-
merically in practice. Therefore, the quadrature methods eval-
uate from a sufficiently small value to a sufficiently large
value . We define the grid size factor from

(10)

(11)

As a result, a large value of leads to a large value of
and a small value of , resulting in a wide grid. can also
be viewed as the number of standard deviations from to the
original position of after .

Table I shows some of the pricing equations for different op-
tion types. The pricing equations are slightly different in terms
of the integration range and the evaluation flow. For discrete bar-
rier options, the result of is required for the evaluation of

. The final option value has to be evaluated iteratively.
Table II shows the computational complexity for different types
of options. The computation complexity depends on the eval-
uation flow, the number of integration grid points and the
number of time steps .

A key result from Tables I and II is that all option pricing
equations require the evaluation of a similar integral on

. Using quadrature methods requires the
evaluation of the function intensively, which is the
computation bottleneck. Although function is also re-
quired to be evaluated repeatedly, the computation complexity
for is lower than from Table II.

Fig. 2. System architecture of a generic option valuation system based on
quadrature methods.

Our system architecture is not designed for pricing a spe-
cific option, so the flexibility to support all kinds of options
must be considered. It has been shown that most of the eq-
uity options can be expressed in integral forms and solved by
quadrature methods [4], [13]. However, the quadrature eval-
uation procedures are slightly different for different types of
options. Different types of options have different discontinu-
ities, which lead to different integral boundaries. Some options
contain option specific parameters: for example, the knock-out
prices and number of periods are required for discrete barrier
options. Although European options can be priced with a single
quadrature step, most of the other options need to be evaluated
iteratively from the price in period of to . Therefore
using different number of quadrature steps is required. As a re-
sult, our system is designed to provide efficiency in hardware
evaluation of the integral and flexibility for a general option
pricing framework, as illustrated in Fig. 2.

The system architecture of the generic option valuation
system using quadrature method is shown in Fig. 2. The
architecture consists of the following components: 1) a prepro-
cessing block; 2) one or more quadrature (QUAD) evaluation
cores; 3) a post-processing block; and 4) a main control unit.
Data input to the system are: ,
option-type, and option-specific-parameters. The option-type
and option-specific-parameters provide the flexibility to support
the pricing of multiple types of options. For example, we could
specify the number of periods and the knock-out/knock-in
prices for barrier options.

A typical option evaluation flow is illustrated in Fig. 3. The
main control unit accepts the basic option input, selects the cor-
responding option evaluation equation and coordinates with the
preprocessing and post-processing blocks. The preprocessing

TSE et al.: DESIGN EXPLORATION OF QUADRATURE METHODS IN OPTION PRICING 821

Fig. 3. Option evaluation flow.

Fig. 4. Operator tree diagram for straightforward design (the operator with “�”
denotes the operation from right to left).

block computes the non-repeated values such as , , and
. It then generates the set of , and for the QUAD

evaluation cores. The QUAD evaluation cores evaluate the in-
tegral value based on (8). The post-processing block combines
the integral value with the value of and produces the value
of . The main control unit then decides whether
is the final solution or a temporary result for the next iteration.

The QUAD evaluation core is implemented in hardware for
three main reasons. First, more than one QUAD evaluation
core fits on a single FPGA. Therefore, several quadratures can
be evaluated simultaneously to exploit parallelism. Second,
the evaluation of the function could be implemented
in pipelined hardware which is fast and efficient. The value of

can be obtained in every clock cycle. Third, as shown
in Table II, the evaluation of the quadrature is the computation
bottleneck, which would benefit from hardware acceleration.

The main control unit, preprocessing and post-processing
blocks are implemented in software for the following reasons:
1) it increases the flexibility to support other options and 2) the
evaluation in preprocessing and post-processing blocks is not
the performance bottleneck; implementing them in hardware
would not improve performance significantly.

The proposed architecture offers fast and parallel hardware
cores for repeated numerical integrations, while supporting a
versatile option evaluation platform.

A straightforward way of optimizing the QUAD evaluation
core is to create a tree of pipelined operators. Fig. 4 shows an
operator tree based on (2)–(7).

In Fig. 4, and are
fed to the evaluation tree continuously. However, the straight-
forward implementation consumes a large amount of hardware
resources as it requires many floating-point operators. The op-
timized design is shown in Fig. 5 and will be used to produce
implementations on both FPGA and GPUs (see Section VI).

Fig. 5. Operator tree diagram for optimized design.

TABLE III
COMPARING THE ORIGINAL AND OPTIMIZED DESIGNS

The optimized quadrature operator tree takes the following
data input: and . We define

(12)

The operator tree is optimized by identifying the
non-changing nodes during the pipelined evaluation.
The values of and are fixed for the values of

. Therefore, and
can be precomputed in the preprocessing stage and passed to
QUAD evaluation cores. The hardware size is therefore reduced
significantly and the number of parameters is also reduced. The
parameters of and are passed to the QUAD
evaluation cores together. For an integration grid with steps,
the total number of parameters required is of the order , a
33% reduction from the original design which is of the order

. Table III summarizes the differences between the original
design and the optimized design.

V. MULTI-DIMENSIONAL QUADRATURE ANALYSIS

To extend the design to support multiple underlying assets,
we first consider the Black and Scholes partial differential equa-
tion [14] for an option with all underlying assets following geo-
metric Brownian motion:

(13)

with the logarithmic transformations of to be the
chosen nodes at and to be the chosen nodes at

. Let be the matrix such that element . The
solution is

(14)

822 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

TABLE IV
COMPUTATION COMPLEXITY FOR SOME EXAMPLE MULTI-DIMENSIONAL OPTIONS

Fig. 6. Iteration process of a 2-D barrier option.

where

(15)

(16)

Equation (14) is the fundamental equation for multi-dimen-
sional option pricing containing an integral which cannot be
evaluated analytically. The number of dimensions for this in-
tegration is given by the total number of assets. and
will be calculated in the preprocessing stage to improve perfor-
mance

(17)

All quadrature methods discretize the continuous integration
range into a set of grid points. The function value is
evaluated at these grid points and multiplied with integra-
tion coefficients. As from (7), the integration coefficients for
Simpson’s rule are . Under multi-di-
mensional quadrature methods, the product rule is used to
determine the coefficient. The effective integration coefficients
are calculated by the product of all original integration coeffi-
cients in their corresponding dimensions.

Fig. 6 shows the graphical representation of the iteration
process of a 2-D barrier option pricing. We define as the
number of possible values (grid points) for and assume the
number of grid points for all is the same. We define as the
number of dimensions and as the number of time intervals.
For each time step, the number of integrations required is equal
to the number of grid points, which is . As a result, the total
number of integrations required for multiple time steps Amer-
ican options and Barrier options is . The total number of
evaluations of is .

Next, consider complexity analysis of our designs. The
optimized number of operators required for the calculation of

TABLE V
OPERATORS COUNT FOR THE EVALUATION OF �

column matrix is for operator, for operator and
for operator. For matrix multiplication of in

(15), the number of operators required is and
the number of operators required is . The
rest of (15) requires one more operator and one more
exponential operator. Table V shows the summary of operator
requirement for the evaluation of
and Table IV shows the summary of computation complexity
for some example options.

The computation time can be estimated by assuming that a 10
GFLOPs processor is used (the peak performance of a Pentium 4
3.2 GHz CPU is around 6.4 GFLOPs) and all floating point oper-
ators take the same amount of time. It can be shown that pricing
a European option with 7 underlying assets takes 14.7 days with
this processor at peak performance; however, it takes over 5
years with 8 assets. Hence other methods, such as using a cluster
of accelerators, are required for designs beyond 7 dimensions.

VI. FPGA AND GPU DESIGNS

Our FPGA implementation of the QUAD evaluation cores is
based on HyperStreams and the Handel-C programming lan-
guage. HyperStreams is a high-level abstraction language and
library [7]. It can produce a fully-pipelined hardware implemen-
tation with automatic optimization of operator latency at com-
pile time. This feature is useful when implementing a complex
algorithm core.

Fig. 7 shows a pipelined QUAD evaluation core based on the
design in Fig. 5. The grey boxes denote the pipeline balancing
registers that are allocated automatically by HyperStreams. The
QUAD evaluation core produces the value of in (2) for
every clock cycle. For an FPGA running at 100 MHz, the QUAD
evaluation core can produce 100 M partial integral values per
second.

The most challenging part of the multi-dimensional design
is to support an arbitrary number of dimensions. The hardware
evaluation cores are completely different for different dimen-
sions as the underlying logic and the number of pipeline stages
are different. Our approach provides a generic architecture that
produces hardware designs specialised for a given dimension.

The hardware QUAD evaluation core involves three major
parts. The first part is the evaluation of the vector from (16).

TSE et al.: DESIGN EXPLORATION OF QUADRATURE METHODS IN OPTION PRICING 823

TABLE VI
LOGIC UTILIZATION OF QUAD EVALUATION CORE IN DIFFERENT DIMENSIONS. ASTERISK ���

INDICATES THAT THE PLACE AND ROUTE PROCEDURE CANNOT BE COMPLETED

Fig. 7. Pipelined QUAD evaluation core for FPGA.

Fig. 8. Pipelined � � � design for 2-D QUAD evaluation.

Fig. 9. Generating multi-dimensional QUAD evaluation.

The second part is the matrix multiplication of . The
last part is the rest of the integration.

Fig. 8 shows a design for 2-D QUAD evaluation.
The design becomes more complex for higher di-
mensions, with an increasing number of operators and pipeline
stages. An evaluation core generator is developed to produce
designs for different dimensions automatically.

The flow of the QUAD evaluation core generator is shown
in Fig. 9. The generator accepts two input parameters: number
of dimensions and the precision (single or double). An operator
tree is generated and stored in a temporary file. Finally, the oper-
ator tree file is parsed and the corresponding HyperStreams and
Handel-C codes are generated. The Handel-C code can then be
compiled for simulation or bit-stream generation.

The operator tree generation consists of two main parts. The
first part is the operator tree generation for the vector calcu-
lation. It is generated according to (16) and replicated times

Fig. 10. CUDA pseudo code for QUAD evaluation kernel.

with respect to dimension . Therefore, the logic resources re-
quired grow proportionally to for the calculation part. The
second part is the operator tree generation for the matrix multi-
plication from (15). The numbers of and op-
erators required for this matrix multiplication are and

, respectively. Therefore, logic resources required
grow proportionally to . Finally, the operator trees from the
above two parts are combined with the rest of the quadrature
operators.

Table VI shows the FPGA device utilization figures for the
QUAD evaluation core in different dimensions and precisions.
The targeted FPGA is Xilinx Virtex-4 xc4vlx160 and the de-
signs are compiled using DK5.1 and Xilinx ISE 10.1. The re-
sult indicates that the FPGA device is fully utilized for 1 di-
mension under double-precision and is fully utilized for 5 di-
mensions under single-precision. The result also shows that for
1 dimension, multiple QUAD evaluation cores could be fitted
into a single FPGA in order to exploit parallelism.

GPUs have been used for accelerating various applications
[15], [16] . Our implementation on GPUs is based on CUDA
API for nVidia GPUs [17].

Under CUDA, a function can be compiled into a “kernel”.
Each computation grid consists of a grid of thread blocks. The
“kernel” is executed by all threads in parallel. Each block has a
unique ID; so has each thread.

The QUAD evaluation core is implemented in CUDA to ex-
ploit parallelism. Similar to the implementation on FPGA, we
implement the evaluation core in CUDA based on the optimized
operator tree. In addition, the whole integration is segmented
to support different blocks and threads in the CUDA environ-
ment. Each thread would evaluate a set of partial integrals and
accumulate the result. The first thread in each block then adds
up the results from all the threads within the same block. The

824 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

TABLE VII
PERFORMANCE AND ENERGY CONSUMPTION COMPARISON OF DIFFERENT IMPLEMENTATION OF 1-D QUAD EVALUATION CORE. THE GEFORCE 8600 GT

HAS 32 PROCESSORS, THE TESLA C1060 HAS 240 PROCESSORS AND THE XEON W3505 HAS TWO PROCESSING CORES

TABLE VIII
PERFORMANCE AND ENERGY CONSUMPTION COMPARISON OF DIFFERENT IMPLEMENTATION OF 2-D QUAD EVALUATION CORE

main thread then adds up all the results from all the blocks. The
CUDA pseudo code for the QUAD evaluation kernel is shown
in Fig. 10. The grid size and block size is set to 60 and 256, re-
spectively. Registers per thread is 16 and the occupancy of each
multiprocessor is 100%.

VII. EVALUATION AND COMPARISON

In this section, the performance and energy consumption of
different implementations of QUAD evaluation core are studied.
We choose the pricing of 1000 European options with grid den-
sity factor and grid size factor as the
benchmark. The typical value of 400 produces highly ac-
curate results, but the reason for choosing a much larger value
is to facilitate performance analysis of the QUAD evaluation
cores with a longer evaluation time. No matter what values of

or , the QUAD evaluation cores are still responsible
for the computation bottleneck of option pricing of the order

as shown in Table II or in multi-dimensional cases.
Simpson’s rule is preferable to the trapezoidal rule in our system
as the error terms of Simpson’s rule decrease at a rate of
which produces more accurate results with the same hardware
complexity. Therefore, Simpson’s rule is adopted for perfor-
mance analysis. The performance and energy consumption anal-
ysis for the pricing of 1-underlying, 2-underlying, and 3-under-
lying assets European options are studied.

The FPGA and GPU implementations are compared to a ref-
erence software implementation. The reference CPU is Intel
Xeon W3505 2.53 GHz dual-core processor. The software im-
plementation is written using C language. It is optimized with
multi-threading using OpenMP API and compiled using Intel

compiler (icc) 11.1 with -O3 maximum speed optimization op-
tion and SSE enabled. Intel Math Kernel Library is used. The
targeted FPGA is Xilinx Virtex-4 xc4vlx160 in the RCHTX
card. The designs are compiled using DK5.1 and Xilinx ISE 9.2.
The targeted GPU is nVidia Geforce 8600 GT with 256 MB of
on board RAM and nVidia Tesla C1060 with 4 GB of on board
RAM. The time measured for the GPU is the execution time of
the evaluation kernel only. The time for copying the data from
the main memory to the global memory of GPU is excluded.
Similarly, the date transfer time for copying the data from main
memory to the block RAM of FPGA is excluded. The perfor-
mance figures obtained reflect the pure processing speed of the
underlying devices only.

We measure the additional power consumption for computa-
tion (APCC) with a power measuring setup involving multiple
equipments. A FLUKE i30 current clamp is used to measure the
additional AC current in the live wire of the power cord during
the computation. This current clamp has an output sensitivity of

100 mV/A in 1 mA resolution. The output of the clamp is
measured in mV scale by a Maplin N56FU digital multi-meter
(DMM), collected through a USB connection and logged with
open source QtDMM software. APCC is defined as the power
usage during the computation time (run-time power) minus the
power usage at idle time (static power). In other words, APCC
is the dynamic power consumption for that particular computa-
tion. Since the dynamic power consumption fluctuates a little,
we take the average value of dynamic power to be the APCC.

The additional energy consumption for computation (AECC)
is defined by the following equation:

(18)

TSE et al.: DESIGN EXPLORATION OF QUADRATURE METHODS IN OPTION PRICING 825

TABLE IX
PERFORMANCE AND ENERGY CONSUMPTION COMPARISON OF DIFFERENT IMPLEMENTATION OF 3-D QUAD EVALUATION CORE

Fig. 11. Computational time and energy consumption relationship of different
devices.

Therefore, AECC measures the actual additional energy con-
sumed for that particular computation.

The summary of the performance comparison of 1-D, 2-D,
and 3-D QUAD evaluation core is shown in Tables VII–IX.

From the results of Table VII for 1-D case, it can be seen
that the FPGA implementation on the xc4vlx160 achieved
4.59 times acceleration using single-precision with 3 repli-
cated QUAD cores and achieved 1.25 times acceleration
using double-precision. For GPUs, a speedup of 1.75 times is
achieved by Geforce 8600 GT and a speedup of 8.37 times is
achieved by Tesla C1060 in single-precision. In double-preci-
sion, the Tesla C1060 has shown a 4.42 times speedup over the
reference CPU, while there is no double-precision support in
the Geforce 8600 GT.

It is not surprising that Tesla C1060 outperforms xc4vlx160,
since Tesla C1060 is based on 65-nm fabrication technology
while Virtex-4 xc4vlx160 is based on 90-nm fabrication tech-
nology. It would be fair to compare Virtex-4 FPGA with
Geforce 8600 GT GPU because of similar fabrication tech-
nology. Xeon W3505 is selected to be a CPU reference because
it represents the processing power of most workstations and
it has a similar architecture to the latest CPU. We included
a set of comparable devices—Virtex-4 FPGA, Geforce 8600
GT GPU and Xeon W3505 CPU. We estimated that Virtex-5
FPGA performs at least 4 times faster than Virtex-4 as Virtex-5
has 4 times more slices than Virtex-4 and with higher clock
frequency. We found that Tesla C1060 GPU is more than 4

times faster than Geforce 8600 GT from Table VII. We also
estimate that the performance of the latest Intel Core i7 CPU
will be around 4 times faster than Xeon W3505 according to
their number of cores and frequency ratios.

From Tables VIII and IX, it can be seen that the performance
of xc4vlx160 FPGA in 2-D and 3-D cases is not as good as in
1-D case. The reason is that the xc4vlx160 FPGA is fully uti-
lized in 1-D case with three replicated QUAD evaluation cores.
However, only one QUAD evaluation core can be fitted in the
xc4vlx160 FPGA in 2-D and 3-D cases and there are many un-
used logic resources. From this point of view, we can conclude
that an algorithm with a smaller computation core is more suit-
able to FPGA because it is easier to replicate multiple smaller
computation cores to fully utilize the resources in the FPGA.
The worst scenario, like our 2-D case, involves a computation
core that consumes just above 50% FPGA resources; it pre-
cludes replication so possibly wasting resources.

Although complex algorithms can be implemented easily
in FPGAs with HyperStreams, maximum performance and
utilization of FPGA resources is not guaranteed, as there is a
tradeoff when using HyperStreams between development time
and the amount of acceleration that can be achieved. However,
our HyperStreams implementation still provides a satisfactory
result with significant acceleration over the software imple-
mentations. Therefore, HyperStreams is useful for producing
prototypes rapidly to explore the design space. Further opti-
mization can be applied after a promising architecture is found.

Fixed-point implementations with sophisticated techniques
such as word-length optimization usually enable FPGA to
achieve the best performance [18]. However, it is not applicable
to quadrature methods as the range of the numerical values
spreads widely from small size partial integral values to large
size complete integral values.

Next, consider the energy efficiency of different devices. It
is interesting to note that the xc4vlx160 FPGA demonstrates
the greatest energy efficiency regardless of the technology
differences. In single dimension case, xc4vlx160 is 25.9 times
more energy efficient than Xeon W3505, 25.4 times more
energy efficient than Geforce 8600 GT and 13.4 times more
energy efficient than Tesla C1060. An interesting observation
is that xc4vlx160 FPGA demonstrates similar level of energy
efficiency with the 1-D case in 2-D and 3-D cases, despite the
decrease of computational performance.

Fig. 11 shows a scatter plot graph of the computation time
versus the energy consumption (AECC) of different devices im-

826 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 5, MAY 2012

plementing the 1-D QUAD evaluation core. From this graph,
the highest computational performance is achieved using Tesla
C1060 GPU and the lowest energy consumption is achieved
using xc4vlx160 FPGA. Therefore, Geforce 8600 GT and Xeon
W3504 are considered to be inefficient for this application. Tesla
C1060 and xc4vlx160 are the fastest and the most energy effi-
cient respectively for this application.

VIII. CONCLUSION

This paper proposes a novel parallel architecture for hard-
ware accelerated option pricing based on quadrature methods.
Our proposal includes a highly pipelined datapath capable of
supporting quadrature evaluation in parallel. We explore imple-
mentations for quadrature evaluation in FPGA and GPU tech-
nologies. A tool is developed for automatic production of hard-
ware designs with a given number of dimensions.

The performance and energy consumption of FPGA and GPU
implementations are compared against each other and compared
against a multi-threaded software implementation on a CPU.
The results show that FPGA implementation is 4.6 times faster
than the CPU, 1.75 times faster than a GPU in comparable tech-
nology and 1.8 times slower than the latest GPU. In addition,
the FPGA is up to 25 times more energy efficient than CPU and
comparable GPU. The energy efficiency of FPGA against other
devices in multi-dimensional cases is similar to the 1-D case.

Current and future work includes the design of a distributed
quadrature evaluation framework in a heterogeneous cluster
consisting of FPGAs, GPUs and CPUs for collaborative com-
puting. The system targets the latest FPGAs such as Virtex-5,
Virtex-6 and Stratix IV for improved performance and for
comparison with the latest GPUs. Additionally, we intend to
extend our work to cover the development of optimized hard-
ware designs based on quadrature methods for a wide variety of
applications, such as the solutions of electromagnetic problems
[2], calculations involving photon distribution [3] and modeling
of credit risk [1].

REFERENCES

[1] M. H. A. Davis and J. C. Esparragoza-Rodriguez, “Large portfolio
credit risk modeling,” Int. J. Theor. Appl. Finance, vol. 10, no. 04, pp.
653–678, 2007.

[2] A. Masserey, J. Rappaz, R. Rozsnyo, and M. Swierkosz, “Numerical
integration of the three-dimensional green kernel for an electromag-
netic problem,” J. Computat. Phys., vol. 205, no. 1, pp. 48–71, 2005.

[3] T. Humphries, A. Celler, and M. Trammer, “Improved numerical inte-
gration for analytical photon distribution calculation in spect,” in Proc.
IEEE Nucl. Sci. Symp. Conf., 2007, pp. 3548–3554.

[4] A. D. Andricopoulos, M. Widdicks, P. W. Duck, and D. P. Newton,
“Universal option valuation using quadrature methods,” J. Financial
Econom., vol. 67, no. 3, pp. 447–471, Mar. 2003.

[5] G. Zhang, P. Leong, C. Ho, K. Tsoi, D.-U. Lee, C. Cheung, R. Cheung,
and W. Luk, “Reconfigurable acceleration for Monte-Carlo based fi-
nancial simulation,” in Proc. Int. Conf. Field-Program. Technol., 2005,
pp. 215–224.

[6] D. Thomas, J. Bower, and W. Luk, “Automatic generation and optimi-
sation of reconfigurable financial Monte-Carlo simulations,” in Proc.
Int. Conf. Appl.-Spec. Syst., Arch., Processors, 2007, pp. 168–173.

[7] G. Morris and M. Aubury, “Design space exploration of the European
option benchmark using hyperstreams,” in Proc. Int. Conf. Field Pro-
gram. Logic Appl., 2007, pp. 5–10.

[8] Q. Jin, D. B. Thomas, W. Luk, and B. Cope, “Exploring reconfig-
urable architectures for tree-based pricing models,” ACM Trans. Re-
config. Tech. Syst., vol. 2, no. 4, 2009, Article No. 21.

[9] A. H. T. Tse, D. B. Thomas, and W. Luk, “Accelerating quadrature
methods for option valuation,” in Proc. IEEE Symp. FPGAs for Custom
Comput. Mach., 2009, pp. 29–36.

[10] A. H. T. Tse, D. B. Thomas, and W. Luk, “Option pricing with multi-di-
mensional quadrature architectures,” in Proc. Int. Conf. Field-Program.
Technol., 2009, pp. 427–430.

[11] F. Black and M. S. Scholes, “The pricing of options and corporate li-
abilities,” J. Political Economy, vol. 81, no. 3, pp. 637–54, May/Jun.
1973.

[12] E. Sueli and D. F. Mayers, An Introduction to Numerical Analysis.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

[13] G. Fusai and M. C. Recchioni, “Analysis of quadrature methods for
pricing discrete barrier options,” J. Econom. Dyn. Control, vol. 31, no.
3, pp. 826–860, Mar. 2007.

[14] A. D. Andricopoulos, M. Widdicks, D. P. Newton, and P. W. Duck,
“Extending quadrature methods to value multi-asset and complex path
dependent options,” J. Financial Econom., vol. 83, no. 2, pp. 471–499,
2007.

[15] L. Pan, L. Gu, and J. Xu, “Implementation of medical image segmen-
tation in cuda,” in Proc. Int. Conf. Technol. Appl. Biomed., 2008, pp.
82–85.

[16] H. Jang, A. Park, and K. Jung, “Neural network implementation using
cuda and openmp,” in Proc. Digit. Image Comput. Techn. Appl., 2008,
pp. 151–161.

[17] NVidia, Santa Clara, CA, “Nvidia CUDA programming guide,” 2008.
[18] G. A. Constantinides, “Word-length optimization for differentiable

nonlinear systems,” ACM Trans. Des. Autom. Elect. Syst., vol. 11, no.
1, pp. 26–43, 2006.

Anson H. T. Tse (S’08) received the B.Eng. and
M.Sc. degrees from the Chinese University of Hong
Kong, Hong Kong, in 2005 and 2008, respectively.
He is currently pursuing the Ph.D. degree from
the Department of Computing, Imperial College
London, London, U.K.

His research interests include reconfigurable
computing, high performance computing, distributed
computing, and computational finance.

Mr. Tse was a recipient of a Croucher Foundation
Scholarship.

David Thomas (M’06) received the M.Eng. and
Ph.D. degrees in computer science from Imperial
College London, London, U.K., in 2001 and 2006,
respectively,

Since 2010, he has been a Lecturer with the
Electrical and Electronic Engineering Department,
Imperial College London. His research interests
include hardware-accelerated cluster computing,
FPGA-based Monte Carlo simulation, algorithms
and architectures for random number generation,
and financial computing.

Wayne Luk (F’09) received the M.A., M.Sc.,
and D.Phil. degrees in engineering and computing
science from the University of Oxford, Oxford, U.K.

He is a Professor of computer engineering with
Imperial College London, London, U.K., and a Vis-
iting Professor with Stanford University, Stanford,
CA, and with Queens University Belfast, Belfast,
U.K. His research interests include theory and
practice of customizing hardware and software for
specific application domains, such as multimedia,
networking, and finance.

