
A Mixed Precision Methodology for Mathematical Optimisation

Gary C.T. Chow and Wayne Luk

Department of Computing

Imperial College London

London SW7 2AZ, United Kingdom

{cchow, wl}@doc.ic.ac.uk

Philip H.W. Leong

School of Electrical and Information Engineering

University of Sydney

Sydney, Australia

philip.leong@sydney.edu.au

Abstract—This paper introduces a novel mixed precision
methodology for mathematical optimisation. It involves the use
of reduced precision FPGA optimisers for searching potential
regions containing the global optimum, and double precision
optimisers on a general purpose processor (GPP) for verifying
the results. An empirical method is proposed to determine
parameters of the mixed precision methodology running on a
reconfigurable accelerator consisting of FPGA and GPP. The
effectiveness of our approach is evaluated using a set of opti-
misation benchmarks. Using our mixed precision methodology
and a modern reconfigurable accelerator, we can locate the
global optima 1.7 to 6 times faster compared with quad-core
optimiser. The mixed precision optimisations search up to 40.3
times more starting vector per unit time compared with quad-
core optimisers and only 0.7% to 2.7% of these searches are
refined using GPP double precision optimisers. The proposed
methodology also allows us to accelerate problems with more
complicated functions or to solve problems involving higher
dimensions.

Keywords-mathematical optimisation, FPGA, reconfigurable,
mixed-precision, Nelder-Mead downhill simplex

I. INTRODUCTION

Unconstrained mathematical optimisation involves min-

imising an objective function f(~x) : R
k −→ R by selecting

an input vector ~x0 such that ∀~x ∈ R
k, f(~x0) ≤ f(~x).

Mathematical optimisation is extensively used in many areas

such as engineering [8, 9], economics [7], finance [6], circuit

design [1, 5], real time control [11], statistics and machine

learning [4, 10], to name just a few. Solving a mathematical

optimisation can be time consuming, especially for high-

dimensional non-convex problems with multiple local min-

ima. The performance issue becomes a major obstacle for

time-critical problems such as finance and real-time control

applications.

The implementation of an optimiser varies with the ob-

jective function, constraints, dimension, parameters and the

choice of the optimiser algorithm. Hence, it is impractical to

accelerate mathematical optimisation with application spe-

cific integrated circuits (ASICs). Reconfigurable hardware

such as Field Programmable Gate Arrays (FPGAs) becomes

a viable hardware option because they can be reconfigured

to adapt to different parameters.

The ability to support customizable data-paths of different

precisions is an important advantage of FPGAs. Reduced-

precision data-paths usually have higher clock frequencies

and consume fewer resources. Given the same amount

of FPGA resources and execution time, we can handle

problems with more complicated cost function or higher

dimension using reduced-precision data-paths. However,

reduced-precision data-paths may introduce computation er-

rors which direct the search to produce poor results. Thus

there are trade-offs between quality of the optimisation

result, precision of data-paths, and parallelism of the op-

timisation process. When high quality optimisation results

are required, high-precision data-paths are unavoidable.

This paper investigates the trade-offs associated with

reduced precision arithmetic in FPGA based mathematical

optimisers. We aggressively reduce the precision to realise

FPGA based simplex optimisers with high performance

and parallelism. The reduced precision optimisers filter and

select potential regions that might contain optima. We then

verify these regions using high precision optimisers running

on conventional General Purpose Processors (GPPs). The

mixed precision methodology also exploits the synergy

between FPGA and GPP, by allowing them to work in

precisions that they are specialised at. Mixed precision

methodologies for other application domains are proposed

in [2, 3].

II. A PARAMETERISABLE SIMPLEX OPTIMISER

ALGORITHM

Algorithm 1 shows the Nelder-Mead downhill simplex

used in our FPGA optimisers. The algorithm attempts to

locate the nearest local optimum by maintaining a set of

test vectors (i.e. ~xi) which are referred to as the simplex.

For an objective function with k input variables, the simplex

is a set of (k + 1) vectors in R
k. In each iteration, the cost

of each vector in the simplex is evaluated and the best, the

second best and the worst vectors are marked. Using the

reflection, expansion and the contraction processes (steps 5-

18), up to three new test vectors are generated. If any of them

are better than the worst vector, it is accepted to replace

the worst vector. If none of them have a lower cost, it is

assumed that a better point might lie within the simplex and

hence all vectors except the best are shrunk towards the best

vector (step 19). The simplex algorithm continues iteratively

until the entire simplex is smaller than a certain tolerance

ε (steps 21 to 23), or the maximum number of iterations has

been reached.

Algorithm 1 The Nelder-Mead downhill simplex method.

Input: k = the dimension of the problem. {~xi} = a set

of (k+1) initial vectors in R
k. ε = the x tolerance. Nmax

= maximum iteration steps. ~lb, ~ub ∈ R
k, lower and upper

boundaries of the inputs. f = the objective function.

Scaling coefficients:

α = 1, γ = 2, β = 0.5 and δ = 0.5

1: loop

2: count ← 0
3: evaluate f(~x1), f(~x2) · · · f(~xk+1)
4: set fh = max(fi) , fs = maxi 6=h(fi), fl = min(fi)
5: ~x0 = 1

k

∑

i 6=h ~xi, /* the centroid of all but the worst

points in the simplex */

6: ~xr ← ~x0 + α(~x0 − ~xh) /* reflection */

7: if fl ≤ fxr
≤ fs then

8: ~xh ← ~xr

9: else if fxr
< fl then

10: ~xe ← ~x0 + γ(~x0 − ~xh) /* expansion */

11: fxe
< fxr

? ~xh ← ~xe : ~xh ← ~xr

12: else

13: if fs ≤ fxr
≤ fh then

14: ~xc ← ~x0 + β(~x0 − ~xh) /* outside contraction */

15: fxc
< fxr

? ~xh ← ~xc : goto shrink phase

16: else if fxr
> fh then

17: ~xc ← ~x0 − β(~x0 − ~xh) /* inside contraction */

18: fxc
< fxh

? ~xh ← ~xc : goto shrink phase

19: end if

20: shrink phase: ~xi new = ~xl − δ(~xl − ~xi) for i =
1 · · · (k + 1) and i 6= l

21: end if

22: count + +
23: if ~xi − ~xl < ε for all i 6= l or count > Nmax then

24: break and return ~xl and fxl

25: end if

26: end loop

Figure 1 shows the system architecture of the reconfig-

urable simplex optimiser. It consists of a new vector gener-

ation unit, which can generate a reflection, an expansion or

a contraction vector every clock cycle. A fully parallelised

implementation is used for the f(x) evaluation data-path.

To solve the data dependency problem, we execute P

simplex optimisation instances with the same cost function

and different starting points in parallel. Instead of using

conventional registers, we use circular registers with loop

lengths equal to P in our ~xi and f(xi) tracking units.

Thus, every simplex optimisation instance is served by the

hardware every P clock cycles. If P is larger than the

latency of the entire data-path, the pipeline is always full

new vector

generation unit

f(xi) evaluation

data-path

xi

comparisons &

control unit

main

simplex

circular

register

(k+1) * P vectors

f(xi)

xi
tracking unit

f(xi)

tracking unit

scalar value

vector value

control inputs

external I/O

centroid

computation

unit

Figure 1. System architecture of the reconfigurable simplex optimiser.

0

100

200

300

400

500

600

700

800

0

20000

40000

60000

80000

100000

120000

140000

160000

8 13 18 23 28 33 38

B
R

A
M

s
/

D
S

P
s

L
U

T
s

/
R

e
g

is
te

rs

number of significand bits

Reg

LUT

DSP

BRAM

Figure 2. Cost of the simplex optimiser with different number of
significand bit for solving the Ackley function with dimension = 12.

and the optimiser does not need to be stalled. The required

lengths of the circular registers are usually in the order of

tens to hundreds and they can be realised efficiently using

FPGA block memories. Figure 2 shows the cost of the FPGA

simplex optimisers with different number of significand bits

for solving the Ackley function with dimension k = 12.

The cost advantage of using reduced precision datapaths are

clearly shown in the figure.

III. MIXED PRECISION BASIN HOPPING OPTIMISATION

Algorithm 2 shows the mixed precision basin hopping

methodology in our reconfigurable accelerator system. In

each iteration, Psearch new starting vectors are generated

using mutation from the current global vector. Coarse-

grained optimisation results are generated by the FPGA

reduced precision simplex optimisers. The best few starting

vectors with cost difference smaller than a certain refinement

margin εmargin are re-optimised using double precision

optimisers running on GPP and the results are compared

with the current best solution. Hence, the FPGA optimisers

are only used to select and filter potential starting vectors

Algorithm 2 Mixed precision parallel basin hopping opti-

misation.

Input: f = the objective function.

Psearch = number of parallel reduced precision simplex

search in each iteration.

εmargin = refinement margin.

N = number of iteration.

~x0 = initial vector.

ε = tolerance of GPP optimiser.

Processes:

~xnew ← M(~x), vector mutation process.

fi ← Sfpga(~xi, Nmax, L), FPGA simplex run with initial

vector ~xi and Nmax iteration in precision L.

(fbest, ~xbest) ← Sgpp(~xi, ε), GPP simplex run with

initial vector ~xi and tolerance ε in reference preci-

sion.

1: fglobal ← f(~x0); ~xglobal ← ~x0

2: for iter = 1 → N do

3: /* Parallel FPGA searching */

4: for i = 1 → Psearch do

5: ~xi ← M(~xglobal)
6: fi ← Sfpga(~xi, Nmax, L)
7: end for

8: sort fi in ascending order

9: /* GPP refinement */

10: for i = 1 → Psearch do

11: if fi − fi < εmargin then

12: (fbest, ~xbest) ← Sgpp(~xi, ε)
13: if fbest < fglobal then

14: fglobal ← fbest; ~xglobal ← ~xbest

15: end if

16: end if

17: end for

18: end for

for GPP optimisers.

Parameter selection One assumption of our empirical tech-

nique is that the optimisation parameters can be selected

based on knowledge of a similar problem. For example,

a family of the Schwefel function with different constant

offsets should share similar characteristics. Although such an

assumption seems restrictive, it is realistic because similar

optimisation problems can be solved by FPGA without

regenerating a new bitstream. We suggest the following steps

to select the parameters:

1) Nmax - Although setting Nmax to a higher value

decreases the average optimisation error µopt error,

the FPGA optimisers are merely for selecting starting

vectors which potentially lie in the basin containing

the global optimum. Hence, we can set Nmax to a

relatively small value. Experimental results show that

setting Nmax = 0.25 × Navg works well for all the

benchmarks we tested. ε using random starting vectors

and use Navg as Nmax.

2) L - precision of the FPGA optimiser. If L is high,

the cost of each FPGA optimiser is increased. In

extreme cases, we might not even be able to place a

single optimiser into the FPGA. On the other hand,

if L is low, optimisation errors will increase and

the refinement margin εmargin needs to be increased,

leading to more workload for the GPPs. We suggest

to start the search for the optimal precision from mid-

range (such as 25 significand bits) and try both sides

until the best is found.

3) Psearch - once the precision L is fixed, we can

estimate the maximum number of simplex optimisers

fitted into the FPGA using the resources matrix. The

parallelism of the basin hopping algorithm Psearch

should be fixed to P × Pc, where P is the minimum

pipelined stage of each FPGA optimiser and Pc is the

number of optimisers fitted into the FPGA.

4) εmargin - the refinement margin should be large

enough such that the starting vector with the global

optimum is not missed by the GPP re-optimisation

due to optimisation error and yet it is not too large

to stress the GPP. Experimental results show that the

optimal value for εmargin usually varies between 1-2

times of µopt error, where µopt error is the average

optimisation error profiled using random starting vec-

tors and Nmax = 0.25 × Navg .

5) evaluation - a user should evaluate the mixed precision

basin hopping at this point, and go back to step 2 to

choose another reduced precision if required.

IV. RESULTS

We use the MaxWorkstation reconfigurable accelerator

system from Maxeler Technologies for our experiments. It

has a MAX3424A card with a Xilinx Virtex-6 SX475T

FPGA. The card is connected to an Intel i7-870 GPP through

a PCI express link and the GPP has 4 physical cores.

The MaxWorkstation allows us to design a parameterisable

simplex optimiser such that the dimension, cost function,

constraints and precision of the floating point data-paths can

be changed at compile time. For all our implementations,

we use a floating point representation with 8-bit exponents

and different number of significand bits. To evaluate our

mixed precision methodology, we select three common

optimisation benchmarks as shown in Table I. These are

usually considered difficult cases since they have multiple

local optima but only one global optimum.

Figure 3 shows the average execution time and the re-

quired number of GPP double precision simplex refinements

for the Ackley benchmark function with parameters selected

using the method proposed in Section III. As we can see

from the figure, the optimal FPGA reduced precision for

the problem is s17e8. To the left of the optimal precision,

benchmark lbi ubi cost function

Ackley -32.768 32.768 f(~x) = −20exp

(

−0.2

√

1

k

∑

k

i=1
y2

i

)

− exp

(

1

k

∑

k

i=1
(cos2πyi)

)

+ 20 + e

Rastrigin -5.12 5.12 f(~x) = 10k +
∑

k

i=1
(y2

i
− 10cos(2πyi))

Schwefel -500 500 f(~x) = 418.9829k −
∑

k

i=1
(yisin

√

|yi|)

~y = ~x − ~c, where ~c is a constant offset vector between 0 to 1

Table I
BENCHMARKS PROBLEMS USED FOR EVALUATION, DIMENSION k IS SET TO 12.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.0E-01

1.0E+00

1.0E+01

8 18 28 38

a
v

g
.
n

u
m

b
e
r

o
f

re
fi

n
e
m

e
n

ts

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

number of significand bits

execution time of quad-core GPP
solver
avg. number of refinements

avg. execution time

optimal precision=s17e8

Figure 3. Average required execution time and the required number of
GPP double precision simplex refinement to locate the global optimum for
the Ackley benchmark function. 50 trial runs are used.

the refinement margin εmargin is large so many GPP double

precision refinements are required which offsets the execu-

tion time reduction due to higher FPGA clock frequency and

parallelism. To the right of the optimal precision, the number

of refinement is small but the cost of FPGA optimisers is

high. A similar pattern is also observed in other benchmark

problems. It is interesting to note that although the optimal

FPGA reduced precision is s17e8, the proposed mixed

precision methodology provides performance gains over a

wide range of precisions (s12e8 to s40e8). Hence it is not

necessary for us to pick the optimal reduced precision as

long as it is not too far away from the optimum.

Numerical experiments are run on the three benchmarks

and we observed 1.7 to 3.6 times performance gains on the

reconfigurable accelerator using our mixd precision method-

ology against quad-core GPP implementations. The effec-

tiveness of our mixed precision methodology is attributed

to the abilities of the FPGA optimisers to search huge

amount of starting vectors in parallel. The mixed precision

methodology search 40.3 times more starting vector per unit

time compared with quad-core GPP optimisers. Only 0.7 to

2.43 % of these searches need to be refined by GPP double

precision optimisers.

V. CONCLUSION

This paper proposes a novel mixed precision methodology

for mathematical optimisation problems in reconfigurable

accelerator systems. It exploits the synergy between the

FPGA and GPP and produces results identical to double

precision solvers running on GPP. Experimental results on

three common optimisation benchmark problems show that

our methodology allows up to 40.3 times more searches

per unit time compare with optimisers for the quad-core

GPPs. Using the proposed methodology and a modern

reconfigurable accelerator system, we can locate the same

set of global optima 1.7 to 3.6 times faster on average and

search 40.3 times more starting vectors compared with quad-

core GPP implementations.

Acknowledgments

The research leading to these results has received fund-

ing from the Croucher Foundation, Maxeler Technologies,

Xilinx, the UK EPSRC, and the European Union Seventh

Framework Programme under grant agreements number

257906 and 248976.

REFERENCES

[1] S. P. Boyd, S.-J. Kim, D. D. Patil, and M. A. Horowitz. Digital
circuit optimization via geometric programming. Operations
Research, 53:899–932, 2005.

[2] G. Chow, K. Kwok, W. Luk, and P. Leong. Mixed precision
processing in reconfigurable systems. In Proc. FCCM, pages
17–24, may 2011.

[3] G. C. T. Chow, A. H. T. Tse, Q. Jin, W. Luk, P. H. Leong, and
D. B. Thomas. A mixed precision Monte Carlo methodology
for reconfigurable accelerator systems. In Proc. FPGA, pages
57–66, 2012.

[4] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-based Learning
Methods. Cambridge University Press, 2000.

[5] M. del Mar Hershenson, S. P. Boyd, and T. H. Lee. Optimal
design of a CMOS Op-Amp via geometric programming.
IEEE Trans. CAD, 20:1–21, 2001.

[6] H. Markowitz. Portfolio selection. The Journal of Finance,
7(1):77–91, 1952.

[7] A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeco-
nomic Theory. Oxford University Press, USA, 1995.

[8] S. S. Rao. Engineering Optimization: Theory and Practice.
Wiley, 2009.

[9] J. N. Siddall. Optimal Engineering Design (Dekker Mechan-
ical Engineering). CRC Press, 1982.

[10] V. Vapnik. The Nature of Statistical Learning Theory (Infor-
mation Science and Statistics). Springer, 1999.

[11] Y. Wang and S. Boyd. Fast model predictive control using
online optimization. IEEE Trans. on Control Systems Tech-
nology, 18(2):267–278, 2010.

