

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright 2012 ACM 978-1-4503-1092-5/12/03...$10.00.

LARA: An Aspect-Oriented Programming Language for
Embedded Systems

João M. P. Cardoso,
Tiago Carvalho

Universidade do Porto,
 Faculdade de Engenharia (FEUP),

Dep. de Engenharia Informática
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

jmpc@acm.org,

tiago.diogo.carvalho@fe.up.pt

José G. F. Coutinho,
Wayne Luk

Department of Computing,
Imperial College London,

180 Queen’s Gate,
London SW7 2BZ,
United Kingdom

gabriel.figueiredo@imperial.ac.uk,

w.luk@imperial.ac.uk

Ricardo Nobre,
Pedro C. Diniz

INESC-ID,
Rua Alves Redol 9

1000-029 Lisboa, Portugal

rjfnobre.disk@gmail.com,

pedro@esda.inesc-id.pt

Zlatko Petrov

 Honeywell International s.r.o,
Turanka 100
627 00 Brno

Czech Republic

 zlatko.petrov@honeywell.com

Abstract

The development of applications for high-performance
embedded systems is typically a long and error-prone
process. In addition to the required functions, developers
must consider various and often conflicting non-functional
application requirements such as performance and energy
efficiency. The complexity of this process is exacerbated
by the multitude of target architectures and the associated
retargetable mapping tools. This paper introduces an As-
pect-Oriented Programming (AOP) approach that conveys
domain knowledge and non-functional requirements to
optimizers and mapping tools. We describe a novel AOP
language, LARA, which allows the specification of compi-
lation strategies to enable efficient generation of software
code and hardware cores for alternative target architectures.
We illustrate the use of LARA for code instrumentation
and analysis, and for guiding the application of compiler
and hardware synthesis optimizations. An important LARA
feature is its capability to deal with different join points,
action models, and attributes, and to generate an aspect
intermediate representation. We present examples of our
aspect-oriented hardware/software design flow for mapping
real-life application codes to embedded platforms based on
Field Programmable Gate Array (FPGA) technology.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features –
Frameworks. D.3.3 [Programming Languages]: Proces-
sors – Compilers, Retargetable Compilers, Optimization,
Code Generation. C.3 [Special-purpose and application-
based systems]: Real-time and embedded systems, Micro-
processor/microcomputer applications. B.7.1 [Integrated
circuits]: Types and Design Styles – Algorithms imple-
mented in hardware.

General Terms Design, Experimentation, Languages.

Keywords Aspect-Oriented Programming; Compilers;
Reconfigurable Computing; FPGAs; Embedded Systems;
Domain-Specific Languages

1. Introduction

The development and mapping of applications to contem-
porary heterogeneous high-performance embedded systems
requires tools with very sophisticated design-flows that are
aware of critical applications requirements, both functional
and non-functional (e.g., real-time performance and safety)
while meeting target architecture’s stringent resource con-
straints (e.g., storage capacity and computing capabilities).

This development and mapping process must consider a
myriad of design choices. Typically, developers must parti-
tion the application code among the most suited system
components − a process commonly known as hard-
ware/software partitioning [1]. Subsequently, they have to
deal with multiple compilation tools (sub-chains) that target
each specific system component. These problems are ex-
acerbated when dealing with FPGAs (Field-Programmable
Gate Arrays), a popular technology which combines the
performance of custom hardware with the flexibility of
software [2][3]. As a consequence, developers must explore
code and mapping transformations specific to each archi-
tecture so that the resulting solutions meet the overall re-
quirements. As the complexity of emerging heterogeneous
embedded systems continues to grow, the need to meet
increasingly challenging design trade-offs (e.g., weight,
size, energy efficiency, reliability and performance) will
undoubtedly exacerbate the complexity of the mapping of
sophisticated applications to these embedded systems.

In practice, this approach leads to code that is trans-
formed beyond recognition and where developers have
manually applied an extensive set of architecture-specific
transformations and tool-specific directives. However, such
practice leads to low developer productivity and, more
importantly, limited application portability. For instance,
when the underlying architecture changes developers may
need to restart the design process.

This paper describes LARA, a novel aspect-oriented pro-
gramming (AOP) [4] language for mapping applications to
heterogeneous high-performance embedded systems. This
language allows developers to capture non-functional re-
quirements from applications in a structured way, leverag-
ing high-level abstractions such as hardware/software de-
sign templates and flexible toolchain interfaces. Developers
can thus benefit from retaining the original application
source while exploiting the automation benefits of various
domain-specific and target component-specific compila-
tion/synthesis tools. In essence, LARA uses AOP mechan-

isms to offer in a unified framework (a) a vehicle for con-
veying application-specific requirements that cannot oth-
erwise be specified in the original programming language
for design capture, (b) using these requirements to guide
the application of transformations and mapping choices,
thus facilitating design-space-exploration (DSE), and (c)
interfacing in an extensible fashion the various compila-
tion/synthesis components in the toolchain. This paper
makes the following specific contributions:
� Introduces LARA, an AOP language capable of captur-

ing transversal (across multiple codes) and vertical con-
cerns (across different stages of a design flow);

� Describes the LARA join point model that can include
not only program execution points but also hardware
system components and their properties;

� Extends the join point model with attributes used and
defined in the aspects to codify complex strategies;

� Covers a programmable and systematic approach to
control and guide different design flow actions and/or
application of code transformations;

� Presents experimental results of the use of LARA for a
set of real-life codes targeting a heterogeneous embed-
ded architecture with both general-purpose processor
(GPP) and FPGA technologies, using commercially
available tools for compilation and hardware synthesis.

The results described in this paper reflect the develop-
ment of the LARA language in the context of the RE-
FLECT (REndering FPGAs to MuLti-Core Embedded
CompuTing) research project [5][6][7]. The applications
selected in our study and thus the corresponding require-
ments were drawn from two of this project’s industrial
partners, targeting the Avionics and Audio domains. Spe-
cifically, the LARA AOP approach has been designed to
help developers to reach good design solutions with low
programming effort. This experience of using aspects for
hardware-oriented transformations reveals the benefits of
AOP in: (a) application program portability across architec-
tures and tools, and (b) productivity improvement of devel-
opers and programmers.

This paper is organized as follows. Section 2 describes a
motivating example. Section 3 presents the design flow for
our approach. Section 4 describes our AOP approach. Sec-
tion 5 focuses on the LARA aspect language, providing a
number of illustrative examples. Section 6 focuses on the
practical impact of our approach. In Section 7, we summar-
ize related work and Section 8 then concludes.

2. Compilation/Synthesis Example

We now present a motivational example that highlights
some of the challenges faced by application developers
when targeting embedded systems. In this example, we
assume that the developer has already carried out a perfor-
mance analysis study and has selected a set of computa-
tional kernels that can benefit from either hardware accele-
ration or source-level code transformations.

We consider a particular implementation of the MPEG-2
Audio Encoder (layers I and II) in C. One of the hot-spots
is the polyphase filter bank function depicted in Figure 1.
This function is structured as two doubly nested for-loops
that manipulate four one- and two-dimensional array va-
riables of 64-bit floating-point values. It processes 512
audio samples and outputs 32 equal-width frequency sub-

bands. The statically allocated m array holds the filter coef-
ficients.

1. void fsubband(double z[512], double s[32]){
2. double y[64];
3. int i,j;
4. static const double m[32][64] = {...};
5. for(i=0;i<64;i++) { // loop1
6. y[i] = 0;
7. for(j=0;j<8;j++) // loop2
8. y[i] += z[i+64*j];
9. }
10. for(i=0;i<32;i++) { // loop3
11. s[i] = 0;
12. for(j=0;j<64;j++) // loop4
13. s[i] += m[i][j] * y[j];
14. }
15.}

Figure 1. C source code of the function fsubband in the
MPEG-2 audio encoder application.

An implementation of this kernel for an embedded sys-
tem with a GPP coupled to an FPGA (e.g., acting as a
hardware accelerator) could explore two mapping scena-
rios, namely1: (1) the complete mapping of the code to the
GPP leveraging software-only GPP compiler optimizations,
and (2) the generation of an application-specific architec-
ture implemented on the FPGA derived from partitioning
the application between the GPP and the FPGA hardware.

Each of these mapping scenarios may require different
strategies in terms of how the computation is partitioned
between the target components (GPP vs. FPGA), and con-
sequently how data manipulated by the sub-computations
are organized and partitioned. Furthermore, as a multi-
computing architecture, once the data and the computation
have been partitioned, data communication between the
components and their subsequent synchronization need to
be considered and included in the mapped code.

Once the partition and mapping have been decided, each
of the partitioned computations may still be subject to fur-
ther transformations. The computations to be executed on
the GPP can be subject to a wide variety of transformations
offered by C compilers such as gcc. These include loop-
based transformations (e.g., loop unrolling and/or software
pipelining), data type conversions (double to float or
double/float to fixed-point), and even array to memory
mapping and caching in local scratch-pad memories.

With respect to computations mapped to the FPGA-based
hardware accelerator, there is a wider range of compilation
and synthesis options that can be exercised which further
increase the complexity of this mapping process. For ex-
ample, in the accumulation statements in lines 8 and 13 in
Figure 1, one could cache (scalar replace) the values asso-
ciated with the y array thus substantially reducing the num-
ber of load/store operations from/to external memories. In
the presence of dual-ported on-chip memories, local arrays
m and y could be mapped to distinct memories. Loop trans-
formations could then be used to expose concurrent ac-
cesses to the m and y arrays. To achieve this mapping re-
sult, a developer would define a strategy to combine unroll-
and-jam to loop1 and unrolling to loop4 followed by a
specific mapping of array variables to internal FPGA sto-
rage (e.g., Block RAMs - Random Access Memories - in a
Xilinx FPGA).

1
 A third scenario where the entire computation is mapped to the FPGA

would, in practice, be infeasible.

These mapping strategies and the associated compiler
and mapping transformations highlight the interplay be-
tween them and the complexity in assessing their potential
performance and resource use. To address this complexity
we developed the LARA AOP language. LARA allows
developers to control the tools in a compilation toolchain
and to apply a wide range of transformations and target
architecture mapping choices in an automated fashion. We
now illustrate how a developer could specify examples of
these transformations using LARA.

The first of these aspects, depicted in Figure 2, instructs a
weaver (Figure 5, see Section 3) to fully unroll all inner-
most for-type loops in which the number of iterations is
known at compile-time and does not exceed 32. For in-
stance, when this aspect is applied to function fsubband, the
weaver will fully unroll loop2 shown in Figure 1. This
aspect is generic and can be reused for other func-
tions/applications as part of an optimization strategy. The
developer can even increase its potential reuse by defining
the number of iterations (32 in this example) and the unrol-
ling factor as two additional aspect input parameters.

aspectdefaspectdefaspectdefaspectdef strategy1
 inputinputinputinput functionName endendendend
 selectselectselectselect function{name==functionName}.
 loop{type==”for”} endendendend
 applyapplyapplyapply optimize(“loopunroll”, “full”); endendendend
 condition condition condition condition
 $loop.numIterIsConstant &&
 $loop.num_iter <= 32 &&
 $loop.is_innermost
 endendendend
endendendend

Figure 2. Aspect module that fully unrolls innermost loops
with the number of iterations less than or equal to 32.

The second aspect, shown in Figure 3, focuses on the
software/hardware partition problem where functions and
code sections can be selected and mapped to hardware
specified in a hardware description language such as Veri-
log or VHDL. This particular aspect also conveys to the
compiler and synthesis tools that are part of the design flow
(see Section 3), information about the interval range of
variable “z”, the maximum noise power allowed and the
data type of argument “s”. This information can be used by
a word-length analysis engine (here identified as datarepr)
to derive customized word-lengths by exploring acceptable
precision and accuracy values. Lastly, in Figure 4, we
present an aspect for the mapping of array variables to local
storage for a specific target hardware architecture: an inter-
nal Block RAM in a Xilinx Virtex-5 FPGA device.

Regarding code generation, the weaver component in-
cluded in our compilation infrastructure (see Section 3)
creates two source code partitions: a software partition
which is compiled by the native target GPP compiler, and a
hardware partition which is processed by a target hardware
architecture synthesis tool responsible for generating the
corresponding bit-level device configuration, able to pro-
gram the FPGA.

This example highlights a set of features of our combined
hardware/software aspect-oriented mapping approach:
� It enables the specification and control of software- and

hardware-related transformations with specific parame-
ter values, such as the amount of unrolling.

� It supports the identification of code sections to be
mapped to classes of computation nodes, such as tradi-
tional GPPs and hardware accelerators, facilitating the

interface and interplay of diverse front-end and back-
end tools such as source-to-source compilers, code ge-
nerators, and hardware synthesis tools.

� By maintaining a single source code, the approach al-
lows the composition of transformations and strategies,
thus promoting code portability.

aspectdefaspectdefaspectdefaspectdef maximizePerformance
 inputinputinputinput funcName = “fsubband” endendendend
 select select select select
 function{name==funcName}.arg{name==”s”} endendendend
 apply apply apply apply $arg.noise_power <= 1E-3;
 $arg.def type=”float”; endendendend
 select select select select
 function{name==funcName}.arg{name==”z”} endendendend
 applyapplyapplyapply $arg.range = “[-40..120]”; endendendend
 selectselectselectselect function{name==funcName} endendendend
 apply apply apply apply
 $function.map(to: “hardware”, id: "virtex5");
 callcallcallcall strategy2;
 optimize(“datarepr”);
 callcallcallcall map2BRAMs(funcName);
 endendendend
endendendend

Figure 3. Aspect module used to map to hardware and
optimize the fsubband function using range values.

aspectdefaspectdefaspectdefaspectdef map2BRAMs
 inputinputinputinput func_name endendendend
 varvarvarvar id=1;
 selectselectselectselect function{name==func_name}.var endendendend
 apply apply apply apply
 $var.map(to: “Memory”, type:”BRAM”,
 ports: 2, id: id++);
 endendendend
 conditionconditionconditioncondition $var.isarray &&
 $var.scope == “local” &&
 $var.size <= 2048 &&
 ($var.parloads >=2 || $var.parstores >=2)
 endendendend
endendendend

Figure 4. An aspect module used to map specific array
variables to local on-chip block RAM.

Although not highlighted in this example, our compila-
tion and synthesis approach also enables the developer to
engage in design space exploration (DSE). In this specific
example, loop-unrolling exposes additional instruction-
level parallelism (ILP) opportunities for the hardware-
based solution, but may increase the amount of required
hardware resources and the associated code as it expands
the source program. Similarly, mapping variables to local
storage (in effect caching them) may reduce the number of
memory accesses at the expense of an increased amount of
storage resources. As such, developers can repeatedly use
the same aspect with a wide range of parameter values and
modify the sequence of application of the aspects in search
of a design that meets specific overall requirements.

We next describe the basic structure of the compilation
and synthesis design flow we have developed, highlighting
the ability of the aspect-oriented approach to control a wide
range of transformations and tools.

3. Design Flow

LARA, the AOP language described in this paper, was
developed in the context of the compilation and synthesis
design flow for the REFLECT research project [6][7]. One
of the goals of REFLECT is to map applications described

in high-level programming languages such as C2 to multi-
core embedded architectures. This mapping, and subse-
quent compilation/synthesis, invariably makes use of a
wide variety of tools with unique features and interfaces.
LARA has been designed to capture non-functional re-
quirements and to guide tools so that developers can quick-
ly achieve design solutions that meet these requirements,
which cannot be easily expressed using common program-
ming languages such as C. In addition, LARA allows the
definition of strategies specifying which aspects to apply
and in what order. Ultimately, strategies can be seen as
rules that implement specific design patterns.

We now describe in more detail the overall design flow,
highlight its main components and explain how LARA
enables their effective use in developing feasible embedded
systems design solutions. A detailed description of LARA
can be found in Sections 4 and 5.

As shown in Figure 5, our design flow accepts two types
of source descriptions as inputs: (1) Input Application:
The current implementation supports C sources (C99 std.
compliant); (2) LARA Description: The LARA descrip-
tions capture non-functional requirements in the form of
aspects and strategies. They enable developers to define
application characteristics such as precision representation,
input data rates or even reliability requirements for the
execution of specific code sections.

This design flow chain is structured as three major com-
ponents, namely:
� LARA Front-End: The front-end converts LARA

descriptions into Aspect-IR (Aspect Intermediate Re-
presentation) to be processed by the weavers. The As-
pect-IR is a low-level representation of LARA in XML
format, where information is structured in a way to faci-
litate the parsing of aspects and strategies.

� Source-to-source transformer: This stage, using the
Harmonic tool (based on [9]), performs source-level
transformations (C to C) which include: arbitrary code
instrumentation and monitoring, hardware/software par-
titioning using cost estimation models, as well as inser-
tion of primitives (such as remote procedure calls) to
enable communication between software and hardware
components. The results of this stage are source files re-
flecting the partitioning, and additional code generated
to realize synchronization and communication between
software and hardware partitions.

� Compiler Tool Set: This stage includes the front-end,
middle-end and optimization phases, with the latter two
common to both software and hardware partitions,
which are target architecture independent. The CoSy
[10] compilation framework is currently being used.
The back-end includes assembly code generators for the
GPP (software sections) and VHDL/Verilog generators
for specific hardware cores.

The design flow includes several weavers at different le-
vels of the toolchain. Each weaver receives as input: C
source code or an IR and the Aspect-IR, and outputs: the
transformed C code or the transformed IR and if required a
modified Aspect-IR for the next weaver in the sequence.

2
 Although our compilation framework is applicable to other imperative

programming languages, due to the constraints imposed by the availability
of the front-end we are only focusing on the C programming language. We
have, nevertheless validated the same approach for MATLAB [8].

Figure 5. LARA based Design Flow.

4. The LARA Approach

A key innovation of our aspect-based approach lies in
bringing together, in the same framework, various types of
transformation and operational aspects in the mapping of
computations to embedded systems. Specifically, LARA
allows developers to specify the following types of aspects:
� MONITORING: Specification of which implementa-

tion features, such as current value of a variable or the
number of items written to a specific data structure,
provide insight for the refinement of other aspects;

� SPECIALIZING: Definition of specific properties for
a particular input code when targeting a specific system
(e.g. specializing data types, numeric precision and in-
put/output data rates);

� MAPPING AND GUIDING: Specification of design
patterns, which embody mapping actions to guide tools
to perform specific implementation decisions (e.g.
mapping array variables to memories; using FIFOs to
communicate data between cores; leveraging dynamic
reconfiguration techniques for performance or using
temporal/spatial redundancy for fault-tolerance);

� RETARGETING: Specification of characteristics of
the target system in order to make the tools adaptable
and aware of those characteristics, as well as facilitating
implementation on other systems.

LARA relies on the main concept of aspects, generically
defined by the following statement:

“In programs P, whenever condition C arises, perform action A.”
[11]

Associated with AOP are usually the notions of pointcut
and advice. A pointcut exposes points of interest (join

Application (C code)

Source-to-source

Transformer

(Harmonic)

C source code

(hardware & software

sections)

Aspects and

Strategies (LARA)

Aspect Front-End

Target-independent

Optimizations

Hardware Specific

Optimizations (e.g.,

word-length analysis)

Software Specific

Optimizations

VHDL-RTL Code

Generator

GPP Back-End Code

Generator

VHDL (RTL source)Assembly (binary)

LARA-IR (aspect
view): Aspect-IR

LARA-IR (CDFG view):
CDFG-IR

Compiler

Tool Set

points) related to a program. Join points refer to points in
the code and/or in the program execution. An advice refers
to the actions to be performed for each join point exposed
by the pointcut mechanism.

In addition, AOP defines the notion of a join point mod-
el, which defines the points of interest for a given pro-
gramming language. A typical join point model includes
program constructs and structures such as function calls,
fields in a class, and functions. In our approach, we consid-
er a join point model that captures most structures and
constructs (e.g., loops, conditionals, variables, array ac-
cesses) found in C in order to specify actions that target
complex applications containing such code artifacts.

Our approach also considers points of interest as points
in the execution of a program as well as in the target physi-
cal system. These points may include components of the
system, such as a microprocessor, and the system’s parame-
ters, such as its specific inputs. As such our AOP approach
can be thought as:

“In programs P and/or systems S, whenever condition C
arises, perform action A.”

The following are a few examples that can be captured
by our AOP approach:
� For each variable of type double in function f1, change

the type to float.

� Set noise power of parameter s of function f1 to 1E-3.

� Set microprocessor clock frequency to 400 MHz.

� Map arrays of functions migrated to hardware, with size
< N, to BRAMs (local memories).

Figure 6 illustrates the LARA front-end which converts a
LARA aspect file into Aspect-IR. To perform this conver-
sion, the front-end requires three specification files: (1) the
join point model representing the points of interest in the
input programming language and in the target architecture;
(2) the join point attributes defining properties associated
with each join point type; and (3) the action model describ-
ing each possible action that an aspect can perform on a
join point. We describe each of these models next.

Figure 6. The LARA Front-End component.

4.1 Join Point Model

The points of interest in the program code and/or program
execution are specified in the join point model, which is
structured hierarchically in an XML file. Since the join
point model specification describes join point types and
their hierarchy, it can be used to validate pointcut expres-
sions. Rather than hardcoding types in the grammar, this
approach allows the model to be easily updated and ex-
panded. Also, by accepting a join point model file external-
ly to the front-end, it is possible to reuse the LARA front-
end for other programming languages (see [8]) and with
different system components and architectures.

Figure 7(a) shows an excerpt of the join point model cur-
rently used for C programs. In this case, the join point type
loop has as its predecessor the body of a function, followed
by the file it belongs to.

(a) (b)

Figure 7. Excerpt of the input models: (a) join point model
definition for C programs; (b) the attribute model.

In addition to the join points related to the C program (as
illustrated in Figure 7(a)), our approach also considers join
points related to system components. Examples of those
join points are the GPP (General Purpose Processor), the
CCU (Custom Computing Unit), and the Memory.

4.2 Join Point Attributes

The attributes associated with each join point type are spe-
cified in the join point attributes file. Figure 7(b) and Table
1 illustrate examples of attributes for some of the join
points supported by our join point model. Attributes are
properties in which values are either statically or dynami-
cally known. These values can be used to filter join points
(e.g., a for type loop is defined as a join point loop with
attribute type with value “for”) in conditions that trigger the
use of a certain action on the aspect, and also as arguments
for the apply sections of an aspect.

Table 1. Artifact list containing examples of join point
attributes associated with system components.

Join point Attributes Examples of values

GPP (general
purpose

processor)

name PowerPC

family P440

clk_freq 400 MHz

CCU (custom
computing

unit)

id 1

clk_freq 100 MHz

max_slices 4,000

Memory

num_ports 1

max_size 256 × 32-bit

type BRAM, DRAM, Distributed RAM

In addition, attributes expose information for each join

point, and that information can be obtained by the weavers
in the compilation flow and/or can influence the use of
actions. For example, the join point type var has properties
including the name of the variable, the number of readings
and writings, and the initialized value. Another example is
the information we can obtain about a loop. With the num-

LARA Input Aspect File
Join Point

Model

LARA Front-End Join Point

Attributes
Aspect-IR

Action

Model
Aspect-IR (XML)

file

|_var
|_declaration

_function
|_prototype

_body
|_first

|_last
|_var

|_call
|_if

| |_condition
| |_then

| _else
_loop

|_init

|_condition

|_counter

|_body

_control

attributes
|_var
| |_name
| |_type
| |_is_array
| |_is_pointer
| |_is_in
| |_value
| _is_out
|_function
| |_name
| |_num_lines
| _return_type
|_call
| |_name
| |_return_type
| |_num_argin
| _num_argout
_loop

|_type
|_num_iterations
|_increment_value
_nested_level

ber of iterations it is possible to choose whether an aspect
should perform loop unrolling or not. With the nested level
attribute it is possible to select specific loops.

There are global attributes that are common for all join
points in a program, such as the name of the file or the total
number of array references. As with the join point model,
the attributes specification file allows the aspect language
to be updated and expanded more easily.

4.3 Action Model

The action model specifies all actions that can be applied to
join points. For instance, when optimizing code by using
the loop unrolling action, the tool should specify which
stage and which engine can perform this optimization. In
our current design flow we consider six types of actions:
� INSERT allows arbitrary code to be instrumented be-

fore, around or after a specific join point. This action is
used mainly for monitoring-based aspects.

� DEFINE allows existing attributes to be modified, and
new attributes to be created.

� MAP allows developers to associate computations and
data structures to specific hardware components.

� OPTIMIZE allows a number of compiler transforma-
tions and optimizations (e.g., loop unrolling, function
inlining/outlining, scalar replacement, loop fusion) to be
performed on a specific set of join points.

� REPORT instructs the weaver to generate an aspect
file with a set of attribute definitions (see above) with
the values of attributes for selected join points. This ac-
tion is particularly useful for sharing data across weav-
ers, and to perform feedbacks in the design flow.

� CALL invokes an aspect, allowing input arguments to
be passed, and output arguments to be accessed.

The action model is specific to a design flow and makes
the LARA front-end aware of what tools and which argu-
ments to use. The action model for each compiler optimiza-
tion (related to the optimize action) defines the name of the
compiler engine and the possible parameters. Example
parameters are: loopunroll and unroll factor; tiling and size
of the block; loop-pipelining and initiation interval (II);
target clock frequency and function inlining/outlining. In
summary, by having a join point model, join point
attributes, and an action model independent of the LARA
front-end, we improve flexibility and adaptability of differ-
ent programming languages, target systems, and compila-
tion/design flows.

5. LARA Language Description

In this section we provide details about the LARA lan-
guage. The complete specification of LARA has been in-
cluded in a report [12].

5.1 Aspect Definition

The current version of the LARA language is compliant
with the grammar partially depicted in Figure 8. An aspect
file is composed of three sections: the import declarations,
the definitions of aspect modules, and code definitions. The
import declaration section is optional and allows references
to external aspects; the section with aspect definitions, on
the other hand, specifies for each aspect the join points to
be captured and the actions to be performed on them when

certain requirements are fulfilled; finally the code defini-
tion section, also optional, includes code to be injected into
the source code.

An aspect definition is declared using the aspectdef key-
word. Here, developers can define pointcut expressions and
also the actions to take place on the selected join points. In
the current version of the LARA language, an aspect defini-
tion can have Select, Apply and Condition sections. These
sections have dependences between them. For instance, the
Apply section can be associated with one or more pointcut
expressions (Selects). Also, a Condition section is used to
validate an Apply, i.e., to enable or disable an action over a
join point. In general, we can have various applies to the
same select, and an Apply associated with more than one
select. Not all applies need to have a condition section.

Each aspect definition can start with the declaration of
input and output parameters. These parameters are used to
pass values to aspects and to program aspects to return
values, respectively. Each aspect has four additional op-
tional sections for: declaring variables, declaring functions,
code to initiate (prolog) the execution (initialize) and for
code to terminate (epilogue) the execution (finalize) of the
aspect.

Start = {Import}, AspDef, {AspDef}, {Code-
Def};

Import = ’import’, Identifier, {’.’, Iden-
tifier} ‘;’ ;

AspDef = ‘aspectdef’, Identifier, Input,
Output, {VarDecl}, {FunctionDecl},
Initialize, AspBody, {AspBody}, Fi-
nalize, ‘end’

AspBody = Select, {Select}, Apply, {Apply},
{ConditionExpr} ;

CodeDef = ‘codedef’, Code, ‘end’;
Figure 8. Excerpt of the LARA language grammar.

Figure 9 depicts an aspect definition that inserts a printf()
statement immediately before each function call. To cap-
ture the intended join points a Select statement is used. The
Select statement is identified by a label (in our example,
allFunctionCalls) and referred by Apply statements,
and includes a pointcut expression that defines the join
points to be captured. The pointcut expression is validated
by the front-end using the join point model specification
(Section 3).

Developers do not need to specify in LARA the complete
join point hierarchy in the pointcut expression, as the front-
end auto-completes the entire hierarchy using the join point
model specification as a reference. Also, the pointcut ex-
pression can use, for a specific selection, join point
attributes to filter the selection according to specific
attribute values. For instance, the pointcut expression in
Figure 9(a) uses the attribute name to specify all function
calls. As shown in this example, the code section (between
tags %{ and }%) allows the use of parameters that will be
replaced by the weaver with the corresponding values.

The corresponding Aspect-IR code is shown in Figure
9(b). LARA has been designed for code compactness, legi-
bility and flexibility. Aspect-IR, on the other hand, was
designed to facilitate the parsing and processing of aspect
definitions by weavers. As explained before, the LARA
front-end automatically generates the corresponding As-
pect-IR from a LARA description that will be subsequently
passed to the weavers in the design flow.

One type of action associated with a pointcut expression
is the insertion of C code into the source code (Figure 9(a))
with the option to use values of join point attributes. This
insertion can be done before, after or around the join point.
Target code can be placed between brackets after the insert
command, as depicted in Figure 9(a), or in a separated
structure called codedef. The LARA front-end does not
take actions over the code by itself and therefore the inser-
tion action is passed to the Harmonic weaver.

aspectdefaspectdefaspectdefaspectdef monitoringCall
 allFunctionCalls: selectselectselectselect function.call endendendend
 applyAllCalls: applyapplyapplyapply to allFunctionCalls
 insert before
 %{printf("call to [[$call.name]]\n");}%; endendendend
endendendend

(a) LARA description
<aspects>
 <aspect name="monitoringCall">
 <pointcutpointcutpointcutpointcut name="allFunctionCalls"><file>
 <function>
 <body> <call name=".*"/> </body>
 </function></file></pointcut>
 <applyapplyapplyapply to="allFunctionCalls"><actions>
 <insert
 code="monitoringCall_applyAllCalls_0.txt"
 stage="harmonic" position="before">
 <parameter target="function"
 attribute ="name"
 replace="<$function.name>"/>
 </insert></actions></apply>
</aspect></aspects>

(b) Aspect-IR description

Figure 9. (a) Simple LARA code that performs instrumen-
tation; (b) corresponding Aspect-IR.

Another supported action is optimize (Figure 2). This fea-
ture specifies compiler source-level transformations and
optimizations, such as loop unrolling and function inlining.
The loopunroll action triggers the unrolling of selected
loops using a factor number specified by the developer. The
inline option inserts the body of the function to inline on
the location of the function call.

Besides the assignments to existing join point attributes
without directing affect the representation of a program,
our current action model also includes the define action (def
keyword used in Figure 3). This leads, whenever possible,
to modifications of the program representation (e.g., defin-
ing the type of a variable as in the aspect in Figure 3).
Assigning values to join point attributes also provides a
way to share information between different stages of the
design flow. For example, specific stages can set values of
certain attributes so that they can be used by subsequent
stages of the design flow.

To limit Apply statements, developers can define condi-
tions. Conditions can be regarded as logical expressions
that define the triggering conditions for actions specified in
an Apply. Join point attributes can also be used in condi-
tions. Examples of actions dependent on specific conditions
are: (a) apply loop unrolling only if the loop is of type “for”
and has at most 8 iterations; (b) insert code before a func-
tion call if it returns a float; (c) inline a function if it does
not contain loops. Additional examples of the use of condi-
tions are illustrated in Figure 2 and Figure 4.

5.2 Join Point Chains

One novel feature of our approach is that pointcut expres-
sions are written in a form that reflects the hierarchy de-

fined in the join point model (see Section 4.1). For in-
stance, in Figure 10 the pointcut expression has 4 elements
connected in a chain: the file which captures all files with
names starting with grid, the function which includes all
functions enclosed in those files, the body which reflects
these functions definitions, and the loop which captures
for-type loops in those functions. This hierarchical me-
chanism has similarities to the within/within code used in
AspectJ.

Figure 10. The evaluation of pointcut expression results in
a table, where each row captures a chain of related join
points, whose attributes can be used in actions and condi-
tions.

To access the join points resultant from the evaluation of
a pointcut expression, we simply attach the $ operator with
the join point identifier. In our example, $file, $function,
$body and $loop refer to chained join points. We can use
these join points and their attributes as part of an action or a
condition definition. Join point identifiers enable access to
join point attributes, e.g., $file.name refers to the name of
the file where a particular $loop join point can be found. In
addition, an action can target any element associated with a
join point chain, which by default is the last element of the
pointcut expression. In the following example, the first
action inserts code after the $loop join point, whereas the
second inserts code after the $body join point.

selectselectselectselect function{”main”}.body.loop endendendend
applyapplyapplyapply
 insert after %{ ... }%;
 $body.insert before %{ ... }%
endendendend

Furthermore, multiple pointcut expressions can be joined
and associated with a single apply, allowing access to mul-
tiple branches in the join point hierarchy at once, thus re-
ducing the size of the aspect definition. In particular, LA-
RA supports the (::) operator which, when used in an apply
definition, joins the results of two pointcut expressions. In
particular, the (::) operator performs the natural join of two
select statements. A natural join performs a set of combina-
tions of two join point chains that are equal on their com-
mon point element identifiers. Consider the following ex-
ample where the first pointcut expression (A) refers to all
loops in function f1, and the second pointcut expression (B)
refers to the first statement of the function.

A:selectselectselectselect function{“f1”}.loop endendendend
B:selectselectselectselect function.first endendendend
apply toapply toapply toapply to A::BA::BA::BA::B ... endendendend

By using the natural join operator (::), we are able to ap-
ply actions and access attributes in join points that are

Pointcut Expression file{name==“grid.*”}.function.body.loop{type == “for”}

Attribute Table

file function body loop

grid_x.c main() 10:1 {…} 15:3 - for(…) { }

grid_x.c main() 10:1 {...} 30:3 – for (…) { }

grid_y.c foo() 14:1 {…} 40:6 – for (…) { }

attribute value

$file.name grid_x.c

$body.num_lines 20

$loop.type for

A

function loop

f1 a

f1 b

B

function first

f1 int x;

f2 int q;

A::B

function loop first

f1 a int x;

f1 b int x;

found in different hierarchical branches ($loop and $first)
of the join point model.

5.3 Examples of Instrumentation

The following two examples illustrate the practical support
provided by the LARA aspects.

5.3.1 Timing an application

Developers often need to time their applications, which
would require additional code to be inserted in the original
application. One can describe this concern using LARA, so
that the aspect can be reused in other applications, while
reducing code pollution in the original source.

Figure 11(a) illustrates an aspect description which in-
struments the main function, and adds the necessary code to
time the application (see Figure 11(b)). It contains three
pointcut expressions. The first, SF, selects the first state-
ment of every file. The second, SM, selects the first state-
ment of the main function. The third, SR, selects the return
statements found in the main function. We join all three
pointcut expressions to access these join points in one ap-
ply section and insert the required code. Note that the
pointcut expression identifier $first is renamed to $fstmt
and $bstmt to ensure there is no conflict, and that the neces-
sary join combinations are performed.

aspectdefaspectdefaspectdefaspectdef timer
 SF: selectselectselectselect file.($fstmt=first) endendendend
 SM: selectselectselectselect file.
 function{"main"}.($bstmt=first) endendendend
 SR: selectselectselectselect file.function{"main"}.return endendendend
 apply toapply toapply toapply to SF::SM::SR
 $fstmt.insert before %{#include <time.h>}%
 $bstmt.insert before %{
 time_t start,end;
 printf("starting timer!\n");
 time (&start);}%;
 $return.insert before %{
 time (&end);
 printf("elapsed time: %.2lfs\n",
 difftime(end,start));}%;
 endendendend
endendendend

(a)
#include <time.h>
int main() {
 time_t start,end;
 printf(“starting timer!\n”); time(&start);
 …
 f();
 …
 time (&end);printf("elapsed time: %.2lfs\n",
 difftime(end,start));
 return 0;
}

(b)

Figure 11. Timing applications: (a) aspect that instruments
the code to time the application; (b) code of the application
after weaving (inserted code is highlighted).

5.3.2 Counting number of loop iterations

Loops can often induce hot-spots in the application, and
finding the number of iterations can be useful to determine
the applicability of specific transformations. Figure 12(a)
illustrates an aspect which instruments every for loop using
two pointcut expressions. The first pointcut expression
selects the loop itself, in which two actions are applied,
namely initializing the loop count before the loop and print-
ing the count result after loop execution, respectively. The

second selection point selects the first statement of the loop
body, where an increment loop count is inserted before that
statement. The loop count uid attribute returns a unique
identifier for every join point, and in this case ensures that
every declared variable is unique. An example of the code
after weaving is shown in Figure 12(b).

aspectdefaspectdefaspectdefaspectdef loop_count
 selectselectselectselect loop{type=="for"} endendendend
 applyapplyapplyapply insert before
 %{int count_[[$loop.uid]] = 0;}%;
 insert after
 %{printf("loop [%s(), %d, %s]:
 %d\n", "[[$function.name]]",
 [[$loop.level]], "[[$loop.loc]]",
 count_[[$loop.uid]]);}%;
 endendendend
 selectselectselectselect loop{type=="for"}.body.first endendendend
 applyapplyapplyapply insert after
 %{count_[[$loop.uid]]++;}%; endendendend
endendendend

(a)
…{
 int count_01 = 0;
 for (int i = 0; i < N; i++) {
 count_01++;
 int count_02 = 0;
 for (int j = 0; j < M; j++) {
 count_02++;
 ...
 }
 printf("loop [%s(), %d, %s]: %d\n",
 main, 1, "(10,5)", count_02) ;
 }
 printf("loop [%s(), %d, %s]: %d\n",
 main, 0, "(7,2)", count_01) ;
}

(b)

Figure 12. Adding loop count for every loop in the ap-
plication: (a) aspect; (b) woven code.

6. Impact and Experimental Evaluation

In this section we present the experimental results using our
compilation and synthesis design flow approach on four
real-life applications which have been provided by two
industrial partners in the REFLECT project. These applica-
tions consist of two audio domain codes, namely an
MPEG-2 Audio encoder (MPEG) and a G729 Voice En-
coder and two avionics applications, stereo navigation (SN)
and 3D Path Planning (3DPP). Both partners have identi-
fied a set of concerns and application requirements (e.g.,
safety in the avionics 3D path planning code) from an in-
dustrial perspective which we translated to aspects using
the LARA language.

These concerns relate to different stages of the develop-
ment cycle including: monitoring, fine-tune optimizations,
and efficiently mapping the application to the target archi-
tecture using schemes such as hardware/software partition-
ing. As an illustrative example we present in Table 2 a list
of concerns for the MPEG Audio encoder application pro-
vided by one of the REFLECT industry partners. These
concerns span the application development cycle from the
analysis phase (with the use of instrumentation to log and
monitor specific properties) to the mapping to the target
architecture. This, we believe, demonstrates the flexibility
and wide scope of our approach.

The monitoring capability enables us to understand run-
time behavior, such as (a) the most executed paths in if-
then constructs, (b) non-variant parameters in specific
function calls which enable distinct specializations for the

same function, and (c) data ranges and accuracy that can
be used to guide word-length optimizations. The use of
aspects related to (b) allowed us to identify opportunities
for function specializations in all the four applications. For
instance, in 3D Path Planning we evaluated three specia-
lized versions of the griditerate function, and in the Stereo
Navigation we have three possible specializations of a
function. These specializations were important to achieve
better performance as in most cases, they were related to
loop iteration counts, enabling fully loop unrolling and
operator strength reduction.

The use of hardware/software partitioning directives al-
lows us to guide the toolchain to map specific functions or
code sections to hardware-customized cores. This, in turn,
enabled the definition of compilation sequences producing
designs that met application requirements and target archi-
tecture features.

We next present experimental results using the AOP ap-
proach presented in this paper. These experimental results
focus on examples of aspects used for application analysis
for understanding their dynamic behavior, and on a number
of aspects used for performance tuning considering both
software and hardware implementations.

Table 2. Examples of aspects applied to the MPEG Audio
encoder.

Type of
Aspects

Examples

Monitoring
(C code

insertion)

Monitor range of the variables z and m in fsubband for word-
length optimization.

After word-length optimization, monitors the output variable s and
variable y to validate deviations to their original values.

Replicate the body of the fsubband function with different word-
lengths. So, deviation analysis can be done internally.

Specializing

Variables defined as “double” (in functions add_sub, fsubband
and II_f_f_t) should be analyzed by the word-length analysis tool
to optimize their sizes.

Convert “double” to “float” data-types in function II_f_f_t. A
“Code Insertion” aspect is added to monitor the deviations intro-
duced by this transformation.

Mapping
and

Guiding

Map to hardware functions add_sub, fsubband and II_f_f_t.

Define specific hardware mapping strategies for add_sub, fsub-
band and II_f_f_t functions.

FIFOs, as well as hardware cores for audio I/O, are the hardware
blocks necessary in any audio system. These hardware blocks
need to interface with the read_samples function in the specializ-
ing aspect. Aspects can be used to add these hardware blocks
without modification of the original code.

Binding the functions pow and log10 in the II_f_f_t and add_db
to hardware.

Arrays in functions fsubband and II_f_f_t mapped to external
memories.

6.1 Aspects for Application Code Analysis

Table 3 shows the impact of LARA on the four applications
used in our experiments. We consider the following moni-
toring concerns: measuring branch frequencies, monitoring
range (min and max) for variables in the program, monitor-
ing function calls, and timing the application. To assess the
impact, we use five metrics: LOC, CDLOC [13], aspectual
bloat [14], tangling ratio [14], and the percentage of func-
tions that are affected by the given aspect. We explain each
of these metrics next.

The LOC metrics referred in Table 3 are: (a) the number
of lines of code in the original application, (b) the number
of lines of the woven application, and (c) the number of
lines in the LARA descriptions. They provide us with a
measure of size for both C and LARA descriptions. For
instance, applications SN and MPEG are 9 times larger

than 3DPP. On the other hand the timing aspect description
is 4 times larger than the call monitoring aspect.

The CDLOC (concern diffusion over LOC) metric indi-
cates the number of switch points where concern-specific
code transitions to functional code and vice-versa [13]. We
report on the tangling ratio metric, as the ratio between the
CDLOC count and the woven code LOC. The tangling ratio
gives us a more accurate measure of intermingling. The
higher the tangling ratio, the more intermixed is the con-
cern code with the functional code. The lower the tangling
ratio, the more localized the concern related code is. The
four highlighted aspects (with names ending with 3DPP) in
Table 3 target one specific function in the 3DPP
application. As these aspects only focus on one code
section, their tangling ratio is considerably lower than other
wide scope aspects.

Table 3. Aspect metrics for several monitoring concerns:
branch frequencies, variable range, function calls, and tim-
ing.

Aspect App LOC
(origi-
nal C)

LOC
(wo-

ven C)

LOC
(LA-
RA)

CDL
OC

Tangling
Ratio
(%)

Aspec-
tual

Bloat

% of
af-

fected
func-
tions

FrqBranches3
DPP

3DPP 1152 1157 17 10 0.86 0.29 2.17

FrqBranches 3DPP 1152 1187 20 250 21.06 1.75 32.61

FrqBranches SN 9394 9958 20 1128 11.33 28.20 57.43

FrqBranches MPEG 8925 9312 20 774 8.31 19.35 56.05

FrqBranches G729 5835 6094 20 518 8.50 12.95 48.65

RangeEx-
ec3DPP

3DPP 1152 1167 25 30 2.57 0.60 4.35

RangeExec 3DPP 1152 1374 23 444 32.31 9.65 39.13

RangeExec SN 9394 11125 23 3462 31.12 75.26 89.19

RangeExec MPEG 8925 10747 23 3644 33.91 79.22 84.71

RangeExec G729 5835 7560 23 3450 45.63 75.00 90.99

CallExec3DPP 3DPP 1152 1159 18 12 1.04 0.39 13.04

CallExec 3DPP 1152 1340 12 188 14.03 15.67 63.04

CallExec SN 9394 10006 12 612 6.12 51.00 41.22

CallExec MPEG 8925 10109 12 1184 11.71 98.67 55.41

CallExec G729 5835 6365 12 530 8.33 44.17 31.53

TimerPC3DPP 3DPP 1152 1185 40 34 2.87 0.83 4.35

TimerPC 3DPP 1152 1533 40 382 24.92 9.53 63.04

TimerPC SN 9394 10623 40 1230 11.58 30.73 41.22

TimerPC MPEG 8925 11299 40 2374 21.01 59.35 55.41

TimerPC G729 5835 6900 40 1066 15.45 26.63 31.53

Average 5291.6 6010 24 1066 15.63 31.96 45.23

The aspect bloat measures the efficency of an aspect with

respect to the woven code generated. This metric is
computed by dividing the number of lines of code that
implement a concern by the aspect LOC. If the aspect bloat
is less than 1, it means low aspect efficiency as more code
was used to write the aspect than the code to implement the
concern. In general, a higher aspect bloat means that the
aspect has a higher impact factor in the application, and
potentially higher reuse.

Table 4 shows the aspect metric results for the following
hardware/software partitioning strategy:

importimportimportimport gprof_results;

aspectdefaspectdefaspectdefaspectdef PartitionStrategy
 initialize initialize initialize initialize call call call call gprof_results; endendendend
 selectselectselectselect function{*} endendendend
 applyapplyapplyapply map(to: “hardware”, id: "virtex5"); endendendend
 conditionconditionconditioncondition $function.time > 15 &&
 $function.name != "main" &&
 $function.is_synthesizable endendendend
endendendend

which states that all functions that contribute to more
than 15% of the total application time and are synthesizable
shall be mapped to the FPGA (hardware). The remaining
functions are to execute in the PowerPC (software). The
toolchain automatically converts to LARA the gprof profil-
ing results associating attributes such as timing and number
of calls to each function. The Harmonic weaver splits the
application into two C sub-applications: one for the Po-
werPC and another for the FPGA. Each source contains the
functions for each partition, in addition to global variables
and type definitions that are shared by both partitions, and
the code to implement the remote procedure calls. Note that
the number of functions mapped to the FPGA, as shown in
Table 4, includes not only the functions that run more than
15% of the total application time, but also includes all in-
voked functions which are part of their implementation.

These results indicate the potential of a LARA aspect to
control the entire hardware/software partitioning process
without developer intervention. With this approach other
partitioning can easily be evaluated without the tedious and
error prone manual efforts otherwise required.

Table 4. Aspect metrics extracted when applying LARA
aspects for hardware/software partitioning.

App
LOC
origi-
nal C

LOC
woven

C

LOC
LA-
RA

total
func-
tions

func-
tions

mapped
to FPGA

Aspec-
tual

Bloat

% of
af-

fected
func-
tions

3DPP 1,152 1,246 15 46 7 6.27 15.22

SN 9,394 9,646 15 148 102 16.80 68.92

MPEG 8,925 9,087 15 157 3 10.80 1.91

G729 5,835 5,998 15 111 2 10.87 1.80

6.2 Aspects for Performance Tuning

We now illustrate the use of performance tuning aspects for
two specific hot-spot functions, respectively fsubband
(from MPEG), and griditerate (from 3DPP). We report
results for a Xilinx Virtex5 FPGA (xc5vfx130t-2ff1738) in
terms of the number of FPGA slices and DSP blocks. The
software implementations were derived using ppc-gcc as
backend (w/ option -O3) whereas for the hardware results
we used Catapult-C as high-level synthesis tool [15] and
the Xilinx ISE 13.1 as back-end tool. For all the results we
used fixed-point implementations of the functions and
considered the baseline hardware and software implementa-
tion as the original untransformed C code.

Figure 13 and Figure 14 illustrate, respectively, the im-
pact of the application of the hardware-oriented aspects on
hardware resources3 and on hardware and software spee-
dups over baseline implementations for different imple-
mentations of functions fsubband and griditerate, using
different strategies specified as aspects.

The strategies for fsubband included loopscalar (B1-B8),
loop-pipelining (B2-B8), unroll-and-jam first nested loops
(B3), fully unroll first innermost loop (B4), fully unroll first
innermost loop + unroll 16 times of inner second nested
loops (B5), unroll+jam first nested loops and unroll 2 times

3
 Xilinx’s FPGAs are organized as arrays of programmable slices, inter-

connect resources, local memories, and DSP components that implement
logic functions and local storage structures. For example, on a Virtex-5
FPGA, a 32-bit integer adder requires 5 slices whereas a 32-bit integer
multiplier requires 3 DSP blocks. The Virtex-5 FX FPGA also includes
two PowerPC processors.

of inner second nested loops (B6), unroll+jam first nested
loops and unroll 2 times of inner second nested loops (with
second index variables) (B7), and fully unrolling of all the
4 loops (B8). The best strategy allows us to achieve a spee-
dup of 10 times over the baseline implementation with only
an increase of 9% and 57% of hardware resources (number
of slices and DSP blocks, respectively).

Figure 13. Hardware resources for griditerate and fsub-
band considering different strategies over baseline.

Figure 14. Hardware (HW) and software (SW) speedups
over the respective baseline implementations for the gridi-
terate and fsubband functions considering different strate-
gies.

The strategies for griditerate included loop pipelining
(A1), specialized versions (An-spl), loop coalescing of the
two inner loops (A2), loop unrolling of the innermost loop
by two (A3), and data replication in 4 memories (A4). The
strategies for griditerate result in performance improve-
ments over the reference FPGA hardware implementation
of a maximum speedup of 2.26 with an increase of 68% of
slices and 50% of DSP blocks.

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

b
as

e
lin

e

A
1

A
1

-s
p

l

A
2

A
2

-s
p

l

A
3

A
3

-s
p

l

A
4

A
4

-s
p

l

b
as

e
lin

e

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

griditerate fsubband

Hardware (Slices) increase over baseline Hardware DSPs increase over baseline

1.0 1.1

1.7
2.0

1.6
1.2

1.8 1.9

2.3

1.0

2.5

7.5

4.7

7.5

5.7

10.2

8.8

6.8

1.0
1.2 1.0 1.0 1.0

0.8
1.0 1.0 1.0 1.0 1.0

1.9 1.8

1.4 1.4

0

1

2

3

4

5

6

7

8

9

10

11

b
a

se
lin

e

A
1

A
1

-s
p

l

A
2

A
2

-s
p

l

A
3

A
3

-s
p

l

A
4

A
4

-s
p

l

b
a

se
lin

e

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

griditerate fsubband

HW Speedup over baseline SW Speedup over baseline

Our approach also allowed us to have two distinct strate-
gies: one used for the best FPGA hardware implementation,
and another one used for the best FPGA software imple-
mentation (i.e., for the code generated for the GPP). For the
software implementation we use one of the PowerPC hard-
cores of the target FPGA. Figure 14 presents speedups
obtained using different strategies. It is clear from the re-
sults that the two toolchain flow paths (software and hard-
ware) require different strategies to obtain the best perfor-
mance. For the griditerate function the best strategies are
A4-spl and A2 for hardware and software implementation,
respectively. For fsuband, the best strategies are B6 and B5,
for hardware and software implementation, respectively.

6.3 Discussion

Regarding the aspect-related code transformation and anal-
ysis metrics, the results reveal high tangling and aspectual
bloating ratios of, respectively, 15.6% and 31.9%. These
are particularly encouraging as the percentage of affected
functions is quite large.

With respect to the software- and hardware-oriented
mapping and guiding transformations, the attained perfor-
mance for the best compilation and synthesis strategy is
also very good as the results exhibit very consistent spee-
dups. Developers are able to leverage the compactness of
aspect-based mapping strategies and back-end synthesis
tools to quickly, and predictably, develop strategies to map
applications to hardware/software target architectures.

While we have not yet focused on an evaluation of this
aspect-based approach for DSE, these early experimental
results do reinforce the claim of its usefulness in the map-
ping of real applications to complex target architectures.

7. Related Work

We now highlight related work in the areas of Aspect
Oriented Programming (AOP) [4][16][17].

AOP has been the subject of intense research over the
last decade. AspectJ [18], one of the most widely known
AOP languages, is an AOP extension for Java aimed at
providing better modularity for Java programs. AspectJ
contributes to cleaner and better code by modularizing
programs, providing solution for several cross-cutting con-
cerns such as monitoring, logging, debugging, synchroniza-
tion, and performance. Another example of an AOP lan-
guage with noticeable success is AspectC++ [19][20],
which is an AOP extension to the C++ programming lan-
guage. Both AspectJ and AspectC++ do not consider join
points related to local variables, statements, loops and con-
ditional constructs. For instance, LoopsAJ [21] extends the
join point model of AspectJ to allow the direct intervention
over loops by adding a new loop pointcut (captured with
different pointcut expressions), including contextual infor-
mation used for loop parallelization. @AspectJ [22] is a
refinement of AspectJ that allows the specification (using
labels) of join points at level of individual statements such
as if and while loops.

Reflecting AOP’s growing acceptance, several AOP ex-
tensions have been proposed to other languages and do-
mains of applicability. For instance, AspectMatlab [23]
provides AOP extensions for MATLAB focusing on array
variables and loops, as these are key constructs in scientific
applications. AspectMatlab supports the AOP notion of
pointcuts (called patterns) and advices (called actions).

Our AOP-based approach differs from related work in
several ways. First, we extend the capabilities associated
with types, such as their shapes and precision (as described
in our previous work [24][25]). In addition, the join point
model allows the specification of pointcuts in virtually all
points in a program diminishing the need for labels.

LARA has been inspired by many AOP approaches, such
as AspectJ and AspectC++. For instance, during the evolu-
tion of LARA we have adopted mechanisms similar to the
ones used by AOP approaches based on functional queries
[26]. In our approach, pointcut expressions allowed by
select sections of the aspect modules are able to define
composable select expressions (similar to composable que-
ries) as in [26]. We can associate two or more pointcut
expressions to the same advice (apply statement) along
with an operator to specify the type of association thus
enriching the semantics of the pointcut mechanisms.

We have defined a hardware/software join point model
that reflects the need to interface with a potentially wide
variety of tools and target embedded computing systems.
Lastly, following the notion of patterns and actions in As-
pectMatlab, our approach also formalizes the concept of
strategies as a way to capture and reuse a sequence of pro-
gram transformations and application mapping choices.

The main drivers of our AOP approach have been the
functional requirements elicited by the industrial partners
of the REFLECT project [6]. Based on the requirements,
LARA includes in the actions associated with join points
not only code to be executed (as in AspectJ), but also com-
piler optimization directives and data and type information
about variables. LARA allows powerful dynamic pointcut
mechanisms to expose context information about join
points.

 One of the requirements we faced was the migration of
code related to conditional compilation (#ifdef clauses in
C) to aspects [27][28]. We have also faced the need of
migrating to aspects toolchain directives implemented as C
#pragmas. They spread around code artifacts and are com-
monly used to annotate code with directives for compiler
optimizations and code transformations. As their use de-
pends on the target architecture and on the toolchain being
used, it is common to have variations for the same applica-
tion. Aspects mitigate this problem.

In addition, this separation of concerns facilitates the
manual exploration of certain compiler properties, as the
changes to be evaluated are performed to concentrated code
in aspects and not to pragmas spread along the application
(as it seems to be a trend [29]). As an example, the Cata-
pult-C version we use [15] allows at least 10 different
pragmas. Annotations have severe limitations as they refer
to static join points, pollute the code, impose code varia-
tions (possibly implemented using conditional compilation
mechanisms), and do not allow compiler sequences, while
our AOP approach allows semantic and dynamic join
points, and join points exposed along compiler sequences.

One of the strengths of our approach is to use AOP to
support portability and retargetability. By exposing to as-
pects concerns such as the ones related to safety and per-
formance requirements, different aspects can lead to the
generation of different hardware or hardware/software
implementations. This can be conceptually thought as the
implementation of portability addressed by Alves et al. [30]
in the context of software product lines. By exposing to
aspects the characteristics of the target architecture, we

promote tool-flow adaptability for different architectures.
Note that besides code variations we also support AOP-
based strategies that allow different implementations by
controlling key toolchain stages.

8. Conclusion

This paper presents a novel aspect-oriented programming
language named LARA, which provides separation of con-
cerns, including non-functional requirements and strategies,
for the mapping of high-level applications to high-
performance heterogeneous embedded systems. We de-
scribed how LARA supports monitoring, specialization,
hardware/software partitioning, and retargeting in the con-
text of multiple programming languages and design flows.
The LARA prototype is being evaluated with real-life in-
dustrial application C codes. The experimental results pro-
vide strong evidence of its usefulness and significance in
the mapping of applications to heterogeneous embedded
architectures.

We see the flexibility of aspect-oriented approaches, such
as the one presented in LARA, as a key programming tech-
nology that will enable developers to meet increasingly
demanding challenges in developing embedded systems.

Acknowledgments

This work was partially supported by the European Com-
munity’s Framework Programme 7 (FP7) under contract
No. 248976. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
European Community. The authors are grateful to the
members of the REFLECT project for their support. Car-
valho and Cardoso also acknowledge the support of FCT
through grant PTDC/EIA/70271/2006, and Coutinho and
Luk acknowledge the support of UK EPSRC.

References

[1] Y. Lam, J. Coutinho, W. Luk, and P. Leong, Integrated Hard-
ware/Software Codesign for Heterogeneous Computing Systems, in
Proc. of the South. Programmable Logic Conf., 2008, pp. 217–220.

[2] K. Compton, and S. Hauck, Reconfigurable Computing: a Survey of
Systems and Software, ACM Computing Surveys, 2002, 34(2), pp.

171–210.

[3] T. Todman, et al., Reconfigurable Computing: Architectures and

Design Methods, IEE Proc. In Computing and Digital Techniques,
Vol. 152, No. 2, March 2005, pp. 193-207.

[4] G. Kiczales, Aspect-Oriented Programming, in ACM Computing
Surveys (CSUR), 1996. 28(4es).

[5] REFLECT, FP7 EU Project: http://www.reflect-project.eu.

[6] J. M. P. Cardoso, et al., REFLECT: Rendering FPGAs to Multi-Core

Embedded Computing, book chapter in Reconfigurable Computing:
From FPGAs to Hardware/Software Codesign, J. M. P. Cardoso and
M. Huebner (eds.), Springer, Aug., 2011, pp. 261-289.

[7] J. M. P. Cardoso, et al., A New Approach to Control and Guide the
Mapping of Computations to FPGAs, in Proc. Int’l Conf.

Engineering of Reconfigurable Systems and Algorithms (ERSA'11),
July, 2011, CSREA Press, pp. 231-240.

[8] T. Carvalho, A Meta-Language and Framework for Aspect-Oriented
Programming, Informatics and Computing Eng. MSc Thesis, Univ.
of Porto, Faculty of Eng. (FEUP), Porto, Portugal, July 2011.

[9] W. Luk, et al., A High-Level Compilation Toolchain for Heteroge-
neous Systems,” in Proc. IEEE Int’l SOC Conf. (SOCC‘09), Sept.
2009, pp. 9-18.

[10] ACE CoSy Compiler Development System,
http://www.ace.nl/compiler/cosy.html

[11] R. Filman, and D. Friedman, Aspect-oriented programming is quan-
tification and obliviousness. In Workshop on Advanced Separation

of Concerns at OOPSLA’00, Oct. 2000.

[12] REFLECT Consortium, LARA Programming Language Specifica-

tion, version 1.0 defined as part of deliverable D4.2, Sept. 2011.

[13] E. Figueiredo, et al., On the Maintainability of Aspect-Oriented

Software: A Concern-Oriented Measurement Framework, in Proc.
12th European Conf. on Software Maintenance and Reengineering,
IEEE Computer Society, 2008, pp. 183-192.

[14] C. V. Lopes, D: A Language Framework for Distributed Program-
ming. PhD thesis, College of Computer Science, Northeastern Uni-

versity, Nov. 1997.

[15] © Mentor Graphics, Catapult C Synthesis,

http://www.mentor.com/esl/catapult

[16] T. Elrad, R. Filman, and A. Bader, Aspect-Oriented Programming,

in Comm. of the ACM, 44(10), Oct. 2001, pp. 29-32.

[17] G. Kiczales, et al., Aspect Oriented Programming, in Proc. Euro-

pean Conf. on Object-Oriented Programming (ECOOP’97), Finland.
Springer-Verlag LNCS 1241. June 1997.

[18] J. Gradecki and N. Lesiecki, Mastering AspectJ: Aspect-Oriented
Programming in Java. 2003, J. Wiley & Sons, Inc..

[19] D. Lohmann, Olaf Spinczyk. Aspect-Oriented Programming with
C++ and AspectC++. Tutorial, AOSD’2007, March 13, 2007.

[20] O. Spinczyk, A. Gal, W. Schröder-Preikschat. AspectC++: An
Aspect-Oriented Extension to the C++ Programming Language. in
Proc. 40th Int’l Conf. on Tools Pacific: Objects for internet, mobile

and embedded applications, 2002, pp. 53-60.

[21] B. Harbulot, and J. R. Gurd. A join point for loops in AspectJ. In

Proc. 5th Int’l Conf. on Aspect-Oriented Software Development
(AOSD '06). ACM, NY, USA, 2006, pp. 63-74.

[22] M. Poggi. @AspectJ - An Extension to the AspectJ Join Point Selec-
tion Mechanism to Support @Java Annotation Meta-Facility. Master
thesis (in Italian), Università di Genova, Oct. 2009.

[23] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren. AspectMatlab: An
Aspect-Oriented Scientific Programming Language, in Proc. 9th Int’l

Conference on Aspect-Oriented Software Development (AOSD '10).
ACM, New York, NY, USA, 2010, pp. 181-192.

[24] J. M. P. Cardoso, J. Fernandes, and M. Monteiro, Adding Aspect-
Oriented Features to MATLAB, in SPLAT! 2006, Software Engi-
neering Properties of Languages and Aspect Technologies, Work-

shop affiliated with AOSD 2006, March 2006. Germany.

[25] J. M. P. Cardoso, et al., A Domain-Specific Aspect Language for

Transforming MATLAB Programs, in Domain-Specific Aspect Lan-
guage Workshop (DSAL’2010), part of AOSD’10, March 2010.

[26] M. Eichberg, M. Mezini, and K. Ostermann, Pointcuts as Functional
Queries, in Programming Languages and Systems, W.-N. Chin
(Ed.), Springer Berlin/Heidelberg, 2004, pp. 366-381.

[27] V. Alves, et al., From Conditional Compilation to Aspects: A Case
Study in Software Product Lines Migration, In: Aspect-Oriented

Product Line Engineering (AOPLE'06), Workshop of the 5th Int’l
Conf. on Generative Programming and Component Engineering
(GPCE'06), ACM, 2006.

[28] B. Adams, W. Meuter, H. Tromp, and A. Hassan, Can we refactor
conditional compilation into aspects?, in Proc. 8th ACM Int’l Conf.
on Aspect-Oriented Soft. Development, 2009, pp. 243-254.

[29] R. Ferrer, et al., Optimizing the Exploitation of Multicore Processors
and GPUs with OpenMP and OpenCL, in Proc. LCPC, 2010, pp.

215-229.

[30] V. Alves, et al., Extracting and Evolving Code in Product Lines with

Aspect-Oriented Programming, in Trans. on Aspect-Oriented Soft-
ware Development IV, in: A. Rashid, M. Aksit (Eds.), Springer Ber-
lin / Heidelberg, 2007, pp. 117-142.

