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Abstract  

The development of applications for high-performance 
embedded systems is typically a long and error-prone 
process. In addition to the required functions, developers 
must consider various and often conflicting non-functional 
application requirements such as performance and energy 
efficiency. The complexity of this process is exacerbated 
by the multitude of target architectures and the associated 
retargetable mapping tools. This paper introduces an As-
pect-Oriented Programming (AOP) approach that conveys 
domain knowledge and non-functional requirements to 
optimizers and mapping tools. We describe a novel AOP 
language, LARA, which allows the specification of compi-
lation strategies to enable efficient generation of software 
code and hardware cores for alternative target architectures. 
We illustrate the use of LARA for code instrumentation 
and analysis, and for guiding the application of compiler 
and hardware synthesis optimizations. An important LARA 
feature is its capability to deal with different join points, 
action models, and attributes, and to generate an aspect 
intermediate representation. We present examples of our 
aspect-oriented hardware/software design flow for mapping 
real-life application codes to embedded platforms based on 
Field Programmable Gate Array (FPGA) technology. 

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features – 
Frameworks. D.3.3 [Programming Languages]: Proces-
sors – Compilers, Retargetable Compilers, Optimization, 
Code Generation. C.3 [Special-purpose and application-
based systems]: Real-time and embedded systems, Micro-
processor/microcomputer applications. B.7.1 [Integrated 
circuits]: Types and Design Styles – Algorithms imple-
mented in hardware. 

General Terms  Design, Experimentation, Languages. 

Keywords  Aspect-Oriented Programming; Compilers; 
Reconfigurable Computing; FPGAs; Embedded Systems; 
Domain-Specific Languages 

1. Introduction 

The development and mapping of applications to contem-
porary heterogeneous high-performance embedded systems 
requires tools with very sophisticated design-flows that are 
aware of critical applications requirements, both functional 
and non-functional (e.g., real-time performance and safety) 
while meeting target architecture’s stringent resource con-
straints (e.g., storage capacity and computing capabilities). 

This development and mapping process must consider a 
myriad of design choices. Typically, developers must parti-
tion the application code among the most suited system 
components − a process commonly known as hard-
ware/software partitioning [1]. Subsequently, they have to 
deal with multiple compilation tools (sub-chains) that target 
each specific system component. These problems are ex-
acerbated when dealing with FPGAs (Field-Programmable 
Gate Arrays), a popular technology which combines the 
performance of custom hardware with the flexibility of 
software [2][3]. As a consequence, developers must explore 
code and mapping transformations specific to each archi-
tecture so that the resulting solutions meet the overall re-
quirements. As the complexity of emerging heterogeneous 
embedded systems continues to grow, the need to meet 
increasingly challenging design trade-offs (e.g., weight, 
size, energy efficiency, reliability and performance) will 
undoubtedly exacerbate the complexity of the mapping of 
sophisticated applications to these embedded systems.  

In practice, this approach leads to code that is trans-
formed beyond recognition and where developers have 
manually applied an extensive set of architecture-specific 
transformations and tool-specific directives. However, such 
practice leads to low developer productivity and, more 
importantly, limited application portability. For instance, 
when the underlying architecture changes developers may 
need to restart the design process.  

This paper describes LARA, a novel aspect-oriented pro-
gramming (AOP) [4] language for mapping applications to 
heterogeneous high-performance embedded systems. This 
language allows developers to capture non-functional re-
quirements from applications in a structured way, leverag-
ing high-level abstractions such as hardware/software de-
sign templates and flexible toolchain interfaces. Developers 
can thus benefit from retaining the original application 
source while exploiting the automation benefits of various 
domain-specific and target component-specific compila-
tion/synthesis tools. In essence, LARA uses AOP mechan-



isms to offer in a unified framework (a) a vehicle for con-
veying application-specific requirements that cannot oth-
erwise be specified in the original programming language 
for design capture, (b) using these requirements to guide 
the application of transformations and mapping choices, 
thus facilitating design-space-exploration (DSE), and (c) 
interfacing in an extensible fashion the various compila-
tion/synthesis components in the toolchain. This paper 
makes the following specific contributions: 
� Introduces LARA, an AOP language capable of captur-

ing transversal (across multiple codes) and vertical con-
cerns (across different stages of a design flow); 

� Describes the LARA join point model that can include 
not only program execution points but also hardware 
system components and their properties; 

� Extends the join point model with attributes used and 
defined in the aspects to codify complex strategies; 

� Covers a programmable and systematic approach to 
control and guide different design flow actions and/or 
application of code transformations; 

� Presents experimental results of the use of LARA for a 
set of real-life codes targeting a heterogeneous embed-
ded architecture with both general-purpose processor 
(GPP) and FPGA technologies, using commercially 
available tools for compilation and hardware synthesis. 

The results described in this paper reflect the develop-
ment of the LARA language in the context of the RE-
FLECT (REndering FPGAs to MuLti-Core Embedded 
CompuTing) research project [5][6][7]. The applications 
selected in our study and thus the corresponding require-
ments were drawn from two of this project’s industrial 
partners, targeting the Avionics and Audio domains. Spe-
cifically, the LARA AOP approach has been designed to 
help developers to reach good design solutions with low 
programming effort. This experience of using aspects for 
hardware-oriented transformations reveals the benefits of 
AOP in: (a) application program portability across architec-
tures and tools, and (b) productivity improvement of devel-
opers and programmers. 

This paper is organized as follows. Section 2 describes a 
motivating example. Section 3 presents the design flow for 
our approach. Section 4 describes our AOP approach. Sec-
tion 5 focuses on the LARA aspect language, providing a 
number of illustrative examples. Section 6 focuses on the 
practical impact of our approach. In Section 7, we summar-
ize related work and Section 8 then concludes.  

2. Compilation/Synthesis Example 

We now present a motivational example that highlights 
some of the challenges faced by application developers 
when targeting embedded systems. In this example, we 
assume that the developer has already carried out a perfor-
mance analysis study and has selected a set of computa-
tional kernels that can benefit from either hardware accele-
ration or source-level code transformations. 

We consider a particular implementation of the MPEG-2 
Audio Encoder (layers I and II) in C. One of the hot-spots 
is the polyphase filter bank function depicted in Figure 1. 
This function is structured as two doubly nested for-loops 
that manipulate four one- and two-dimensional array va-
riables of 64-bit floating-point values. It processes 512 
audio samples and outputs 32 equal-width frequency sub-

bands. The statically allocated m array holds the filter coef-
ficients.  

1. void fsubband(double z[512], double s[32]){ 
2.  double y[64]; 
3.  int i,j; 
4.  static const double m[32][64] = {...};  
5.  for(i=0;i<64;i++) {   // loop1 
6.    y[i] = 0; 
7.    for(j=0;j<8;j++)    // loop2 
8.      y[i] += z[i+64*j]; 
9.  } 
10. for(i=0;i<32;i++) {   // loop3 
11.   s[i] = 0; 
12.   for(j=0;j<64;j++)   // loop4 
13.     s[i] += m[i][j] * y[j]; 
14. } 
15.} 

Figure 1. C source code of the function fsubband in the 
MPEG-2 audio encoder application. 

An implementation of this kernel for an embedded sys-
tem with a GPP coupled to an FPGA (e.g., acting as a 
hardware accelerator) could explore two mapping scena-
rios, namely1: (1) the complete mapping of the code to the 
GPP leveraging software-only GPP compiler optimizations, 
and (2) the generation of an application-specific architec-
ture implemented on the FPGA derived from partitioning 
the application between the GPP and the FPGA hardware. 

Each of these mapping scenarios may require different 
strategies in terms of how the computation is partitioned 
between the target components (GPP vs. FPGA), and con-
sequently how data manipulated by the sub-computations 
are organized and partitioned. Furthermore, as a multi-
computing architecture, once the data and the computation 
have been partitioned, data communication between the 
components and their subsequent synchronization need to 
be considered and included in the mapped code.  

Once the partition and mapping have been decided, each 
of the partitioned computations may still be subject to fur-
ther transformations. The computations to be executed on 
the GPP can be subject to a wide variety of transformations 
offered by C compilers such as gcc. These include loop-
based transformations (e.g., loop unrolling and/or software 
pipelining), data type conversions (double to float or 
double/float to fixed-point), and even array to memory 
mapping and caching in local scratch-pad memories. 

With respect to computations mapped to the FPGA-based 
hardware accelerator, there is a wider range of compilation 
and synthesis options that can be exercised which further 
increase the complexity of this mapping process. For ex-
ample, in the accumulation statements in lines 8 and 13 in 
Figure 1, one could cache (scalar replace) the values asso-
ciated with the y array thus substantially reducing the num-
ber of load/store operations from/to external memories. In 
the presence of dual-ported on-chip memories, local arrays 
m and y could be mapped to distinct memories. Loop trans-
formations could then be used to expose concurrent ac-
cesses to the m and y arrays. To achieve this mapping re-
sult, a developer would define a strategy to combine unroll-
and-jam to loop1 and unrolling to loop4 followed by a 
specific mapping of array variables to internal FPGA sto-
rage (e.g., Block RAMs - Random Access Memories - in a 
Xilinx FPGA).  

                                                
1
 A third scenario where the entire computation is mapped to the FPGA 

would, in practice, be infeasible.  



These mapping strategies and the associated compiler 
and mapping transformations highlight the interplay be-
tween them and the complexity in assessing their potential 
performance and resource use. To address this complexity 
we developed the LARA AOP language. LARA allows 
developers to control the tools in a compilation toolchain 
and to apply a wide range of transformations and target 
architecture mapping choices in an automated fashion. We 
now illustrate how a developer could specify examples of 
these transformations using LARA. 

The first of these aspects, depicted in Figure 2, instructs a 
weaver (Figure 5, see Section 3) to fully unroll all inner-
most for-type loops in which the number of iterations is 
known at compile-time and does not exceed 32. For in-
stance, when this aspect is applied to function fsubband, the 
weaver will fully unroll loop2 shown in Figure 1. This 
aspect is generic and can be reused for other func-
tions/applications as part of an optimization strategy. The 
developer can even increase its potential reuse by defining 
the number of iterations (32 in this example) and the unrol-
ling factor as two additional aspect input parameters. 

aspectdefaspectdefaspectdefaspectdef strategy1 
  inputinputinputinput functionName endendendend 
  selectselectselectselect function{name==functionName}. 
         loop{type==”for”} endendendend 
  applyapplyapplyapply optimize(“loopunroll”, “full”); endendendend 
  condition condition condition condition     
     $loop.numIterIsConstant && 
     $loop.num_iter <= 32 &&  
     $loop.is_innermost  
  endendendend    
endendendend    

Figure 2. Aspect module that fully unrolls innermost loops 
with the number of iterations less than or equal to 32. 

The second aspect, shown in Figure 3, focuses on the 
software/hardware partition problem where functions and 
code sections can be selected and mapped to hardware 
specified in a hardware description language such as Veri-
log or VHDL. This particular aspect also conveys to the 
compiler and synthesis tools that are part of the design flow 
(see Section 3), information about the interval range of 
variable “z”, the maximum noise power allowed and the 
data type of argument “s”. This information can be used by 
a word-length analysis engine (here identified as datarepr) 
to derive customized word-lengths by exploring acceptable 
precision and accuracy values. Lastly, in Figure 4, we 
present an aspect for the mapping of array variables to local 
storage for a specific target hardware architecture: an inter-
nal Block RAM in a Xilinx Virtex-5 FPGA device. 

Regarding code generation, the weaver component in-
cluded in our compilation infrastructure (see Section 3) 
creates two source code partitions: a software partition 
which is compiled by the native target GPP compiler, and a 
hardware partition which is processed by a target hardware 
architecture synthesis tool responsible for generating the 
corresponding bit-level device configuration, able to pro-
gram the FPGA. 

This example highlights a set of features of our combined 
hardware/software aspect-oriented mapping approach: 
� It enables the specification and control of software- and 

hardware-related transformations with specific parame-
ter values, such as the amount of unrolling. 

� It supports the identification of code sections to be 
mapped to classes of computation nodes, such as tradi-
tional GPPs and hardware accelerators, facilitating the 

interface and interplay of diverse front-end and back-
end tools such as source-to-source compilers, code ge-
nerators, and hardware synthesis tools. 

� By maintaining a single source code, the approach al-
lows the composition of transformations and strategies, 
thus promoting code portability. 

aspectdefaspectdefaspectdefaspectdef maximizePerformance 
 inputinputinputinput funcName = “fsubband” endendendend  
 select select select select     
   function{name==funcName}.arg{name==”s”} endendendend 
 apply apply apply apply $arg.noise_power <= 1E-3;  
       $arg.def type=”float”; endendendend    
 select select select select     
   function{name==funcName}.arg{name==”z”} endendendend  
 applyapplyapplyapply $arg.range = “[-40..120]”; endendendend 
 selectselectselectselect function{name==funcName} endendendend 
 apply apply apply apply     
   $function.map(to: “hardware”, id: "virtex5"); 
   callcallcallcall strategy2; 
   optimize(“datarepr”); 
   callcallcallcall map2BRAMs(funcName);  
 endendendend    
endendendend    

Figure 3. Aspect module used to map to hardware and 
optimize the fsubband function using range values. 

aspectdefaspectdefaspectdefaspectdef map2BRAMs 
  inputinputinputinput func_name endendendend 
  varvarvarvar id=1;  
  selectselectselectselect function{name==func_name}.var endendendend  
  apply apply apply apply     
    $var.map(to: “Memory”, type:”BRAM”,  
             ports: 2, id: id++); 
        endendendend    
  conditionconditionconditioncondition $var.isarray &&  
            $var.scope == “local” &&  
            $var.size <= 2048 &&  
     ($var.parloads >=2 || $var.parstores >=2)  
  endendendend    
endendendend    

Figure 4. An aspect module used to map specific array 
variables to local on-chip block RAM. 

Although not highlighted in this example, our compila-
tion and synthesis approach also enables the developer to 
engage in design space exploration (DSE). In this specific 
example, loop-unrolling exposes additional instruction-
level parallelism (ILP) opportunities for the hardware-
based solution, but may increase the amount of required 
hardware resources and the associated code as it expands 
the source program. Similarly, mapping variables to local 
storage (in effect caching them) may reduce the number of 
memory accesses at the expense of an increased amount of 
storage resources. As such, developers can repeatedly use 
the same aspect with a wide range of parameter values and 
modify the sequence of application of the aspects in search 
of a design that meets specific overall requirements. 

We next describe the basic structure of the compilation 
and synthesis design flow we have developed, highlighting 
the ability of the aspect-oriented approach to control a wide 
range of transformations and tools. 

3.  Design Flow 

LARA, the AOP language described in this paper, was 
developed in the context of the compilation and synthesis 
design flow for the REFLECT research project [6][7]. One 
of the goals of REFLECT is to map applications described 



in high-level programming languages such as C2 to multi-
core embedded architectures. This mapping, and subse-
quent compilation/synthesis, invariably makes use of a 
wide variety of tools with unique features and interfaces. 
LARA has been designed to capture non-functional re-
quirements and to guide tools so that developers can quick-
ly achieve design solutions that meet these requirements, 
which cannot be easily expressed using common program-
ming languages such as C. In addition, LARA allows the 
definition of strategies specifying which aspects to apply 
and in what order. Ultimately, strategies can be seen as 
rules that implement specific design patterns. 

We now describe in more detail the overall design flow, 
highlight its main components and explain how LARA 
enables their effective use in developing feasible embedded 
systems design solutions. A detailed description of LARA 
can be found in Sections 4 and 5. 

As shown in Figure 5, our design flow accepts two types 
of source descriptions as inputs: (1) Input Application: 
The current implementation supports C sources (C99 std. 
compliant); (2) LARA Description: The LARA descrip-
tions capture non-functional requirements in the form of 
aspects and strategies. They enable developers to define 
application characteristics such as precision representation, 
input data rates or even reliability requirements for the 
execution of specific code sections.  

This design flow chain is structured as three major com-
ponents, namely: 
� LARA Front-End: The front-end converts LARA 

descriptions into Aspect-IR (Aspect Intermediate Re-
presentation) to be processed by the weavers. The As-
pect-IR is a low-level representation of LARA in XML 
format, where information is structured in a way to faci-
litate the parsing of aspects and strategies. 

� Source-to-source transformer: This stage, using the 
Harmonic tool (based on [9]), performs source-level 
transformations (C to C) which include: arbitrary code 
instrumentation and monitoring, hardware/software par-
titioning using cost estimation models, as well as inser-
tion of primitives (such as remote procedure calls) to 
enable communication between software and hardware 
components. The results of this stage are source files re-
flecting the partitioning, and additional code generated 
to realize synchronization and communication between 
software and hardware partitions.  

� Compiler Tool Set: This stage includes the front-end, 
middle-end and optimization phases, with the latter two 
common to both software and hardware partitions, 
which are target architecture independent. The CoSy 
[10] compilation framework is currently being used. 
The back-end includes assembly code generators for the 
GPP (software sections) and VHDL/Verilog generators 
for specific hardware cores. 

The design flow includes several weavers at different le-
vels of the toolchain. Each weaver receives as input: C 
source code or an IR and the Aspect-IR, and outputs: the 
transformed C code or the transformed IR and if required a 
modified Aspect-IR for the next weaver in the sequence. 

                                                
2
 Although our compilation framework is applicable to other imperative 

programming languages, due to the constraints imposed by the availability 
of the front-end we are only focusing on the C programming language. We 
have, nevertheless validated the same approach for MATLAB [8]. 

 

Figure 5. LARA based Design Flow. 

4. The LARA Approach 

A key innovation of our aspect-based approach lies in 
bringing together, in the same framework, various types of 
transformation and operational aspects in the mapping of 
computations to embedded systems. Specifically, LARA 
allows developers to specify the following types of aspects: 
� MONITORING: Specification of which implementa-

tion features, such as current value of a variable or the 
number of items written to a specific data structure, 
provide insight for the refinement of other aspects; 

� SPECIALIZING: Definition of specific properties for 
a particular input code when targeting a specific system 
(e.g. specializing data types, numeric precision and in-
put/output data rates);  

� MAPPING AND GUIDING: Specification of design 
patterns, which embody mapping actions to guide tools 
to perform specific implementation decisions (e.g. 
mapping array variables to memories; using FIFOs to 
communicate data between cores; leveraging dynamic 
reconfiguration techniques for performance or using 
temporal/spatial redundancy for fault-tolerance); 

� RETARGETING: Specification of characteristics of 
the target system in order to make the tools adaptable 
and aware of those characteristics, as well as facilitating 
implementation on other systems.  

LARA relies on the main concept of aspects, generically 
defined by the following statement:  

“In programs P, whenever condition C arises, perform action A.” 
[11] 

Associated with AOP are usually the notions of pointcut 
and advice. A pointcut exposes points of interest (join 
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points) related to a program. Join points refer to points in 
the code and/or in the program execution. An advice refers 
to the actions to be performed for each join point exposed 
by the pointcut mechanism. 

In addition, AOP defines the notion of a join point mod-
el, which defines the points of interest for a given pro-
gramming language. A typical join point model includes 
program constructs and structures such as function calls, 
fields in a class, and functions. In our approach, we consid-
er a join point model that captures most structures and 
constructs (e.g., loops, conditionals, variables, array ac-
cesses) found in C in order to specify actions that target 
complex applications containing such code artifacts. 

Our approach also considers points of interest as points 
in the execution of a program as well as in the target physi-
cal system. These points may include components of the 
system, such as a microprocessor, and the system’s parame-
ters, such as its specific inputs. As such our AOP approach 
can be thought as: 

“In programs P and/or systems S, whenever condition C 
arises, perform action A.”     

The following are a few examples that can be captured 
by our AOP approach: 
� For each variable of type double in function f1, change 

the type to float. 

� Set noise power of parameter s of function f1 to 1E-3. 

� Set microprocessor clock frequency to 400 MHz. 

� Map arrays of functions migrated to hardware, with size 
< N, to BRAMs (local memories). 

Figure 6 illustrates the LARA front-end which converts a 
LARA aspect file into Aspect-IR. To perform this conver-
sion, the front-end requires three specification files: (1) the 
join point model representing the points of interest in the 
input programming language and in the target architecture; 
(2) the join point attributes defining properties associated 
with each join point type; and (3) the action model describ-
ing each possible action that an aspect can perform on a 
join point. We describe each of these models next. 

  

Figure 6. The LARA Front-End component. 

4.1 Join Point Model 

The points of interest in the program code and/or program 
execution are specified in the join point model, which is 
structured hierarchically in an XML file. Since the join 
point model specification describes join point types and 
their hierarchy, it can be used to validate pointcut expres-
sions. Rather than hardcoding types in the grammar, this 
approach allows the model to be easily updated and ex-
panded. Also, by accepting a join point model file external-
ly to the front-end, it is possible to reuse the LARA front-
end for other programming languages (see [8]) and with 
different system components and architectures. 

Figure 7(a) shows an excerpt of the join point model cur-
rently used for C programs. In this case, the join point type 
loop has as its predecessor the body of a function, followed 
by the file it belongs to. 

  
(a) (b) 

Figure 7. Excerpt of the input models: (a) join point model 
definition for C programs; (b) the attribute model. 

In addition to the join points related to the C program (as 
illustrated in Figure 7(a)), our approach also considers join 
points related to system components. Examples of those 
join points are the GPP (General Purpose Processor), the 
CCU (Custom Computing Unit), and the Memory. 

4.2 Join Point Attributes 

The attributes associated with each join point type are spe-
cified in the join point attributes file. Figure 7(b) and Table 
1 illustrate examples of attributes for some of the join 
points supported by our join point model. Attributes are 
properties in which values are either statically or dynami-
cally known. These values can be used to filter join points 
(e.g., a for type loop is defined as a join point loop with 
attribute type with value “for”) in conditions that trigger the 
use of a certain action on the aspect, and also as arguments 
for the apply sections of an aspect. 

Table 1. Artifact list containing examples of join point 
attributes associated with system components. 

Join point Attributes Examples of values 

GPP (general 
purpose 

processor) 

name PowerPC 

family P440 

clk_freq 400 MHz 

CCU (custom 
computing 

unit) 

id 1 

clk_freq 100 MHz 

max_slices 4,000 

Memory 

num_ports 1 

max_size 256 × 32-bit 

type BRAM, DRAM, Distributed RAM 

 
In addition, attributes expose information for each join 

point, and that information can be obtained by the weavers 
in the compilation flow and/or can influence the use of 
actions. For example, the join point type var has properties 
including the name of the variable, the number of readings 
and writings, and the initialized value. Another example is 
the information we can obtain about a loop. With the num-
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ber of iterations it is possible to choose whether an aspect 
should perform loop unrolling or not. With the nested level 
attribute it is possible to select specific loops. 

There are global attributes that are common for all join 
points in a program, such as the name of the file or the total 
number of array references. As with the join point model, 
the attributes specification file allows the aspect language 
to be updated and expanded more easily. 

4.3 Action Model 

The action model specifies all actions that can be applied to 
join points. For instance, when optimizing code by using 
the loop unrolling action, the tool should specify which 
stage and which engine can perform this optimization. In 
our current design flow we consider six types of actions: 
� INSERT allows arbitrary code to be instrumented be-

fore, around or after a specific join point. This action is 
used mainly for monitoring-based aspects. 

� DEFINE allows existing attributes to be modified, and 
new attributes to be created.  

� MAP allows developers to associate computations and 
data structures to specific hardware components. 

� OPTIMIZE allows a number of compiler transforma-
tions and optimizations (e.g., loop unrolling, function 
inlining/outlining, scalar replacement, loop fusion) to be 
performed on a specific set of join points.  

� REPORT instructs the weaver to generate an aspect 
file with a set of attribute definitions (see above) with 
the values of attributes for selected join points. This ac-
tion is particularly useful for sharing data across weav-
ers, and to perform feedbacks in the design flow. 

� CALL invokes an aspect, allowing input arguments to 
be passed, and output arguments to be accessed. 

The action model is specific to a design flow and makes 
the LARA front-end aware of what tools and which argu-
ments to use. The action model for each compiler optimiza-
tion (related to the optimize action) defines the name of the 
compiler engine and the possible parameters. Example 
parameters are: loopunroll and unroll factor; tiling and size 
of the block; loop-pipelining and initiation interval (II); 
target clock frequency and function inlining/outlining. In 
summary, by having a join point model, join point 
attributes, and an action model independent of the LARA 
front-end, we improve flexibility and adaptability of differ-
ent programming languages, target systems, and compila-
tion/design flows.  

5. LARA Language Description 

In this section we provide details about the LARA lan-
guage. The complete specification of LARA has been in-
cluded in a report [12]. 

5.1 Aspect Definition 

The current version of the LARA language is compliant 
with the grammar partially depicted in Figure 8. An aspect 
file is composed of three sections: the import declarations, 
the definitions of aspect modules, and code definitions. The 
import declaration section is optional and allows references 
to external aspects; the section with aspect definitions, on 
the other hand, specifies for each aspect the join points to 
be captured and the actions to be performed on them when 

certain requirements are fulfilled; finally the code defini-
tion section, also optional, includes code to be injected into 
the source code. 

An aspect definition is declared using the aspectdef key-
word. Here, developers can define pointcut expressions and 
also the actions to take place on the selected join points. In 
the current version of the LARA language, an aspect defini-
tion can have Select, Apply and Condition sections. These 
sections have dependences between them. For instance, the 
Apply section can be associated with one or more pointcut 
expressions (Selects). Also, a Condition section is used to 
validate an Apply, i.e., to enable or disable an action over a 
join point. In general, we can have various applies to the 
same select, and an Apply associated with more than one 
select. Not all applies need to have a condition section. 

Each aspect definition can start with the declaration of 
input and output parameters. These parameters are used to 
pass values to aspects and to program aspects to return 
values, respectively.  Each aspect has four additional op-
tional sections for: declaring variables, declaring functions, 
code to initiate (prolog) the execution (initialize) and for 
code to terminate (epilogue) the execution (finalize) of the 
aspect. 

Start  = {Import}, AspDef, {AspDef}, {Code-
Def}; 

Import  = ’import’, Identifier, {’.’, Iden-
tifier} ‘;’ ; 

AspDef  = ‘aspectdef’, Identifier, Input, 
Output, {VarDecl}, {FunctionDecl},                          
Initialize, AspBody, {AspBody}, Fi-
nalize, ‘end’ 

AspBody  = Select, {Select}, Apply, {Apply}, 
{ConditionExpr} ; 

CodeDef  = ‘codedef’, Code, ‘end’; 
Figure 8. Excerpt of the LARA language grammar. 

Figure 9 depicts an aspect definition that inserts a printf() 
statement immediately before each function call. To cap-
ture the intended join points a Select statement is used. The 
Select statement is identified by a label (in our example, 
allFunctionCalls) and referred by Apply statements, 
and includes a pointcut expression that defines the join 
points to be captured. The pointcut expression is validated 
by the front-end using the join point model specification 
(Section 3). 

Developers do not need to specify in LARA the complete 
join point hierarchy in the pointcut expression, as the front-
end auto-completes the entire hierarchy using the join point 
model specification as a reference. Also, the pointcut ex-
pression can use, for a specific selection, join point 
attributes to filter the selection according to specific 
attribute values. For instance, the pointcut expression in 
Figure 9(a) uses the attribute name to specify all function 
calls. As shown in this example, the code section (between 
tags %{ and }%) allows the use of parameters that will be 
replaced by the weaver with the corresponding values.  

The corresponding Aspect-IR code is shown in Figure 
9(b). LARA has been designed for code compactness, legi-
bility and flexibility. Aspect-IR, on the other hand, was 
designed to facilitate the parsing and processing of aspect 
definitions by weavers. As explained before, the LARA 
front-end automatically generates the corresponding As-
pect-IR from a LARA description that will be subsequently 
passed to the weavers in the design flow. 



One type of action associated with a pointcut expression 
is the insertion of C code into the source code (Figure 9(a)) 
with the option to use values of join point attributes. This 
insertion can be done before, after or around the join point. 
Target code can be placed between brackets after the insert 
command, as depicted in Figure 9(a), or in a separated 
structure called codedef. The LARA front-end does not 
take actions over the code by itself and therefore the inser-
tion action is passed to the Harmonic weaver. 

aspectdefaspectdefaspectdefaspectdef monitoringCall 
 allFunctionCalls: selectselectselectselect function.call endendendend    
 applyAllCalls: applyapplyapplyapply to allFunctionCalls  
  insert before  
   %{printf("call to [[$call.name]]\n");}%; endendendend 
endendendend 

(a) LARA description 
<aspects> 
 <aspect name="monitoringCall"> 
   <pointcutpointcutpointcutpointcut name="allFunctionCalls"><file> 
     <function> 
       <body> <call name=".*"/> </body> 
     </function></file></pointcut> 
   <applyapplyapplyapply to="allFunctionCalls"><actions> 
     <insert  
      code="monitoringCall_applyAllCalls_0.txt"         
      stage="harmonic" position="before"> 
        <parameter target="function"  
          attribute ="name"  
          replace="<$function.name>"/> 
     </insert></actions></apply>  
</aspect></aspects> 

(b) Aspect-IR description 

Figure 9. (a) Simple LARA code that performs instrumen-
tation; (b) corresponding Aspect-IR. 

Another supported action is optimize (Figure 2). This fea-
ture specifies compiler source-level transformations and 
optimizations, such as loop unrolling and function inlining. 
The loopunroll action triggers the unrolling of selected 
loops using a factor number specified by the developer. The 
inline option inserts the body of the function to inline on 
the location of the function call. 

Besides the assignments to existing join point attributes 
without directing affect the representation of a program, 
our current action model also includes the define action (def 
keyword used in Figure 3). This leads, whenever possible, 
to modifications of the program representation (e.g., defin-
ing the type of a variable as in the aspect in Figure 3). 
Assigning values to join point attributes also provides a 
way to share information between different stages of the 
design flow. For example, specific stages can set values of 
certain attributes so that they can be used by subsequent 
stages of the design flow.  

To limit Apply statements, developers can define condi-
tions. Conditions can be regarded as logical expressions 
that define the triggering conditions for actions specified in 
an Apply. Join point attributes can also be used in condi-
tions. Examples of actions dependent on specific conditions 
are: (a) apply loop unrolling only if the loop is of type “for” 
and has at most 8 iterations; (b) insert code before a func-
tion call if it returns a float; (c) inline a function if it does 
not contain loops. Additional examples of the use of condi-
tions are illustrated in Figure 2 and Figure 4. 

5.2 Join Point Chains 

One novel feature of our approach is that pointcut expres-
sions are written in a form that reflects the hierarchy de-

fined in the join point model (see Section 4.1). For in-
stance, in Figure 10 the pointcut expression has 4 elements 
connected in a chain: the file which captures all files with 
names starting with grid, the function which includes all 
functions enclosed in those files, the body which reflects 
these functions definitions, and the loop which captures 
for-type loops in those functions. This hierarchical me-
chanism has similarities to the within/within code used in 
AspectJ. 

 

Figure 10. The evaluation of pointcut expression results in 
a table, where each row captures a chain of related join 
points, whose attributes can be used in actions and condi-
tions. 

To access the join points resultant from the evaluation of 
a pointcut expression, we simply attach the $ operator with 
the join point identifier. In our example, $file, $function, 
$body and $loop refer to chained join points. We can use 
these join points and their attributes as part of an action or a 
condition definition. Join point identifiers enable access to 
join point attributes, e.g., $file.name refers to the name of 
the file where a particular $loop join point can be found. In 
addition, an action can target any element associated with a 
join point chain, which by default is the last element of the 
pointcut expression. In the following example, the first 
action inserts code after the $loop join point, whereas the 
second inserts code after the $body join point.  

selectselectselectselect function{”main”}.body.loop endendendend 
applyapplyapplyapply  
    insert after %{ ... }%; 
    $body.insert before %{ ... }% 
endendendend 

Furthermore, multiple pointcut expressions can be joined 
and associated with a single apply, allowing access to mul-
tiple branches in the join point hierarchy at once, thus re-
ducing the size of the aspect definition. In particular, LA-
RA supports the (::) operator which, when used in an apply 
definition, joins the results of two pointcut expressions. In 
particular, the (::) operator performs the natural join of two 
select statements. A natural join performs a set of combina-
tions of two join point chains that are equal on their com-
mon point element identifiers. Consider the following ex-
ample where the first pointcut expression (A) refers to all 
loops in function f1, and the second pointcut expression (B) 
refers to the first statement of the function. 

A:selectselectselectselect    function{“f1”}.loop endendendend        
B:selectselectselectselect    function.first endendendend        
apply toapply toapply toapply to    A::BA::BA::BA::B ...    endendendend 

 

By using the natural join operator (::), we are able to ap-
ply actions and access attributes in join points that are 

Pointcut Expression file{name==“grid.*”}.function.body.loop{type == “for”}

Attribute Table

file function body loop

grid_x.c main() 10:1 {…} 15:3 - for(…) { }

grid_x.c main() 10:1 {...} 30:3 – for (…) { }

grid_y.c foo() 14:1 {…} 40:6 – for (…) { }

attribute value

$file.name grid_x.c

$body.num_lines 20

$loop.type for

A

function loop

f1 a

f1 b

B

function first

f1 int x;

f2 int q;

A::B

function loop first

f1 a int x;

f1 b int x;



found in different hierarchical branches ($loop and $first) 
of the join point model. 

5.3 Examples of Instrumentation 

The following two examples illustrate the practical support 
provided by the LARA aspects.  

5.3.1 Timing an application 

Developers often need to time their applications, which 
would require additional code to be inserted in the original 
application. One can describe this concern using LARA, so 
that the aspect can be reused in other applications, while 
reducing code pollution in the original source.  

Figure 11(a) illustrates an aspect description which in-
struments the main function, and adds the necessary code to 
time the application (see Figure 11(b)). It contains three 
pointcut expressions. The first, SF, selects the first state-
ment of every file. The second, SM, selects the first state-
ment of the main function. The third, SR, selects the return 
statements found in the main function. We join all three 
pointcut expressions to access these join points in one ap-
ply section and insert the required code. Note that the 
pointcut expression identifier $first is renamed to $fstmt 
and $bstmt to ensure there is no conflict, and that the neces-
sary join combinations are performed. 

aspectdefaspectdefaspectdefaspectdef timer 
  SF: selectselectselectselect file.($fstmt=first) endendendend 
  SM: selectselectselectselect file. 
        function{"main"}.($bstmt=first) endendendend 
  SR: selectselectselectselect file.function{"main"}.return endendendend 
  apply toapply toapply toapply to SF::SM::SR 
    $fstmt.insert before %{#include <time.h>}%  
    $bstmt.insert before %{ 
            time_t start,end; 
            printf("starting timer!\n"); 
            time (&start);}%;         
    $return.insert before %{ 
        time (&end); 
        printf("elapsed time: %.2lfs\n",  
        difftime(end,start));}%; 
  endendendend  
endendendend 

(a) 
#include <time.h>    
int main() { 
  time_t start,end; 
  printf(“starting timer!\n”); time(&start);    
  … 
  f(); 
  … 
  time (&end);printf("elapsed time: %.2lfs\n",  
  difftime(end,start));    
  return 0; 
} 

(b) 

Figure 11. Timing applications: (a) aspect that instruments 
the code to time the application; (b) code of the application 
after weaving (inserted code is highlighted). 

5.3.2 Counting number of loop iterations 

Loops can often induce hot-spots in the application, and 
finding the number of iterations can be useful to determine 
the applicability of specific transformations. Figure 12(a) 
illustrates an aspect which instruments every for loop using 
two pointcut expressions. The first pointcut expression 
selects the loop itself, in which two actions are applied, 
namely initializing the loop count before the loop and print-
ing the count result after loop execution, respectively. The 

second selection point selects the first statement of the loop 
body, where an increment loop count is inserted before that 
statement. The loop count uid attribute returns a unique 
identifier for every join point, and in this case ensures that 
every declared variable is unique. An example of the code 
after weaving is shown in Figure 12(b). 

aspectdefaspectdefaspectdefaspectdef loop_count 
 selectselectselectselect loop{type=="for"} endendendend 
 applyapplyapplyapply insert before 
         %{int count_[[$loop.uid]] = 0;}%; 
       insert after  
         %{printf("loop [%s(), %d, %s]:  
           %d\n", "[[$function.name]]",  
           [[$loop.level]], "[[$loop.loc]]",        
           count_[[$loop.uid]]);}%; 
 endendendend 
 selectselectselectselect loop{type=="for"}.body.first endendendend 
 applyapplyapplyapply insert after  
         %{count_[[$loop.uid]]++;}%; endendendend 
endendendend 

(a) 
…{ 
  int count_01 = 0;    
  for (int i = 0; i < N; i++) { 
    count_01++;    
    int count_02 = 0;    
    for (int j = 0; j < M; j++) { 
      count_02++;    
      ...    
    } 
    printf("loop [%s(), %d, %s]: %d\n",     
           main, 1, "(10,5)", count_02) ;    
 } 
  printf("loop [%s(), %d, %s]: %d\n",     
        main, 0, "(7,2)", count_01) ; 
} 

(b) 

Figure 12. Adding loop count for every loop in the ap-
plication: (a) aspect; (b) woven code. 

6. Impact and Experimental Evaluation 

In this section we present the experimental results using our 
compilation and synthesis design flow approach on four 
real-life applications which have been provided by two 
industrial partners in the REFLECT project. These applica-
tions consist of two audio domain codes, namely an 
MPEG-2 Audio encoder (MPEG) and a G729 Voice En-
coder and two avionics applications, stereo navigation (SN) 
and 3D Path Planning (3DPP). Both partners have identi-
fied a set of concerns and application requirements (e.g., 
safety in the avionics 3D path planning code) from an in-
dustrial perspective which we translated to aspects using 
the LARA language. 

These concerns relate to different stages of the develop-
ment cycle including: monitoring, fine-tune optimizations, 
and efficiently mapping the application to the target archi-
tecture using schemes such as hardware/software partition-
ing. As an illustrative example we present in Table 2 a list 
of concerns for the MPEG Audio encoder application pro-
vided by one of the REFLECT industry partners.  These 
concerns span the application development cycle from the 
analysis phase (with the use of instrumentation to log and 
monitor specific properties) to the mapping to the target 
architecture. This, we believe, demonstrates the flexibility 
and wide scope of our approach. 

The monitoring capability enables us to understand run-
time behavior, such as (a) the most executed paths in if-
then constructs, (b) non-variant parameters in specific 
function calls which enable distinct specializations for the 



same function, and  (c) data ranges and accuracy that can 
be used to guide word-length optimizations. The use of 
aspects related to (b) allowed us to identify opportunities 
for function specializations in all the four applications. For 
instance, in 3D Path Planning we evaluated three specia-
lized versions of the griditerate function, and in the Stereo 
Navigation we have three possible specializations of a 
function. These specializations were important to achieve 
better performance as in most cases, they were related to 
loop iteration counts, enabling fully loop unrolling and 
operator strength reduction. 

The use of hardware/software partitioning directives al-
lows us to guide the toolchain to map specific functions or 
code sections to hardware-customized cores. This, in turn, 
enabled the definition of compilation sequences producing 
designs that met application requirements and target archi-
tecture features.  

We next present experimental results using the AOP ap-
proach presented in this paper. These experimental results 
focus on examples of aspects used for application analysis 
for understanding their dynamic behavior, and on a number 
of aspects used for performance tuning considering both 
software and hardware implementations.  

Table 2. Examples of aspects applied to the MPEG Audio 
encoder. 

Type of 
Aspects 

Examples 

Monitoring 
(C code 

insertion) 

Monitor range of the variables z and m in fsubband for word-
length optimization. 

After word-length optimization, monitors the output variable s and 
variable y to validate deviations to their original values. 

Replicate the body of the fsubband function with different word-
lengths. So, deviation analysis can be done internally. 

Specializing 

Variables defined as “double” (in functions add_sub, fsubband 
and II_f_f_t) should be analyzed by the word-length analysis tool 
to optimize their sizes. 

Convert “double” to “float” data-types in function II_f_f_t. A 
“Code Insertion” aspect is added to monitor the deviations intro-
duced by this transformation. 

Mapping 
and  

Guiding 

Map to hardware functions add_sub, fsubband and II_f_f_t. 

Define specific hardware mapping strategies for add_sub, fsub-
band and II_f_f_t functions. 

FIFOs, as well as hardware cores for audio I/O, are the hardware 
blocks necessary in any audio system. These hardware blocks 
need to interface with the read_samples function in the specializ-
ing aspect. Aspects can be used to add these hardware blocks 
without modification of the original code. 

Binding the functions pow and log10 in the II_f_f_t and add_db 
to hardware. 

Arrays in functions fsubband and II_f_f_t mapped to external 
memories. 

6.1 Aspects for Application Code Analysis 

Table 3 shows the impact of LARA on the four applications 
used in our experiments. We consider the following moni-
toring concerns: measuring branch frequencies, monitoring 
range (min and max) for variables in the program, monitor-
ing function calls, and timing the application. To assess the 
impact, we use five metrics: LOC, CDLOC [13], aspectual 
bloat [14], tangling ratio [14], and the percentage of func-
tions that are affected by the given aspect. We explain each 
of these metrics next. 

The LOC metrics referred in Table 3 are: (a) the number 
of lines of code in the original application, (b) the number 
of lines of the woven application, and (c) the number of 
lines in the LARA descriptions. They provide us with a 
measure of size for both C and LARA descriptions. For 
instance, applications SN and MPEG are 9 times larger 

than 3DPP. On the other hand the timing aspect description 
is 4 times larger than the call monitoring aspect. 

The CDLOC (concern diffusion over LOC) metric indi-
cates the number of switch points where concern-specific 
code transitions to functional code and vice-versa [13]. We 
report on the tangling ratio metric, as the ratio between the 
CDLOC count and the woven code LOC. The tangling ratio 
gives us a more accurate measure of intermingling. The 
higher the tangling ratio, the more intermixed is the con-
cern code with the functional code. The lower the tangling 
ratio, the more localized the concern related code is. The 
four highlighted aspects (with names ending with 3DPP) in 
Table 3 target one specific function in the 3DPP 
application. As these aspects only focus on one code 
section, their tangling ratio is considerably lower than other 
wide scope aspects. 

Table 3. Aspect metrics for several monitoring concerns: 
branch frequencies, variable range, function calls, and tim-
ing. 

Aspect App LOC  
(origi-
nal C) 

LOC  
(wo-

ven C) 

LOC  
(LA-
RA) 

CDL
OC 

Tangling 
Ratio 
(%) 

Aspec-
tual 

Bloat 

% of 
af-

fected  
func-
tions 

FrqBranches3
DPP 

3DPP  1152 1157 17 10 0.86 0.29 2.17 

FrqBranches 3DPP 1152 1187 20 250 21.06 1.75 32.61 

FrqBranches SN 9394 9958 20 1128 11.33 28.20 57.43 

FrqBranches MPEG 8925 9312 20 774 8.31 19.35 56.05 

FrqBranches G729 5835 6094 20 518 8.50 12.95 48.65 

RangeEx-
ec3DPP 

3DPP 1152 1167 25 30 2.57 0.60 4.35 

RangeExec 3DPP 1152 1374 23 444 32.31 9.65 39.13 

RangeExec SN 9394 11125 23 3462 31.12 75.26 89.19 

RangeExec MPEG 8925 10747 23 3644 33.91 79.22 84.71 

RangeExec G729 5835 7560 23 3450 45.63 75.00 90.99 

CallExec3DPP 3DPP 1152 1159 18 12 1.04 0.39 13.04 

CallExec 3DPP 1152 1340 12 188 14.03 15.67 63.04 

CallExec SN 9394 10006 12 612 6.12 51.00 41.22 

CallExec MPEG 8925 10109 12 1184 11.71 98.67 55.41 

CallExec G729 5835 6365 12 530 8.33 44.17 31.53 

TimerPC3DPP 3DPP 1152 1185 40 34 2.87 0.83 4.35 

TimerPC 3DPP 1152 1533 40 382 24.92 9.53 63.04 

TimerPC SN 9394 10623 40 1230 11.58 30.73 41.22 

TimerPC MPEG 8925 11299 40 2374 21.01 59.35 55.41 

TimerPC G729 5835 6900 40 1066 15.45 26.63 31.53 

Average  5291.6 6010 24 1066 15.63 31.96 45.23 

 
The aspect bloat measures the efficency of an aspect with 

respect to the woven code generated. This metric is 
computed by dividing the number of lines of code that 
implement a concern by the aspect LOC. If the aspect bloat 
is less than 1, it means low aspect efficiency as more code 
was used to write the aspect than the code to implement the 
concern. In general, a higher aspect bloat means that the 
aspect has a higher impact factor in the application, and 
potentially higher reuse. 

Table 4 shows the aspect metric results for the following 
hardware/software partitioning strategy: 

importimportimportimport gprof_results; 
  
aspectdefaspectdefaspectdefaspectdef PartitionStrategy 
  initialize initialize initialize initialize call call call call gprof_results;    endendendend 
  selectselectselectselect function{*} endendendend 
  applyapplyapplyapply map(to: “hardware”, id: "virtex5"); endendendend 
  conditionconditionconditioncondition $function.time > 15 &&  
            $function.name != "main" && 
            $function.is_synthesizable endendendend 
endendendend 



which states that all functions that contribute to more 
than 15% of the total application time and are synthesizable 
shall be mapped to the FPGA (hardware). The remaining 
functions are to execute in the PowerPC (software). The 
toolchain automatically converts to LARA the gprof profil-
ing results associating attributes such as timing and number 
of calls to each function. The Harmonic weaver splits the 
application into two C sub-applications: one for the Po-
werPC and another for the FPGA. Each source contains the 
functions for each partition, in addition to global variables 
and type definitions that are shared by both partitions, and 
the code to implement the remote procedure calls. Note that 
the number of functions mapped to the FPGA, as shown in 
Table 4, includes not only the functions that run more than 
15% of the total application time, but also includes all in-
voked functions which are part of their implementation. 

These results indicate the potential of a LARA aspect to 
control the entire hardware/software partitioning process 
without developer intervention. With this approach other 
partitioning can easily be evaluated without the tedious and 
error prone manual efforts otherwise required.  

Table 4. Aspect metrics extracted when applying LARA 
aspects for hardware/software partitioning. 

App 
LOC  
origi-
nal C 

LOC  
woven 

C 

LOC  
LA-
RA 

total  
# func-
tions 

# func-
tions 

mapped 
to FPGA 

Aspec-
tual 

Bloat 

% of 
af-

fected  
func-
tions 

3DPP 1,152 1,246 15 46 7 6.27 15.22 

SN 9,394 9,646 15 148 102 16.80 68.92 

MPEG 8,925 9,087 15 157 3 10.80 1.91 

G729 5,835 5,998 15 111 2 10.87 1.80 

6.2 Aspects for Performance Tuning 

We now illustrate the use of performance tuning aspects for 
two specific hot-spot functions, respectively fsubband 
(from MPEG), and griditerate (from 3DPP). We report 
results for a Xilinx Virtex5 FPGA (xc5vfx130t-2ff1738) in 
terms of the number of FPGA slices and DSP blocks. The 
software implementations were derived using ppc-gcc as 
backend (w/ option -O3) whereas for the hardware results 
we used Catapult-C as high-level synthesis tool [15] and 
the Xilinx ISE 13.1 as back-end tool. For all the results we 
used fixed-point implementations of the functions and 
considered the baseline hardware and software implementa-
tion as the original untransformed C code. 

Figure 13 and Figure 14 illustrate, respectively, the im-
pact of the application of the hardware-oriented aspects on 
hardware resources3 and on hardware and software spee-
dups over baseline implementations for different imple-
mentations of functions fsubband and griditerate, using 
different strategies specified as aspects. 

The strategies for fsubband included loopscalar (B1-B8), 
loop-pipelining (B2-B8), unroll-and-jam first nested loops 
(B3), fully unroll first innermost loop (B4), fully unroll first 
innermost loop + unroll 16 times of inner second nested 
loops (B5), unroll+jam first nested loops and unroll 2 times 

                                                
3
 Xilinx’s FPGAs are organized as arrays of programmable slices, inter-

connect resources, local memories, and DSP components that implement 
logic functions and local storage structures. For example, on a Virtex-5 
FPGA, a 32-bit integer adder requires 5 slices whereas a 32-bit integer 
multiplier requires 3 DSP blocks. The Virtex-5 FX FPGA also includes 
two PowerPC processors. 

of inner second nested loops (B6), unroll+jam first nested 
loops and unroll 2 times of inner second nested loops (with 
second index variables) (B7), and fully unrolling of all the 
4 loops (B8). The best strategy allows us to achieve a spee-
dup of 10 times over the baseline implementation with only 
an increase of 9% and 57% of hardware resources (number 
of slices and DSP blocks, respectively). 

 

Figure 13. Hardware resources for griditerate and fsub-
band considering different strategies over baseline. 

 

Figure 14. Hardware (HW) and software (SW) speedups 
over the respective baseline implementations for the gridi-
terate and fsubband functions considering different strate-
gies. 

The strategies for griditerate included loop pipelining 
(A1), specialized versions (An-spl), loop coalescing of the 
two inner loops (A2), loop unrolling of the innermost loop 
by two (A3), and data replication in 4 memories (A4). The 
strategies for griditerate result in performance improve-
ments over the reference FPGA hardware implementation 
of a maximum speedup of 2.26 with an increase of 68% of 
slices and 50% of DSP blocks. 
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Our approach also allowed us to have two distinct strate-
gies: one used for the best FPGA hardware implementation, 
and another one used for the best FPGA software imple-
mentation (i.e., for the code generated for the GPP). For the 
software implementation we use one of the PowerPC hard-
cores of the target FPGA. Figure 14 presents speedups 
obtained using different strategies. It is clear from the re-
sults that the two toolchain flow paths (software and hard-
ware) require different strategies to obtain the best perfor-
mance. For the griditerate function the best strategies are 
A4-spl and A2 for hardware and software implementation, 
respectively. For fsuband, the best strategies are B6 and B5, 
for hardware and software implementation, respectively.  

6.3 Discussion 

Regarding the aspect-related code transformation and anal-
ysis metrics, the results reveal high tangling and aspectual 
bloating ratios of, respectively, 15.6% and 31.9%. These 
are particularly encouraging as the percentage of affected 
functions is quite large. 

With respect to the software- and hardware-oriented 
mapping and guiding transformations, the attained perfor-
mance for the best compilation and synthesis strategy is 
also very good as the results exhibit very consistent spee-
dups. Developers are able to leverage the compactness of 
aspect-based mapping strategies and back-end synthesis 
tools to quickly, and predictably, develop strategies to map 
applications to hardware/software target architectures. 

While we have not yet focused on an evaluation of this 
aspect-based approach for DSE, these early experimental 
results do reinforce the claim of its usefulness in the map-
ping of real applications to complex target architectures.  

7. Related Work 

We now highlight related work in the areas of Aspect 
Oriented Programming (AOP) [4][16][17]. 

AOP has been the subject of intense research over the 
last decade. AspectJ [18], one of the most widely known 
AOP languages, is an AOP extension for Java aimed at 
providing better modularity for Java programs. AspectJ 
contributes to cleaner and better code by modularizing 
programs, providing solution for several cross-cutting con-
cerns such as monitoring, logging, debugging, synchroniza-
tion, and performance. Another example of an AOP lan-
guage with noticeable success is AspectC++ [19][20], 
which is an AOP extension to the C++ programming lan-
guage. Both AspectJ and AspectC++ do not consider join 
points related to local variables, statements, loops and con-
ditional constructs. For instance, LoopsAJ [21] extends the 
join point model of AspectJ to allow the direct intervention 
over loops by adding a new loop pointcut (captured with 
different pointcut expressions), including contextual infor-
mation used for loop parallelization. @AspectJ [22] is a 
refinement of AspectJ that allows the specification (using 
labels) of join points at level of individual statements such 
as if and while loops. 

Reflecting AOP’s growing acceptance, several AOP ex-
tensions have been proposed to other languages and do-
mains of applicability. For instance, AspectMatlab [23] 
provides AOP extensions for MATLAB focusing on array 
variables and loops, as these are key constructs in scientific 
applications. AspectMatlab supports the AOP notion of 
pointcuts (called patterns) and advices (called actions).  

Our AOP-based approach differs from related work in 
several ways. First, we extend the capabilities associated 
with types, such as their shapes and precision (as described 
in our previous work [24][25]). In addition, the join point 
model allows the specification of pointcuts in virtually all 
points in a program diminishing the need for labels. 

LARA has been inspired by many AOP approaches, such 
as AspectJ and AspectC++. For instance, during the evolu-
tion of LARA we have adopted mechanisms similar to the 
ones used by AOP approaches based on functional queries 
[26]. In our approach, pointcut expressions allowed by 
select sections of the aspect modules are able to define 
composable select expressions (similar to composable que-
ries) as in [26]. We can associate two or more pointcut 
expressions to the same advice (apply statement) along 
with an operator to specify the type of association thus 
enriching the semantics of the pointcut mechanisms.   

We have defined a hardware/software join point model 
that reflects the need to interface with a potentially wide 
variety of tools and target embedded computing systems. 
Lastly, following the notion of patterns and actions in As-
pectMatlab, our approach also formalizes the concept of 
strategies as a way to capture and reuse a sequence of pro-
gram transformations and application mapping choices. 

The main drivers of our AOP approach have been the 
functional requirements elicited by the industrial partners 
of the REFLECT project [6]. Based on the requirements, 
LARA includes in the actions associated with join points 
not only code to be executed (as in AspectJ), but also com-
piler optimization directives and data and type information 
about variables. LARA allows powerful dynamic pointcut 
mechanisms to expose context information about join 
points.   

 One of the requirements we faced was the migration of 
code related to conditional compilation (#ifdef clauses in 
C) to aspects [27][28]. We have also faced the need of 
migrating to aspects toolchain directives implemented as C 
#pragmas. They spread around code artifacts and are com-
monly used to annotate code with directives for compiler 
optimizations and code transformations. As their use de-
pends on the target architecture and on the toolchain being 
used, it is common to have variations for the same applica-
tion. Aspects mitigate this problem.  

In addition, this separation of concerns facilitates the 
manual exploration of certain compiler properties, as the 
changes to be evaluated are performed to concentrated code 
in aspects and not to pragmas spread along the application 
(as it seems to be a trend [29]). As an example, the Cata-
pult-C version we use [15] allows at least 10 different 
pragmas. Annotations have severe limitations as they refer 
to static join points, pollute the code, impose code varia-
tions (possibly implemented using conditional compilation 
mechanisms), and do not allow compiler sequences, while 
our AOP approach allows semantic and dynamic join 
points, and join points exposed along compiler sequences.   

One of the strengths of our approach is to use AOP to 
support portability and retargetability. By exposing to as-
pects concerns such as the ones related to safety and per-
formance requirements, different aspects can lead to the 
generation of different hardware or hardware/software 
implementations. This can be conceptually thought as the 
implementation of portability addressed by Alves et al. [30] 
in the context of software product lines. By exposing to 
aspects the characteristics of the target architecture, we 



promote tool-flow adaptability for different architectures. 
Note that besides code variations we also support AOP-
based strategies that allow different implementations by 
controlling key toolchain stages. 

8. Conclusion 

This paper presents a novel aspect-oriented programming 
language named LARA, which provides separation of con-
cerns, including non-functional requirements and strategies, 
for the mapping of high-level applications to high-
performance heterogeneous embedded systems. We de-
scribed how LARA supports monitoring, specialization, 
hardware/software partitioning, and retargeting in the con-
text of multiple programming languages and design flows. 
The LARA prototype is being evaluated with real-life in-
dustrial application C codes. The experimental results pro-
vide strong evidence of its usefulness and significance in 
the mapping of applications to heterogeneous embedded 
architectures.  

We see the flexibility of aspect-oriented approaches, such 
as the one presented in LARA, as a key programming tech-
nology that will enable developers to meet increasingly 
demanding challenges in developing embedded systems. 
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